Contents

Description Page
NFX9000 Drives 40-2
MVX9000 Drives
Open Drives 40-8
Enclosed Drives 40-16
SLX9000 Drives
Open Drives 40-27
Enclosed Drives 40-37
SVX9000 Drives
Product Family Overview 40-49
Open Drives 40-51
Enclosed Drives 40-85
VFD Pump Panels 40-112
SPX9000 Drives 40-132
HVX9000 Drives
40-167
Open Drives40-195
CFX9000 Drives 40-210
CPX9000 Drives 40-240
LCX9000 Liquid Cooled Drives 40-262
SPA9000/SP19000/SPN9000 Common DC Bus Drive Products 40-280
40

Adjustable Frequency Drives

Model NFX9000

Product Description

Cutler-Hammer ${ }^{\circledR}$ NFX9000 adjustable frequency AC Drives from Eaton's electrical business are designed to provide adjustable speed control of three-phase motors. These micro-processor-based drives have standard features that can be programmed to tailor the drive's performance to suit a wide variety of application requirements.
The NFX9000 volts-per-hertz product line utilizes a 32-bit microprocessor and insulated gate bipolar transistors (IGBTs) which provide quiet motor operation, high motor efficiency and smooth low speed performance. The size and simplicity of the NFX9000 make it ideal for hassle free installation where size is a primary concern.

Models rated at 240 volts, single- or three-phase, $50 / 60 \mathrm{~Hz}$ are available in sizes ranging from $1 / 4$ to 2 hp . Models rated at 115 volts, single-phase, $50 / 60 \mathrm{~Hz}$ are available in the $1 / 4$ to $1 / 2 \mathrm{hp}$ size range.

The standard drive includes a digital display, operating and programming keys on the keypad.
The display provides drive monitoring as well as adjustment and diagnostic information. The keys are utilized for digital adjustment and programming of the drive as well as for operator control. Separate terminal blocks for control and power wiring are provided for customer connections. The drives feature RS-485 serial communications.

Features and Benefits

Table 40-1. Features and Benefits

Feature	Customer Benefit
V/Hz Control.	Provides 150\% starting torque and advanced low speed control.
Clearly laid out and easy to understand keypad with 4-character LED display, 4 status indicating LEDs, speed potentiometer, and 5 function keys.	Most informative operator's interface in this class of VFD, provided as standard. All parameters, diagnostic information and metering values are displayed with a bright 4-character LED display.
1 analog input 4 programmable, intelligent digital inputs 1 programmable relay	Provide enhanced application flexibility.
Serial communication port (RS-485).	Direct connection to serial communications networks.
Single-phase or three-phase input capability on 115/240V AC rated units.	Operate three-phase motor with single-phase supply.

Technical Data and Specifications

Output Ratings

■ Horsepower;

- $90 \mathrm{~V}-132 \mathrm{~V}, 1 / 4-1 / 2 \mathrm{hp}$
- 200 - 240V: $1 / 2$ - 2 hp

■ Frequency Range: $0.1-400 \mathrm{~Hz}$
■ Overload Rating: 150% for 60 seconds

- Frequency Resolution:
- Digital: 0.1 Hz
- Frequency Accuracy
- Digital: $\pm 0.01 \%$ of max. frequency
- Analog: $\pm 0.2 \%$ of max. frequency

■ Undervoltage Carryover Limit: 0.3 to 25 seconds

Motor Performance

■ Motor Control: V/Hz
■ Constant Torque: Standard
■ Speed Regulation: 0.5% of base speed

Input Power

■ Voltage at $50 / 60 \mathrm{~Hz} \pm 3 \mathrm{~Hz}$

- $100 \mathrm{~V}-120 \mathrm{~V},-10 \%+10 \% / 1-$ phase
- $200 \mathrm{~V}-240 \mathrm{~V},-10 \%+5 \% / 1$-phase
- $200 \mathrm{~V}-240 \mathrm{~V},-10 \%+5 \% / 3$-phase

■ Displacement Power Factor:
Better than 0.95
■ Efficiency: Typically greater than 95\%

Design Type

■ Microprocessor: 32-Bit

- Converter Type: Diode

■ Inverter Type: Insulated Gate Bipolar Transistor
■ Waveform: PWM Volts/Hertz

Environment

- Operating Temperature:
- $-10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$

■ Humidity: 20 to 90% non-condensing
■ Maximum Elevation: 1000 meters (3300 ft.)

Codes and Standards

■ NEMA, IEEE, NEC: Design Standards
■ UL Listed
■ cUL Listed

- CE Marked

Enclosure

- Standard: Protected Chassis (IP20)

Protective Features

- Ground Fault: Standard
- Overload Protection: Standard

■ Overcurrent: Standard
■ Overvoltage: Standard
■ Undervoltage: Standard
■ Overtemperature: Standard
■ Overload Limit: Standard

Set Up Adjustments, Performance
 Features, Operator Control and External Interface

Keypad

- Alphanumeric Display:

Standard, 1×4 character

- Digital Indications: RUN/STOP and FORWARD/REVERSE
- Diagnostics: Last 3 trips with cause

■ LED Status Indicators: 4 (RUN/STOP and FORWARD/ REVERSE)

- Operator Functions: RUN/STOP, Speed control (digital or potentiometer), RESET, MODE Keys and ENTER.

I/O Terminal Block

- Analog Inputs:
- 1 Input: 0-10V DC, 4-20 mA
- Potentiometer: 1 K ohm to 2 K ohm
- Analog Voltage: Nominal 10V DC (10K ohm input impedance)
- Analog Current: Nominal 4-20 mA (250 ohm)
- Digital Inputs: 4 Programmable Inputs
■ Digital Outputs: 1 Form A Relay contact

Table 40-2. Watts Loss

Horsepower	Catalog Number	Volts	Watts Loss
			9 kHz
$1 / 4$	NFXF25A0-1	115 V AC	20 W
$1 / 2$	NFXF50A0-1		20 W
$1 / 4$	NFXF25A0-2	230 V AC	20 W
$1 / 2$	NFXF50A0-2		20 W
1	NFXX001A0-2		38 W
2	NFX002A0-2		75 W

Wiring Diagrams

Figure 40-1. Control Terminal Wiring (Factory Settings)

Figure 40-2. Basic Wiring Diagram
Note: Do not plug a modem or telephone line to the RS-485 communication port, permanent damage may result. Terminals 1 and 2 are the power sources for the optional copy keypad and should not be used while using RS-485 communication.

- Use power terminals $\mathrm{R} / \mathrm{L} 1$ and $\mathrm{S} / \mathrm{L} 2$ for single-phase connection to models: NFXF25A0-1, NFXF50A0-1, NFXF25A0-2, NFXF50A0-2 or NFX001A0-2.
■ Use power terminals R/L1, S/L2 and T/L3 for three-phase connection to models: NFXF25A0-2, NFXF50A0-2, NFX001A0-2 or NFX002A0-2.
■ Single-phase power must not be used for model NFX002AO-2.

Dimensions

Figure 40-3. 1/4 to 2 hp Drive Approximate Dimensions in Inches (mm)

Catalog Number Selection

Table 40-3. NFX9000 Catalog Numbering System

Product Selection

Table 40-4. NFX9000 Basic Controller IP20

Description		Input Ampere Single-/ Three-Phase Rating	Continuous Output Amp Rating	Catalog Number	Price U.S. S
hp ${ }^{1}$	Volts ${ }^{2}$				
$1 / 4$	$90-130$	$6.0 /-$	1.6	NFXF25A0-1	
$1 / 2$		$9.0 /-$	2.5	NFXF550A0-1	
$1 / 4$	$200-240$	$4.9 /-$	1.6	NFXF25A0-2	
$1 / 2$		$6.5 /-$	2.5	NFXF50A0-2	
1		$9.7 /-$	4.2	NFX001A0-2	
2		$-/ 9.0$	7	NFX002A0-2	

(1) Horsepower ratings are based on the use of a 240 V or 480 V NEMA B,

4 - or 6-pole squirrel cage induction motor and are for reference only. Units are to be selected such that the motor current is less than or equal to the NFX9000 rated continuous output current.
(2) For $208 \mathrm{~V}, 380 \mathrm{~V}$ or 415 V applications, select the unit such that the motor current is less than or equal to the NFX9000 rated continuous output current.

Contents	
Description	Page
MVX9000 Open Drives	
Product Description.	40-8
Features and Benefits	40-8
Technical Data and	
Specifications	40-9
Wiring Diagrams	40-10
Dimensions	40-12
Catalog Number	
Selection	40-15
Product Selection	40-15
Options.	40-15

Product Description

Cutler-Hammer ${ }^{\circledR}$ MVX9000 sensorless vector adjustable frequency AC Drives from Eaton's electrical business are designed to provide adjustable speed control of three-phase motors. These microprocessor-based, sensorless vector drives have standard features that can be programmed to tailor the drive's performance to suit a wide variety of application requirements.

The MVX9000 sensorless vector product line utilizes a 32-bit microprocessor and insulated gate bipolar transistors (IGBTs) which provide quiet motor operation, high motor efficiency and smooth low speed performance. The size and simplicity of the MVX9000 make it ideal for hassle free installation where size is a primary concern.

Models rated at 480 volts, three-phase, $50 / 60 \mathrm{~Hz}$ are available in sizes ranging from 1 to 10 hp . Models rated at 240 volts, single- or three-phase, $50 / 60 \mathrm{~Hz}$ are available in sizes ranging from $1 / 2$ to $7-1 / 2 \mathrm{hp}$. Models rated at 115 volts, single-phase, $50 / 60 \mathrm{~Hz}$ are available in the $1 / 4$ to 1 hp size range.

The standard drive includes a digital display, operating and programming keys on a removable keypad.
The display provides drive monitoring as well as adjustment and diagnostic information. The keys are utilized for digital adjustment and programming of the drive as well as for operator control. Separate terminal blocks for control and power wiring are provided for customer connections. Other features provided as standard include built-in DC braking, RS-485 serial communications and PID control.

Features and Benefits

Table 40-5. Features and Benefits

Feature	Customer Benefit		
Sensorless Vector Control with auto tuning.	Provides 200\% starting torque and advanced low speed torque control.		
Clearly laid out and easy to understand keypad with 4-character LED display, 7 status indicating LEDs, speed potentiometer, and 6 function keys.	Most informative operator's interface in this class of VFD, provided as standard. All parameters, diagnostic information and metering values are displayed with a bright 4-character LED display.		
2 analog inputs 6 programmable, intelligent digital inputs 1 programmable digital output	programmable relay	\quad	Provide enhanced application flexibility.
:---			
PID control of a process variable such as pressure, flow, temperature, liquid level, etc.			
Eliminates requirement for separate setpoint controller.			
Serial communication port (RS-485).			
Superior deceleration performance. Single-phase or three-phase input capability on 240V AC rated units, 3 hp and below.Direct connection to serial communications networks.			

Open Drives

Technical Data and Specifications

Output Ratings

■ Horsepower;

- $90-132 \mathrm{~V}, 1 / 4-1 \mathrm{hp}$
- 200 - 240V: $1 / 2$ - 7-1/2 hp
- 380 - 480V: 1 - 10 hp
- 425 - 660V: 1 - 10 hp

■ Frequency Range: $0.1-400 \mathrm{~Hz}$
■ Overload Rating: 150\% for 60 seconds

- Frequency Resolution:
- Digital: 0.1 Hz
- Analog: Max. (Set Frequency/1000) Hz
- Frequency Accuracy
- Digital: $\pm 0.01 \%$ of max. frequency
- Analog: $\pm 0.2 \%$ of max. frequency
- Undervoltage Carryover Limit:
0.3 to 25 seconds

Motor Performance

- Motor Control: Sensorless Vector
- Constant and Variable Torque:

Standard
■ Speed Regulation: 0.5% of base speed

Input Power

■ Voltage at $50 / 60 \mathrm{~Hz} \pm 3 \mathrm{~Hz}$

- 100V $-120 \mathrm{~V},-10 \%+10 \% / 1-$ phase
- $200 \mathrm{~V}-240 \mathrm{~V},-10 \%+5 \% / 1$-phase
- $200 \mathrm{~V}-240 \mathrm{~V},-10 \%+5 \% / 3$-phase
- $380 \mathrm{~V}-480 \mathrm{~V},-10 \%+10 \% / 3$-phase
- $500 \mathrm{~V}-600 \mathrm{~V},-15 \%+10 \% / 3$-phase
- Displacement Power Factor:

Better than 0.95
■ Efficiency: Typically greater than 95\%
Design Type
■ Microprocessor: 32-Bit
■ Converter Type: Diode
■ Inverter Type: Insulated Gate Bipolar Transistor

- Waveform: Sensorless Vector

Environment

■ Operating Temperature:

- $-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
- $-10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ (above $7-1 / 2 \mathrm{hp}$)
- Humidity: 20 to 90% non-condensing

■ Maximum Elevation: 1000 meters (3300 ft.)

Codes and Standards

■ NEMA, IEEE, NEC: Design Standards

- UL Listed

■ cUL Listed

- CE Marked (Requires EMI filter)

Enclosure

■ Standard: Protected Chassis (IP20)

Protective Features

■ Ground Fault: Standard

- Overload Protection: Standard

■ Overcurrent: Standard

- Overvoltage: Standard

■ Undervoltage: Standard
■ Overtemperature: Standard
■ Overload Limit: Standard

Set Up Adjustments, Performance Features, Operator Control and External Interface

Keypad

- Alphanumeric Display:

Standard, 1×4 character

- Digital Indications: Frequency (Hz), Motor Current (amps), User-Defined RUN/STOP, FORWARD/REVERSE and Parameters
■ Diagnostics: Last 3 trips with cause
■ LED Status Indicators: 8 (RUN/STOP, FORWARD/REVERSE, Hz , Amps, User Defined, and Input Speed)
- Operator Functions: START/STOP, Speed control (digital or potentiometer), RESET, SETUP Keys and ENTER.

I/O Terminal Block

- Analog Inputs:
- 2 Inputs: 0 - 10V DC, 4-20 mA
- Potentiometer: 1 K ohm to 2 K ohm
- Analog Voltage: Nominal 10V DC (10K ohm input impedance)
- Analog Current: Nominal 4-20 mA (250 ohm)
■ Digital Inputs: 6 Programmable Inputs
■ Digital Outputs: 1 Programmable Open collector and 1 Form C Relay contact

■ Analog Monitor Output:

- Analog meter - frequency or output current
■ Dynamic Brake Chopper

Programmable Parameters

■ Out of the Box: Factory settings loaded for quick start-up.

- Accel. and Decel.: 2 separately adjustable Linear or S Curve times: $0.1-3000$ seconds
- Auto Restart:

Overcurrent, overvoltage and undervoltage with 4 selectable retry restart modes

- DC Injection Braking

■ External Fault: Terminal input

- Jog: Terminal input

■ Fault Reset: STOP/RESET or terminal input

- I/O: NO/NC Selectable

■ Jump Frequencies: 3 (with adjustable width)

- Parameter Security: Programmable software lock
■ Preset Speeds: 7 preset speeds
■ PID Controller: PID process control
- Reversing: Keypad or terminal

■ Speed Setting: Keypad, terminal or pot

- START/STOP Control: Keypad or terminal
■ Stop Modes: Decel, coast or DC injection
Reliability
■ Pretested Components: Standard
■ Surface Mount Technology: Standard (PCBs)
- Computerized Testing: Standard
- Final Test with Full Load: Standard

■ Eaton's Cutler-Hammer Engineering Systems and Service: National network of AF drive specialists

Table 40-6. Heat Loss Data

Model	Watts Lost at 9 kHz	Model	Watts Lost at 9 kHz	Watts Lost at $\mathbf{6} \mathbf{~ k H z}$
MVXF25A0-1 (1-phase) 20 MVX001A0-4 38 MVXF50A0-1 (1-phase) 20 MVX002A0-4 75 MVX001A0-1 (1-phase) 38 MVX003A0-4 110 MVXF50A0-2 (1-phase) 20 MVX005A0-4 185 MVXF50A0-2 (3-phase) 20 MVX007A0-4 275 MVX001A0-2 (1-phase) 38 MVX010A0-4 375 MVX001A0-2 (3-phase) 38 MVX001A0-5 - MVX002A0-2 (1-phase) 75 MVX002A0-5 - MVX002A0-2 (3-phase) 75 MVX003A0-5 - MVX003A0-2 (1-phase) 110 MVX005A0-5 - MVX003A0-2 (3-phase) 110 MVX007A0-5 - MVX005A0-2 185 MVX010A0-5 - MVX007A0-2 275 - 50				

Open Drives

Table 40-7. All Braking Resistors \& Braking Units Used in AC Drives

Applicable Motor		Braking Resistor Kit P/N	Oty of Resistors in Kit \& Wiring	Total Resistance and Wattage applied to MVX	Full Load Torque (kgf-m) of System	Braking Torque @ 10\%ED with Kit
hp	kW					
115 S Series						
1/4	. 20	K13-000034-0821	1	80W 200	. 108	220\%
1/2	. 37	K13-000034-0821	1	80W 200Ω	. 216	220\%
1	. 75	K13-000034-0821	1	80W 200	. 427	125\%

230V Series

$1 / 2$.37	K13-000034-0821	1	$80 \mathrm{~W} 200 \Omega$.216	220%
1	.75	K13-000034-0821	1	$80 \mathrm{~W} 200 \Omega$.427	125%
2	1.5	K13-000034-0824	1	$300 \mathrm{~W} 70 \Omega$.849	125%
3	2.2	K13-000034-0824	1	$300 \mathrm{~W} 70 \Omega$	1.262	125%
5	3.7	K13-000034-0825	1	$400 \mathrm{~W} 40 \Omega$	2.080	125%
$7-1 / 2$	5.5	K13-000034-0826	2 in Parallel	$500 \mathrm{~W} 30 \Omega$	3.111	125%

480V Series

1	.75	K13-000034-0841	1	$80 \mathrm{~W} 750 \Omega$.427	125%
2	1.5	K13-000034-0843	1	$300 \mathrm{~W} 250 \Omega$.849	125%
3	2.2	K13-000034-0843	1	$300 \mathrm{~W} 250 \Omega$	1.262	125%
5	3.7	K13-000034-0844	1	K Parallel	400W 150	$500 \mathrm{~W} 100 \Omega$
$7-1 / 2$	5.5	K13-000034-0845	2.080	12.111	125%	
10	7.5	K13-000034-0846	3 in Parallel	$1000 \mathrm{~W} 75 \Omega$	4.148	125%

575V Series

1	.75	K13-000034-0851	1	$300 \mathrm{~W} 400 \Omega$.427	125%
2	1.5	K13-000034-0851	1	$300 \mathrm{~W} 400 \Omega$.849	125%
3	2.2	K13-000034-0852	-	$600 \mathrm{~W} 200 \Omega$	1.262	125%
5	3.7	K13-000034-0852	-	$600 \mathrm{~W} 200 \Omega$	2.080	125%
$7-1 / 2$	5.5	K13-000034-0852	-	$600 \mathrm{~W} 200 \Omega$	3.111	125%
10	7.5	K13-000034-0853	-	$2000 \mathrm{~W} 100 \Omega$	4.148	125%

Wiring Diagrams

Figure 40-4. Control Terminal Wiring (Factory Settings)

Open Drives

Figure 40-5. Basic Wiring Diagram

Note: Do not plug a modem or telephone line to the RS-485 communication port, permanent damage may result. Terminals 2 and 5 are the power sources for the optional copy keypad and should not be used while using RS-485 communication.

■ For single-phase application select correct model, and select any of the two input terminals for main circuit power.

Open Drives

Dimensions

Table 40-8. Approximate Dimensions and Shipping Weights for Basic Controller

Description		Dimensions in Inches (mm)			Shipping Weight Lbs. (kg)
Horsepower	Volts	Width	Height	Depth	
1/4	100-120	3.9 (100)	5.9 (151)	5.7 (145)	6.2 (2.8)
1/2		3.9 (100)	5.9 (151)	5.7 (145)	6.2 (2.8)
1		3.9 (100)	5.9 (151)	5.7 (145)	6.2 (2.8)
1/2	200-240	3.9 (100)	5.9 (151)	5.7 (145)	6.2 (2.8)
1		3.9 (100)	5.9 (151)	5.7 (145)	6.2 (2.8)
2		3.9 (100)	5.9 (151)	5.7 (145)	6.2 (2.8)
3		4.9 (100)	8.6 (220)	7.6 (193)	12.1 (5.5)
5		4.9 (125)	8.6 (220)	7.6 (193)	12.1 (5.5)
7-1/2		4.9 (125)	8.6 (220)	7.6 (193)	12.1 (5.5)
1	380-480	3.9 (100)	5.9 (151)	5.7 (145)	6.2 (2.8)
2		3.9 (100)	5.9 (151)	5.7 (145)	6.2 (2.8)
3		3.9 (100)	5.9 (151)	5.7 (145)	6.2 (2.8)
5		4.9 (125)	8.6 (220)	7.6 (193)	12.1 (5.5)
7-1/2		4.9 (125)	8.6 (220)	7.6 (193)	12.1 (5.5)
10		4.9 (125)	8.6 (220)	7.6 (193)	12.1 (5.5)
1	500-600	3.9 (100)	5.9 (151)	5.7 (145)	6.2 (2.8)
2		3.9 (100)	5.9 (151)	5.7 (145)	6.2 (2.8)
3		3.9 (100)	5.9 (151)	5.7 (145)	6.2 (2.8)
5		4.9 (125)	8.6 (220)	7.6 (193)	12.1 (5.5)
7-1/2		4.9 (125)	8.6 (220)	7.6 (193)	12.1 (5.5)
10		4.9 (125)	8.6 (220)	7.6 (193)	12.1 (5.5)

Figure 40-6. 1/4 to 3 hp Drive Approximate Dimensions in Inches (mm)

Adjustable Frequency Drives MVX9000

Figure 40-7. 3 to 10 hp Drive Approximate Dimensions in Inches (mm)

M4 P . 03 (.7) x . 19 (4.8) Deep

M4 P .03 (.7) x $.19(4.8)$
for Mounting Screw
for Mounting Screw
(Typ. 3 Places)

Figure 40-8. Digital Keypad Approximate Dimensions in Inches (mm)

Figure 40-9. MVX9000 NEMA 1 Enclosure

Open Drives

Catalog Number Selection

Table 40-9. MVX9000 Catalog Numbering System

Product Selection

Table 40-10. MVX9000 Basic Controller IP20

Description		Input Amp. Single-/ 3-Phase Rating	Continuous Output Amp Rating	Catalog Number	Price U.S. \$
Hp ${ }^{1}$	Volts ${ }^{2}$				
1/4	90-130	6.3/-	1.6	MVXF25A0-1	
1/2		9.0/-	2.5	MVXF50A0-1	
1		18.0/-	4.2	MVX001A0-1	
1/2	200-240	6.3/2.9	2.5	MVXF50A0-2	
1		11.5/6.3	5.0	MVX001A0-2	
2		15.7/8.8	7.0	MVX002A0-2	
3		27.5/12.5	10	MVX003A0-2	
5		-/19.6	17	MVX005A0-2	
7-1/2		-/31.5	25	MVX007A0-2	
1	380-480	-/4.2	3.0	MVX001A0-4	
2		-/5.7	4.0	MVX002A0-4	
3		-/7.0	5.0	MVX003A0-4	
5		-/8.5	8.2	MVX005A0-4	
7-1/2		-/14	13	MVX007A0-4	
10		-/20.6	18	MVX010A0-4	
1	500-600	-/2.4	1.7	MVX001A0-5	
2		-/4.2	3.0	MVX002A0-5	
3		-/5.9	4.2	MVX003A0-5	
5		-/7.0	6.6	MVX005A0-5	
7-1/2		-/10.5	9.9	MVX007A0-5	
10		-/12.9	12.2	MVX010A0-5	

(1) Horsepower ratings are based on the use of a 240 V or 480 V NEMA B, 4- or 6-pole squirrel cage induction motor and are for reference only. Units are to be selected such that the motor current is less than or equal to the MVX9000 rated continuous output current.
(2) For $208 \mathrm{~V}, 380 \mathrm{~V}$ or 415 V applications, select the unit such that the motor current is less than or equal to the MVX9000 rated continuous output current.

Options

Table 40-11. Field Options Kits

Description	Catalog Number	Price U.S. \$
Keypads Copy Keypad Normal Keypad Remote Kit	MVXCOPY MVXKPD MVXRM	
Miscellaneous Options Extension I/O DIN Rail	MVXEIO MVXDR	
Communications DeviceNet Module	MVXDN	
NEMA 1 Enclosure Small Frame Large Frame	MVXENCS MVXENCL	
3\% Line Reactor, 1-phase $1 / 2 \mathrm{hp}, 240 \mathrm{~V}$ $1 \mathrm{hp}, 240 \mathrm{~V}$ $2 \mathrm{hp}, 240 \mathrm{~V}$ $3 \mathrm{hp}, 240 \mathrm{~V}$	K64-000988-8091 K64-000988-0120 K64-000988-0180 K64-000988-0250	
3\% Line Reactor, 3-phase $1 \mathrm{hp}, 480 \mathrm{~V}$ $2 \mathrm{hp}, 480 \mathrm{~V}$ $3 \mathrm{hp}, 480 \mathrm{~V}$ $5 \mathrm{hp}, 480 \mathrm{~V}$ 7-1/2 hp, 480V $10 \mathrm{hp}, 480 \mathrm{~V}$	K64-000989-2091 K64-000989-4091 K64-000989-4091 K64-000989-8091 K64-000989-0180 K64-000989-0250	
1/2 hp, 240 V $1 \mathrm{hp}, 240 \mathrm{~V}$ $2 \mathrm{hp}, 240 \mathrm{~V}$ $3 \mathrm{hp}, 240 \mathrm{~V}$ $5 \mathrm{hp}, 240 \mathrm{~V}$ 7-1/2 hp, 240V	K64-000988-2091 K64-000988-4091 K64-000988-8091 K64-000988-0120 K64-000988-0180 K64-000988-0250	
Output Line Reactor $1 \mathrm{hp}, 480 \mathrm{~V}$ $2 \mathrm{hp}, 480 \mathrm{~V}$ $3 \mathrm{hp}, 480 \mathrm{~V}$ $5 \mathrm{hp}, 480 \mathrm{~V}$ 7-1/2 hp, 480V $10 \mathrm{hp}, 480 \mathrm{~V}$	K64-000989-2091 K64-000989-4091 K64-000989-4091 K64-000989-8091 K64-000989-0120 K64-000989-0180	
EMI Filter 1/2 hp, 240V AC, Single-Phase 1 hp, 240V AC, Single-Phase 2 hp, 240 V AC, Single-Phase $3 \mathrm{hp}, 240 \mathrm{~V}$ AC, Single-Phase	K13-000034-0111 K13-000034-0111 K13-000034-0111 K13-000034-0112	
1/2 hp, 240V AC, Three-Phase $1 \mathrm{hp}, 240 \mathrm{~V}$ AC, Three-Phase $2 \mathrm{hp}, 240 \mathrm{~V}$ AC, Three-Phase $3 \mathrm{hp}, 240 \mathrm{~V}$ AC, Three-Phase $5 \mathrm{hp}, 240 \mathrm{~V}$ AC, Three-Phase 7-1/2 hp, 240V AC, Three-Phase	K13-000034-0113 K13-000034-0113 K13-000034-0113 K13-000034-0113 K13-000034-0115 K13-000034-0115	
1 hp, 480V AC, Three-Phase $2 \mathrm{hp}, 480 \mathrm{~V}$ AC, Three-Phase $3 \mathrm{hp}, 480 \mathrm{~V}$ AC, Three-Phase $5 \mathrm{hp}, 480 \mathrm{~V}$ AC, Three-Phase 7-1/2 hp, 480V AC, Three-Phase $10 \mathrm{hp}, 480 \mathrm{~V}$ AC, Three-Phase	K13-000034-0114 K13-000034-0114 K13-000034-0114 K13-000034-0116 K13-000034-0116 K13-000034-0117	
$\begin{aligned} & \text { Dynamic Braking Resistor } \\ & 1 / 2-1 \mathrm{hp}, 240 \mathrm{~V} \\ & 2-3 \mathrm{hp}, 240 \mathrm{~V} \\ & 5 \mathrm{hp}, 240 \mathrm{~V} \\ & 7-1 / 2 \mathrm{hp}, 240 \mathrm{~V} \end{aligned}$	K13-000034-0821 K13-000034-0824 K13-000034-0825 K13-000034-0826	
$\begin{aligned} & 1 \mathrm{hp}, 480 \mathrm{~V} \\ & 2-3 \mathrm{hp}, 480 \mathrm{~V} \\ & 5 \mathrm{hp}, 480 \mathrm{~V} \\ & 7-1 / 2 \mathrm{hp}, 480 \mathrm{~V} \\ & 10 \mathrm{hp}, 480 \mathrm{~V} \end{aligned}$	K13-000034-0841 K13-000034-0843 K13-000034-0844 K13-000034-0845 K13-000034-0846	

Contents	
Description	Page
MVX9000 Enclosed Drives	
Product Description.	40-16
Features	40-17
Standards and	
Certifications	40-17
Cover Control.	40-19
Modification Codes	40-20
Catalog Number	
Selection	40-18
Product Selection	40-23

MVX Drive with 3-Contactor Bypass

Product Description

Eaton's Cutler-Hammer ${ }^{\circledR}$ MVX9000 is offered in a variety of enclosure options to provide protection for operator and equipment. Enclosure ratings include Type 1, 12, 3R and 4X. (Enclosure ratings are defined in PG03300001E.)

Model MVX9000 sensorless vector adjustable frequency $A C$ drives are designed to provide adjustable speed control of three-phase motors. These microprocessor-based, sensorless vector drives have standard features that can be programmed to tailor the drive's performance to suit a wide variety of application requirements.
The MVX9000 sensorless vector product line utilizes a 32-bit microprocessor and insulated gate bipolar transistors (IGBTs) which provide quiet motor operation, high motor efficiency and smooth low speed performance. The size and simplicity of the MVX9000 make it ideal for hassle free installations where size is a primary concern.

Models rated at 575 and 480 volts, 3-phase, $50 / 60 \mathrm{~Hz}$ are available in sizes ranging from 1 to 10 hp . Models rated at 240 volts, single- or 3 -phase, $50 / 60 \mathrm{~Hz}$ are available in sizes ranging from 1/2 to $7-1 / 2 \mathrm{hp}$.
The standard drive includes a digital display, operating and programming keys on a removable keypad. The display provides drive monitoring as well as adjustment and diagnostic information. The keys are utilized for digital adjustment and programming of the drive as well as for operator control. Separate terminal blocks for control and power wiring are provided for customer connections. Other features provided as standard include built-in DC braking, RS-485 serial communications and PID control.

The enclosed microdrives can be configured with standard modification codes including options for various cover controls, two- and threecontactor bypass, communications and traditional disconnect switch offerings.

Type 1/3R with Keypad Cover

Type 1 Enclosure

The Type 1 version of the MVX9000 sensorless vector product line utilizes a door-mountable (option) keypad. The keypad, with digital display, can be used for operating and programming the MVX9000 drive. Type 1 enclosed MVX9000s offer a standard gasketed cover in a ventilated enclosure.

Microdrives

Type 12 Enclosure

The Type 12 design uses a seam welded, dust-tight enclosure. These enclosures use the latest advances in cooling technology to offer space saving designs as well as providing ample space for modifications.

Type 3R Enclosure

The Type 3R design incorporates the MVX9000 technology into a compact, rainproof enclosure. Type 3R enclosures are available with a door mount keypad option utilizing a steel flange door to protect the keypad.

Type 4X Enclosure

The Type 4X enclosed MVX utilizes a seam-welded stainless steel enclosure. These enclosures use the latest advances in cooling technology to offer space saving designs as well as providing ample space for modifications.

Features

■ Drive Keypad Access - Through-the-door access to STOP/START, speed potentiometer drive keys and programming available as an option on Type 1,3R and 12

- Available as non-combination or combination with fusible or circuit breaker disconnect
■ Fusible Disconnect - 30A or 60A with Class CC / J fuses or R fuses
■ Circuit Breaker - Thermal magnetic circuit breaker with trip rating based on maximum drive FLA
- Operating Mechanism - Rotary or flange type with provisions for padlocking in the OFF position. An interlock defeater is built into the operating mechanism to permit the cover to be opened with the disconnect on
- Cover Control - Control devices available installed or in field assembly kits
■ Options - Bus Choke, Bypass/lsolation Contactors, EMI Filter, Line Reactors, DeviceNet Interface and more The compact design allows the controller to be located adjacent to the motor.

Standards and Certifications

Note: See Enclosed Control Product Guide PG03300001E for additional information on Standards and Certifications that apply to all Cutler-Hammer Enclosed Control products.

■ UL Listed

- cUL Listed (indicates appropriate CSA Standard investigation)
- ABS Type Approval
- CE Mark available (Requires EMI filter)

Microdrives

Catalog Number Selection

Table 40-12. Enclosed Microdrive Catalog Numbering System

[^0](2) Frame (hp) only available at $380-480 \mathrm{~V}$.

Microdrives

Cover Control

Table 40－13．MVX Non－reversing Pilot Devices

Description	Factory Installed	Type 1，3R Kits for Field Installation	Type 12，4X Kits for Field Installation
	Position 9 Alpha	Catalog Number	Catalog Number
None START／STOP Pushbuttons with Red RUN Pilot Light with Red RUN／Green OFF Lights	$\begin{array}{\|l\|} \hline \text { A } \\ \text { B } \\ \text { C } \\ \text { D } \end{array}$	$\begin{aligned} & \overline{\mathrm{C}} 400 \mathrm{~T} 21 \\ & \text { C400T22 } \\ & \text { C400T23 } \end{aligned}$	$\overline{\mathrm{C}} 400 \mathrm{~T} 1$
ON／OFF Pushbuttons with Red RUN Pilot Light with Red RUN／Green OFF Lights	$\begin{array}{\|l\|l\|} \hline \mathbf{E} \\ \mathbf{F} \\ \mathbf{G} \end{array}$	二	C400T2
HAND／OFF／AUTO Selector Switch with Red RUN Pilot Light with Red RUN／Green OFF Lights	$\begin{aligned} & \mathrm{H} \\ & \mathbf{J} \\ & \mathrm{~K} \end{aligned}$	$\begin{aligned} & \text { C400T24 } \\ & \text { C400T25 } \\ & \text { C400T26 } \end{aligned}$	C400T12
Red RUN Pilot Light Green OFF Pilot Light Red RUN／Green OFF Pilot Lights START／STOP Selector Switch with Red RUN Pilot Light with Red RUN／Green OFF Lights	$\begin{array}{\|l\|l\|} \hline \mathbf{L} \\ \mathbf{M} \\ \mathbf{N} \\ \mathbf{P} \\ \mathbf{Q} \\ \mathbf{R} \\ \hline \end{array}$	$\begin{aligned} & \hline \text { C400T10 }{ }^{\text {C }} \text { C400T11 } \\ & \text { C400T12 }{ }^{(1)} \\ & \text { - } \\ & - \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { C400T9 }{ }^{(1)} \\ & \text { C400T10 } \\ & \text { C400T11 } \\ & \text { C400T13 } \\ & - \\ & - \end{aligned}$
Speed Potentiometer	S	－	－

（1）Add Code Letter from table below to Catalog Number for voltage－kits only．Example：C400T10A．

Rating	Code Letter	Rating	Code Letter	Rating	Code Letter
120 V 60 Hz	A	240 V 60 Hz	B	480 V 60 Hz	C
208 V 60 Hz	E	380 V 50 Hz	L	600 V 60 Hz	D

Table 40－14．MVX Reversing Pilot Devices

Description	Factory Installed	Type 1，3R Kits for Field Installation	Type 12，4X Kits for Field Installation
	Position 9 Alpha	Catalog Number	Catalog Number
None FORWARD／REVERSE／STOP Pushbuttons with 2 Red Pilot Lights with 2 Red／ 1 Green Lights	$\begin{aligned} & \hline \mathbf{A} \\ & \mathrm{T} \\ & \mathrm{U} \\ & \mathrm{~V} \end{aligned}$	C400T50 C400T51 ${ }^{(2)}$ C400T52 ²	C400T6
UP／STOP／DOWN Pushbuttons with 2 Red Pilot Lights with 2 Red／1 Green Lights	$\begin{aligned} & \hline \mathbf{W} \\ & \mathbf{X} \\ & \mathbf{Y} \end{aligned}$	一	二
FORWARD／OFF／REVERSE Selector Switch with 2 Red Pilot Lights with 2 Red／1 Green Lights	$\begin{aligned} & \hline Z \\ & 1 \\ & 2 \end{aligned}$	C400T53 C400T54 ${ }^{(2)}$ C400T55（2）	C400T15
2 Red Pilot Lights Green OFF Pilot Light 2 Red／1 Green Pilot Lights Speed Potentiometer	$\begin{aligned} & \hline 3 \\ & 4 \\ & 5 \\ & 5 \end{aligned}$	C400T11 1 （2）	C400T10

${ }^{2}$ ）Add Code Letter from table below to Catalog Number for voltage－kits only．Example：C400T10A．

Rating	Code Letter	Rating	Code Letter	Rating	Code Letter
120 V 60 Hz	A	240 V 60 Hz	B	480 V 60 Hz	C
208 V 60 Hz	E	380 V 50 Hz	L	600 V 60 Hz	D

（3）Order 2 C400T9（2）．

Microdrives

Modification Codes

Table 40-15. A - Auxiliary Contacts (when bypass contactor chosen)

Modification	Catalog Number Suffix	Description
Top Mounted Auxiliary Contacts (Unwired) (1)	A13	1NO
	A14	1NC
	A15	1NO-1NC
	A16	2NO
	A17	2NC
	A18	2NO-1NC
	A19	1NO-2NC
	A20	3NO
	A21	3NC
	A22	3NO-1NC
	A23	2NO-2NC
	A24	1NO-3NC
	A25	4NO
	A26	4NC

(1) For drive only run contacts, see Mods C12 and C14.

Table 40-16. B — Breaker Modifications, Bell Alarm, DC Bus Choke

Modification	Catalog Number Suffix	Description
Breaker	B1	1NO-1NC Auxiliary Contacts
	B2	2NO-2NC Auxiliary Contacts
	B3	Shunt Trip on Circuit Breaker - 48 - 127V AC or DC
	B16	Bell Alarm for GHC
Bus Choke	B20	240V or 480V DC Bus Choke, Open Core and Coil (2)

(2) A DC bus choke may be used in place of an AC line reactor for line harmonic current reduction and for power source exceeding 500 kVA . The DC bus choke will not provide any protection for line voltage unbalance or transients.

Table 40-17. C - Control Power Transformers, Control Relays, Control Sources, Bypass Contactors

Modification	Catalog Number Suffix	Description
Control Power Transformer	C1	Standard Size CPT, 120V/60 Hz, 110V/50 Hz Secondary with 2 Primary and 1 Secondary Fuse
	C42	50 VA Extra Capacity CPT, $120 \mathrm{~V} / 60 \mathrm{~Hz}$, $110 \mathrm{~V} / 50 \mathrm{~Hz}$ Secondary with 2 Primary and 1 Secondary Fuse
	C3	100 VA Extra Capacity CPT, $120 \mathrm{~V} / 60 \mathrm{~Hz}$, $110 \mathrm{~V} / 50 \mathrm{~Hz}$ Secondary with 2 Primary and 1 Secondary Fuse
	C5 3	200 VA Extra Capacity CPT, $120 \mathrm{~V} / 60 \mathrm{~Hz}$, $110 \mathrm{~V} / 50 \mathrm{~Hz}$ Secondary with 2 Primary and 1 Secondary Fuse
	C7 3	300 VA Extra Capacity CPT, $120 \mathrm{~V} / 60 \mathrm{~Hz}$, $110 \mathrm{~V} / 50 \mathrm{~Hz}$ Secondary with 2 Primary and 1 Secondary Fuse
	C8 3	400 VA Extra Capacity CPT, $120 \mathrm{~V} / 60 \mathrm{~Hz}$, $110 \mathrm{~V} / 50 \mathrm{~Hz}$ Secondary with 2 Primary and 1 Secondary Fuse
Control Relay ${ }^{4}$	C13	RUN Relay, 24V DC
Separate Control	C35	Wired for Separate Control
	C45	Separate Source Disc (Type 1/12 fusible only)
Customer Supplied	C36	Customer Supplied Components to Be Installed
	C37	Customer Supplied Wiring Diagram to Use
Bypass Contactors	C46/J1	Isolation Contactor
	C46/J2	Output Contactor
	C46/J3	Bypass Contactor (5)
	C46/J4	Isolation/Output/Bypass Contactors (5)
	C46/J5	3 Contactor Bypass Package - Includes CPT, Pilot Lights, Selector Switch, Auxiliary Contacts and Control Relay (5)

${ }^{3}$ Requires oversize enclosure.
4. Provides additional contacts for drive run indication.
5) Includes bimetallic overload.

Table 40-18. D — Device Labels, DIN Rail

Modification	Catalog Number Suffix	Description
Device Labels	D1	Device Labels - Specify
DIN Rail	D8	DIN Rail Installed

Table 40-19. E - Enclosure Modifications, Elapsed Time Meter

Modification	Catalog Number Suffix	Description
Enclosure	E3	Oversized Enclosure
Elapsed Time Meter	E9	Type 1, 3R, 12, 4X

Microdrives

Table 40-20. F - Fuse Clips, Fuse Blocks, EMI Filter

Modification	Catalog Number Suffix	Description
$\begin{aligned} & \hline \text { Fuse } \\ & \text { Blocks } \end{aligned}$	F4	Power Fuses Included - Order by Description
	F5	30A Control Circuit Fuseholder (KTK) Mounted on Panel (unwired) Fuse Not Supplied
	F6	30A Control Circuit Fuseholder Mounted on Panel (unwired), 5A KTK Fuse Supplied
EMI Filter ${ }^{(2)}$	F22	240 V or 480V 3-Phase ${ }^{(1)}$
	F23	240V 1-Phase ${ }^{(1)}$

(1) The EMI filter is not necessary to meet the CE mark requirements for

EMC when installing the MVX in an EC country.
(2) Requires oversized enclosure.

Table 40-21. H — Space Heater, Heater Packs Installed

Modification	Catalog Number Suffix	Description			
Space Heater	H1	Space Heater and Thermostat			
	H2	Space Heater and NC Interlock (100 Watt)			
Install Heater Packs (Freedom Series) (3)	H5	Class 20		Class 10	
		/D1 /D2 /D3 /D4 /D5	$\begin{aligned} & \text { H2001B-3 } \\ & \text { H2002B-3 } \\ & \text { H2003B-3 } \\ & \text { H2004B-3 } \\ & \text { H2005B-3 } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { /D25 } \\ \text { /D26 } \\ \text { /D27 } \\ \text { /D28 } \\ \text { /D29 } \end{array}$	$\begin{aligned} & \hline \text { H2101B-3 } \\ & \text { H2102B-3 } \\ & \text { H2103B-3 } \\ & \text { H2104B-3 } \\ & \text { H2105B-3 } \end{aligned}$
		/D6 /D7 /D8 /D9 /D10	$\begin{aligned} & \text { H2006B-3 } \\ & \text { H2007B-3 } \\ & \text { H2008B-3 } \\ & \text { H2009B-3 } \\ & \text { H2010B-3 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { /D30 } \\ \text { /D31 } \\ \text { /D32 } \\ \text { /D33 } \\ \text { /D34 } \end{array}$	$\begin{aligned} & \text { H2106B-3 } \\ & \text { H2107B-3 } \\ & \text { H2108B-3 } \\ & \text { H2109B-3 } \\ & \text { H2110B-3 } \end{aligned}$
		/D11 /D12 /D13 /D14	$\begin{aligned} & \hline \text { H2011B-3 } \\ & \text { H2012B-3 } \\ & \text { H2013B-3 } \\ & \text { H2014B-3 } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { /D35 } \\ \text { /D36 } \\ \text { /D37 } \\ \text { /D38 } \end{array}$	$\begin{aligned} & \hline \text { H2111B-3 } \\ & \text { H2112B-3 } \\ & \text { H2113B-3 } \\ & \text { H2114B-3 } \end{aligned}$

${ }^{(3)}$ Use only when C 46 or R 7 modifications are required.

Table 40-22. K — Keypad

Modification	Catalog Number Suffix	Description
Keypad	K1	Door-Mounted AFD Keypad (Type 1 and 12)
	K2	Door-Mounted AFD Keypad (Type 3R)
	K3	AFD Copy Keypad (mounted on drive)
	K4	Door-Mounted AFD Copy Keypad (Type 1 and 12)
	K5	Door-Mounted AFD Copy Keypad (Type 3R)

Table 40-23. L — Lightning Arrestor, Carton Label, Line Reactor, Load Reactor

Modification	Catalog Number Suffix	Description
Lightning Arrestor ${ }^{4}$	L1	Lightning Arrestor
Label	L10	Carton Label - Customer Marking -Specify
Line Reactor (Type 1/12 design limited to either line or load reactor, not both)	L12	240V or 480V 3\% Input Line Reactor, 3-Phase, Open Core and Coil (5)
	L13	240V 3\% Input Line Reactor, 1-Phase, Open Core and Coil (5)
	L14	240V or 480V 5\% Input Line Reactor, 3-Phase, Open Core and Coil (5)
	L15	240V 5\% Input Line Reactor, 1-Phase, Open Core and Coil (5)
	L16	Line Reactor by Description
Output Line Filter (Type 1/12 design limited to either line or load reactor, not both)	L17	480V Output Line dv/dt Filter, Open Core and Coil (6)

4) Requires oversized enclosure.
(5) If the power source exceeds $500 \mathrm{kVA}, 3 \%$ line unbalance, or if transient voltages from power factor capacitor switching events are present, an input line reactor must be used. The input line reactor will also reduce line current harmonics.
(6) The output line $\mathrm{dv} / \mathrm{dt}$ filter is required when the distance from the drive to the motor exceeds 33 feet (10.1 m). The total cable run should not exceed 165 feet (50.3 m).

Table 40-24. N - Nameplates

Modification	Catalog Number Suffix	Description
Nameplates	N1	Nameplate on Enclosure - Order Wording to Be Inscribed

Microdrives

Table 40-25. P — Pilot Lights, Pushbuttons, Phase Loss Relay, Phase Reversal Relay

Modification	Catalog Number Suffix	Description
Push-to-Test Pilot Lights	P1	Push-to-Test Pilot Light (Red RUN)
	P2	Push-to-Test Pilot Light (Green OFF)
	P3	Combination of P1 and P2 Above
	P4	Push-to-Test Pilot Light (Amber RUN)
	P54	Push-to-Test Pilot Light - Red BYPASS
	P55	Push-to-Test Pilot Light — Amber INVERTER ENABLE
	P56	Push-to-Test Pilot Light — Red INVERTER RUNNING
	P57	Push-to-Test Pilot Light - Green STOPPED
Pushbuttons	P5	EMERGENCY STOP - Mushroom Head
	P7	START/STOP
	P8	ON/OFF
	P9	START
	P10	ON
	P11	OFF
	P12	FORWARD/REVERSE/STOP
	P52	UP/STOP/DOWN
	P18	Pushbutton with Legend Plate (Order by Description)
Pilot Lights	P19	Amber Light "POWER AVAILABLE" Wired to Load Side of 2 Fuses or Circuit Breaker
	P20	Pilot Light (Amber) Wired to Coil
	P23	Pilot Light - Red RUN
	P24	Pilot Light - Red ON
	P25	Pilot Light - Green OFF
	P58	Pilot Light - Red BYPASS
	P59	Pilot Light - Amber INVERTER ENABLE
	P60	Pilot Light - Red INVERTER RUNNING
	P61	Pilot Light - Green STOP
	P26	Pilot Light (Order by Description)
Illuminated Pushbutton	P27	Illuminated Pushbutton (Order by Description)
Phase Loss Relay	P28	Phase Loss Relay
Phase Reversal Relay	P30	Phase Reversal Relay
Phase Unbalance Relay	P32	Phase Unbalance Relay
Phase Monitoring Relay	P34	Phase Monitoring Relay

Table 40-26. R — Relays, Overload Relay Modifications, DeviceNet ${ }^{\text {TM }}$ Interface Mode

Modification	Catalog Number Suffix	Description
Relay	R2	Overvoltage Relay
	R7	Overload Relay (Order by Description)
Relay Modifications	R45	Auto Reset Only on Overload Relay
DeviceNet Interface Module	R69	DeviceNet Communication Interface

Table 40-27. S - Selector Switches, Suppressor, Surge Capacitor, Speed Pot

Modification	Catalog Number Suffix	Description
Selector Switches	S3	HAND-OFF-AUTO Selector Switch
	S10	OFF-AUTO Selector Switch
	S11	START-STOP Selector Switch
	S12	ON-OFF Selector Switch
	S16	FORWARD-REVERSE Selector Switch
	S38	INVERTER-OFF-BYPASS Selector Switch
	S40	Selector Switch (Order by Description)
Surge Capacitor	S37	Surge Capacitor Wired to Disconnect Line Side
Speed Pot	S39	Speed Potentiometer

Table 40-28. T — Timers, Terminal Blocks, Terminal Points, Ring Lug

Modification	Catalog Number Suffix	Description
Timers	T3	Pneumatic Timer Mounted in Enclosure, Unwired, 180 Seconds Maximum
	T4	Pneumatic Timer (Order by Description)
	T5	Solid-State Timer (Order by Description)
	T9	With 1 Single-Circuit Terminal Block, Unwired
	T10	With 2 Single-Circuit Terminal Blocks, Unwired
Terminal Points	T11	With 6 Terminal Points, Unwired
	T12	With 12 Terminal Points, Unwired
	T13	With 16 Terminal Points, Unwired
	T14	Terminal Point per Customer Specification, Unwired
	T15	Terminal Point per Customer Specification, Wired
Ring Lug	T16	Ring Lug Connections on Power Wires
	T17	Ring Lug Connections on Control Wires

Table 40-29. U — Undervoltage Relay

Modification	Catalog Number Suffix	Description
Undervoltage Relay	U2	Undervoltage Relay, Non-adjustable
Under and Over Relay	U7	Under and Overvoltage Relay

Table 40-30. W - Wiremarkers

Modification	Catalog Number Suffix	Description
Wiremarkers	W7	Wiremarkers

Microdrives

Product Selection

Table 40-31. Class ECS80 — Non-combination MVX9000 Drives

Volts	Input Amp. Single-/ 3-Phase Rating	Continuous Output Amp. Rating	Type 1 General Purpose		Type 3R Rainproof		Type 4X ${ }^{1}$ Watertight Stainless Steel		Type 12 Industrial Dust-Tight		Component Microdrive (Open) Catalog Number
			Catalog Number	Price U.S. \$							
1/2 hp											
208-240	5.8/3.4	2.5	ECS80B1BAA		ECS80B2BAA		ECS80B4BAA		ECS80B8BAA		MVXF50A0-2
1 hp											
$\begin{array}{\|l} \hline 208-240 \\ 380-480 \\ 500-600 \end{array}$	$\begin{array}{r} 9 / 5.2 \\ -/ 3.3 \\ -/ 2.4 \end{array}$	$\begin{aligned} & \hline 5 \\ & 3 \\ & 1.7 \end{aligned}$	$\begin{aligned} & \text { ECS80C1BAA } \\ & \text { ECS80C1CAA } \\ & \text { ECS80C1DAA } \end{aligned}$		$\begin{array}{\|l\|} \hline \text { ECS80C2BAA } \\ \text { ECS80C2CAA } \\ \text { ECS80C2DAA } \end{array}$		$\begin{aligned} & \text { ECS80C4BAA } \\ & \text { ECS80C4CAA } \\ & \text { ECS80C4DAA } \end{aligned}$		$\begin{aligned} & \text { ECS80C8BAA } \\ & \text { ECS80C8CAA } \\ & \text { ECS80C8DAA } \end{aligned}$		MVX001A0-2 MVX001A0-4 MVX001A0-5
2 hp											
$\begin{array}{\|l} \hline 208-240 \\ 380-480 \\ 500-600 \end{array}$	$\begin{aligned} & \hline 16 / 9.3 \\ & -/ 5 \\ & -/ 4.2 \end{aligned}$	$\begin{aligned} & 7 \\ & 4 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { ECS80D1BAA } \\ & \text { ECS80D1CAA } \\ & \text { ECS80D1DAA } \end{aligned}$		$\begin{array}{\|l} \hline \text { ECS80D2BAA } \\ \text { ECS80D2CAA } \\ \text { ECS80D2DAA } \end{array}$		$\begin{aligned} & \text { ECS80D4BAA } \\ & \text { ECS80D4CAA } \\ & \text { ECS80D4DAA } \end{aligned}$		$\begin{array}{\|l} \hline \text { ECS80D8BAA } \\ \text { ECS80D8CAA } \\ \text { ECS80D8DAA } \end{array}$		MVX002A0-2 MVX002A0-4 MVX002A0-5
3 hp											
$\begin{array}{\|l} \hline 208-240 \\ 380-480 \\ 500-600 \end{array}$	$\begin{aligned} & 22.5 / 13 \\ & -/ 7 \\ & -/ 5.9 \end{aligned}$	$\begin{array}{\|c\|} \hline 10 \\ 5 \\ 4.2 \\ \hline \end{array}$	$\begin{aligned} & \text { ECS80E1BAA } \\ & \text { ECS80E1CAA } \\ & \text { ECS80E1DAA } \end{aligned}$		$\begin{array}{\|l\|} \hline \text { ECS80E2BAA } \\ \text { ECS80E2CAA } \\ \text { ECS80E2DAA } \end{array}$		$\begin{aligned} & \text { ECS80E4BAA } \\ & \text { ECS80E4CAA } \\ & \text { ECS80E4DAA } \end{aligned}$		$\begin{aligned} & \text { ECS80E8BAA } \\ & \text { ECS80E8CAA } \\ & \text { ECS80E8DAA } \end{aligned}$		MVX003A0-2 MVX003A0-4 MVX003A0-5
5 hp											
$\begin{array}{\|l} \hline 208-240 \\ 380-480 \\ 500-600 \end{array}$	$\begin{aligned} & -/ 20 \\ & -/ 11 \\ & -/ 7.0 \end{aligned}$	$\begin{aligned} & \hline 17 \\ & 8.2 \\ & 6.6 \end{aligned}$	$\begin{aligned} & \text { ECS80F1BAA } \\ & \text { ECS80F1CAA } \\ & \text { ECS80F1DAA } \end{aligned}$		$\begin{aligned} & \text { ECS80F2BAA } \\ & \text { ECS80F2CAA } \\ & \text { ECS80F2DAA } \end{aligned}$		$\begin{aligned} & \text { ECS80F4BAA } \\ & \text { ECS80F4CAA } \\ & \text { ECS80F4DAA } \end{aligned}$		$\begin{aligned} & \text { ECS80F8BAA } \\ & \text { ECS80F8CAA } \\ & \text { ECS80F8DAA } \end{aligned}$		MVX005A0-2 MVX005A0-4 MVX005A0-5
7-1/2 hp											
$\begin{array}{\|l\|} \hline 208-240 \\ 380-480 \\ 500-600 \end{array}$	$\begin{aligned} & -/ 31 \\ & -/ 17 \\ & -/ 10.5 \end{aligned}$	$\begin{array}{\|c\|} \hline 25 \\ 13 \\ 9.9 \\ \hline \end{array}$	$\begin{aligned} & \text { ECS80G1BAA } \\ & \text { ECS80G1CAA } \\ & \text { ECS80G1DAA } \end{aligned}$		$\begin{array}{\|l\|} \hline \text { ECS80G2BAA } \\ \text { ECS80G2CAA } \\ \text { ECS80G2DAA } \end{array}$		$\begin{aligned} & \text { ECS80G4BAA } \\ & \text { ECS80G4CAA } \\ & \text { ECS80G4DAA } \end{aligned}$		$\begin{array}{\|l} \hline \text { ECS80G8BAA } \\ \text { ECS80G8CAA } \\ \text { ECS80G8DAA } \end{array}$		MVX007A0-2 MVX007A0-4 MVX007A0-5
10 hp											
$\begin{array}{\|l} 380-480 \\ 500-600 \end{array}$	$\begin{aligned} & -/ 21 \\ & -/ 12.9 \end{aligned}$	$\begin{array}{\|l\|} \hline 18 \\ 12.2 \end{array}$	$\begin{aligned} & \hline \text { ECS80H1CAA } \\ & \text { ECS80H1DAA } \end{aligned}$		$\begin{aligned} & \text { ECS80H2CAA } \\ & \text { ECS80H2DAA } \end{aligned}$		$\begin{aligned} & \text { ECS80H4CAA } \\ & \text { ECS80H4DAA } \end{aligned}$		$\begin{aligned} & \text { ECS80H8CAA } \\ & \text { ECS80H8DAA } \end{aligned}$		MVX010A0-4 MVX010A0-5

(1) These are the Catalog Numbers for Type 4X 304-Grade Stainless Steel, as indicated by the seventh digit 4. Example: ECS80B4BAA-C1. To order Type 4×316-Grade Stainless Steel, change that digit to 9 . To order Type 4 Painted Steel, change that digit to 3. To order Nonmetallic, change that digit to 5 . For details on these Alternate Enclosures, see PG03300001E.

Cover Controls	Page 40-19
Modifications.	Pages 40-20-40-22
Dimensions.	PG03300001E
Discount Symbo	SS-1

Microdrives

Table 40-32. Class ECS81 - Combination Disconnect Switch MVX9000 Drives

Volts	Input Amp. Single-/ 3-Phase	Continuous Output Amp. Rating	$\begin{array}{\|l} \text { Fuse } \\ \text { Clips } \end{array}$	Type 1 General Purpose		Type 3R Rainproof		Type 4X Watertight Stainless Steel		Type 12 Industrial Dust-Tight		Component Microdrive (Open)
	Rating			Catalog Number	Price U.S. $\$$	Catalog Number	Price U.S. \$	Catalog Number	Price U.S. \$	Catalog Number	Price U.S. \$	Catalog Number
1/2 hp												
208-240	5.8/3.4	2.6	30A	ECS81B1BAC		ECS81B2BAC		ECS81B4BAC		ECS81B8BAC		MVXF50A0-2
1 hp												
208-240	9/5.2	4	30A	ECS81C1BAC		ECS81C2BAC		ECS81C4BAC		ECS81C8BAC		MVX001A0-2
380-480	-/3.3	2.5	30A	ECS81C1CAC		ECS81C2CAC		ECS81C4CAC		ECS81C8CAC		MVX001A0-4
500-600	-/2.4	1.7	30A	ECS81C1DAC		ECS81C2DAC		ECS81C4DAC		ECS81C8DAC		MVX001A0-5
2 hp												
208-240	16/9.3	7.1	30A	ECS81D1BAC		ECS81D2BAC		ECS81D4BAC		ECS81D8BAC		MVX002A0-2
380-480	-/5	3.8	30A	ECS81D1CAC		ECS81D2CAC		ECS81D4CAC		ECS81D8CAC		MVX002A0-4
500-600	-/4.2	3	30A	ECS81D1DAC		ECS81D2DAC		ECS81D4DAC		ECS81D8DAC		MVX002A0-5
3 hp												
208-240	22.5/13	10	30A	ECS81E1BAC		ECS81E2BAC		ECS81E4BAC		ECS81E8BAC		MVX003A0-2
380-480	-/7	5.5	30A	ECS81E1CAC		ECS81E2CAC		ECS81E4CAC		ECS81E8CAC		MVX003A0-4
500-600	-/5.9	4.2	30A	ECS81E1DAC		ECS81E2DAC		ECS81E4DAC		ECS81E8DAC		MVX003A0-5
5 hp												
208-240	-/20	15.9	30A	ECS81F1BAC		ECS81F2BAC		ECS81F4BAC		ECS81F8BAC		MVX005A0-2
380-480	-/11	8.6	30A	ECS81F1CAC		ECS81F2CAC		ECS81F4CAC		ECS81F8CAC		MVX005A0-4
500-600	-/7.0	6.6	30A	ECS81F1DAC		ECS81F2DAC		ECS81F4DAC		ECS81F8DAC		MVX005A0-5
7-1/2 hp												
208-240	-/31	24	60A	ECS81G1BAE		ECS81G2BAE		ECS81G4BAE		ECS81G8BAE		MVX007A0-2
380-480	-/17	13	30A	ECS81G1CAC		ECS81G2CAC		ECS81G4CAC		ECS81G8CAC		MVX007A0-4
500-600	-/10.5	9.9	30A	ECS81G1DAC		ECS81G2DAC		ECS81G4DAC		ECS81G8DAC		MVX007A0-5
10 hp												
380-480	-/21	16	30A	ECS81H1CAC		ECS81H2CAC		ECS81H4CAC		ECS81H8CAC		MVX010A0-4
500-600	-/12.9	12.2	30A	ECS81H1DAC		ECS81H2DAC		ECS81H4DAC		ECS81H8DAC		MVX010A0-5

(1) These are the Catalog Numbers for Type 4X 304-Grade Stainless Steel, as indicated by the seventh digit 4. Example: ECS81B4BAC-C1. To order Type 4 X 316 -Grade Stainless Steel, change that digit to 9 . To order Type 4 Painted Steel, change that digit to 3. To order Nonmetallic, change that digit to 5. For details on these Alternate Enclosures, see PG03300001E.

Type 3R Combination HMCPE MVX Drive

Type 1 MXV Drive with Disconnect Switch and Bypass

Cover Controls	Page 40-19
Modifications .	Pages 40-20-40-22
Dimensions	PG03300001E
Discount Symbol	SS-1

Microdrives

Table 40-33. Class ECS82 - Combination HMCPE Circuit Breaker MVX9000 Drives

Volts	Input Amp Single-/ 3-Phase Rating	Continuous Output Amp. Rating	HMCP Rating Amps.	Type 1 General Purpose		Type 3R Rainproof		Type 4X Watertight Stainless Steel		Type 12 Industrial Dust-Tight		Component Microdrive (Open) Catalog Number
				Catalog Number	Price	Catalog Number	Price U.S. $\$$	Catalog Number	Price U.S. $\$$	Catalog Number	Price U.S. $\$$	
1/2 hp												
208-240	5.8/3.4	2.6	15	ECS82B1BAA		ECS82B2BAA		ECS82B4BAA		ECS82B8BAA		MVXF50A0-2
1 hp												
$\begin{array}{\|l} \hline 208-240 \\ 380-480 \\ 500-600 \end{array}$	$\begin{array}{\|r\|} \hline 9 / 5.2 \\ -/ 3.3 \\ -/ 2.4 \end{array}$	$\begin{aligned} & 4 \\ & 2.5 \\ & 1.7 \end{aligned}$	$\begin{array}{\|l} \hline 15 \\ 15 \\ 15 \end{array}$	$\begin{aligned} & \text { ECS82C1BAA } \\ & \text { ECS82C1CAA } \\ & \text { ECS82C1DAA } \end{aligned}$		$\begin{aligned} & \text { ECS82C2BAA } \\ & \text { ECS82C2CAA } \\ & \text { ECS82C2DAA } \end{aligned}$		$\begin{array}{\|l} \hline \text { ECS82C4BAA } \\ \text { ECS82C4CAA } \\ \text { ECS82C4DAA } \end{array}$		$\begin{aligned} & \text { ECS82C8BAA } \\ & \text { ECS82C8CAA } \\ & \text { ECS82C8DAA } \end{aligned}$		MVX001A0-2 MVX001A0-4 MVX001A0-5
2 hp												
$\begin{array}{\|l\|} \hline 208-240 \\ 380-480 \\ 500-600 \end{array}$	$\begin{array}{\|l\|} \hline 16 / 9.3 \\ -/ 5 \\ -/ 4.2 \end{array}$	$\begin{aligned} & 7.1 \\ & 3.8 \\ & 3 \end{aligned}$	$\begin{aligned} & \hline 15 \\ & 15 \\ & 15 \end{aligned}$	ECS82D1BAA ECS82D1CAA ECS82D1DAA		$\begin{aligned} & \text { ECS82D2BAA } \\ & \text { ECS82D2CAA } \\ & \text { ECS82D2DAA } \end{aligned}$		$\begin{array}{\|l\|} \hline \text { ECS82D4BAA } \\ \text { ECS82D4CAA } \\ \text { ECS82D4DAA } \end{array}$		$\begin{array}{\|l} \hline \text { ECS82D8BAA } \\ \text { ECS82D8CAA } \\ \text { ECS82D8DAA } \end{array}$		MVX002A0-2 MVX002A0-4 MVX002A0-5
3 hp												
$\begin{array}{\|l} \hline 208-240 \\ 380-480 \\ 500-600 \end{array}$	$\begin{aligned} & 22.5 / 13 \\ & -/ 7 \\ & -/ 5.9 \end{aligned}$	$\begin{array}{\|l\|} \hline 10 \\ 5.5 \\ 4.2 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 30 \\ 15 \\ 15 \end{array}$	ECS82E1BAD ECS82E1CAA ECS82E1DAA		$\begin{array}{\|l\|} \hline \text { ECS82E2BAD } \\ \text { ECS82E2CAA } \\ \hline \text { ECS82E2DAA } \\ \hline \end{array}$		$\begin{aligned} & \text { ECS82E4BAD } \\ & \text { ECS82E4CAA } \\ & \text { ECS82E4DAA } \end{aligned}$		ECS82E8BAD ECS82E8CAA ECS82E8DAA		MVX003A0-2 MVX003A0-4 MVX003A0-5
5 hp												
$\begin{array}{\|l\|} \hline 208-240 \\ 380-480 \\ 500-600 \end{array}$	$\begin{aligned} & \hline-/ 20 \\ & -/ 11 \\ & -/ 7.0 \end{aligned}$	$\begin{array}{\|r\|} \hline 15.9 \\ 8.6 \\ 6.6 \\ \hline \end{array}$	$\begin{aligned} & \hline 30 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & \hline \text { ECS82F1BAD } \\ & \text { ECS82F1CAA } \\ & \text { ECS82F1DAA } \end{aligned}$		$\begin{array}{\|l\|} \hline \text { ECS82F2BAD } \\ \text { ECS82F2CAA } \\ \text { ECS82F2DAA } \end{array}$		$\begin{array}{\|l\|} \hline \text { ECS82F4BAD } \\ \text { ECS82F4CAA } \\ \text { ECS82F4DAA } \end{array}$		$\begin{aligned} & \text { ECS82F8BAD } \\ & \text { ECS82F8CAA } \\ & \text { ECS82F8DAA } \end{aligned}$		MVX005A0-2 MVX005A0-4 MVX005A0-5
7-1/2 hp												
$\begin{array}{\|l} \hline 208-240 \\ 380-480 \\ 500-600 \end{array}$	$\begin{array}{\|l\|} \hline-/ 31 \\ -/ 17 \\ -/ 10.5 \end{array}$	$\begin{array}{\|c\|} \hline 24 \\ 13 \\ 9.9 \end{array}$	$\begin{aligned} & \hline 50 \\ & 30 \\ & 15 \end{aligned}$	$\begin{aligned} & \text { ECS82G1BAF } \\ & \text { ECS82G1CAD } \\ & \text { ECS82G1DAA } \end{aligned}$		$\begin{aligned} & \hline \text { ECS82G2BAF } \\ & \text { ECS82G2CAD } \\ & \text { ECS82G2DAA } \end{aligned}$		$\begin{array}{\|l} \hline \text { ECS82G4BAF } \\ \text { ECS82G4CAD } \\ \text { ECS82G4DAA } \end{array}$		ECS82G8BAF ECS82G8CAD ECS82G8DAA		MVX007A0-2 MVX007A0-4 MVX007A0-5
10 hp												
$\begin{array}{\|l\|} \hline 380-480 \\ 500-600 \end{array}$	$\begin{array}{\|l\|} \hline-/ 21 \\ -/ 12.9 \end{array}$	$\begin{array}{\|l\|} \hline 16 \\ 12.2 \end{array}$	$\begin{array}{\|l\|} \hline 30 \\ 30 \end{array}$	$\begin{aligned} & \text { ECS82H1CAD } \\ & \text { ECS82H1DAD } \end{aligned}$		$\begin{array}{\|l\|} \hline \text { ECS82H2CAD } \\ \text { ECS82H2DAD } \end{array}$		$\begin{array}{\|l\|} \hline \text { ECS82H4CAD } \\ \text { ECS82H4DAD } \end{array}$		$\begin{aligned} & \hline \text { ECS82H8CAD } \\ & \text { ECS82H8DAD } \end{aligned}$		MVX010A0-4 MVX010A0-5

(1) These are the Catalog Numbers for Type 4X 304-Grade Stainless Steel, as indicated by the seventh digit 4. Example: ECS82B4BAA-C1. To order Type 4X 316-Grade Stainless Steel, change that digit to 9. To order Type 4 Painted Steel, change that digit to 3. To order Nonmetallic, change that digit to 5 . For details on these Alternate Enclosures, see PG03300001E.

Type 3R Combination HMCPE MVX Drive

Type 1 MXV Drive with Disconnect
Switch and Bypass
Cover Controls Page 40-19
Modifications. PG030. PG00001E 40-22
Dimensions. SS-1

Adjustable Frequency Drives MVX9000

Wiring Diagrams

Figure 40-10. MVX9000 Wiring Diagram

Open Drives

Contents

DescriptionSLX9000 Open Drives
Product Description 40-27
Features 40-27
Technical Data and Specifications 40-28
Catalog Number Selection 40-29
Product Selection 40-30
Options 40-32
Accessories 40-33
Dimensions 40-34
Replacement Parts 40-36

Product Description

Cutler-Hammer ${ }^{\circledR}$ SLX9000 Series Adjustable Frequency Drives from Eaton's electrical business are the next generation of drives specifically engineered for today's commercial and industrial applications. The power unit makes use of the most sophisticated semiconductor technology and a highly modular construction that can be flexibly adapted to the customer's needs.

The input and output configuration (I / O) is designed with modularity in mind. The I/O is compromised of option cards, each with its own input and output configuration.
The control module is designed to accept a total of two of these cards. The cards contain not only normal analog and digital inputs but also fieldbus cards.

These drives continue the tradition of robust performance, and raise the bar on features and functionality, ensuring the best solution at the right price.

The 9000X Family of Drives includes HVX9000, SVX9000, SLX9000 and SPX9000. 9000X Series drive ratings are rated for either high overload (I_{H}) or low overload (l_{L}). I_{L} indicates 110% overload capacity for 1 minute out of 10 minutes. I_{H} indicates 150% overload capacity for 1 minute out of 10 minutes.

Features

■ Robust design - proven 500,000 hours MTBF
■ Integrated 3% line reactors standard
■ EMI/RFI Filters H standard

- Simplified operating menu allows for typical programming changes, while programming mode provides control of everything
- Keypad - LCD operation from keypad
■ Standard NEMA Type 12 keypad on all drives
- The SLX9000 can be flexibly adapted to a variety of needs using our preinstalled "All-In-One Application" programs
- Additional I/O and communication cards provide plug and play functionality
■ I/O connections with simple quick connection terminals
■ The SLX9000 accommodates the standard I/O and an integrated RS-485 (Modbus) connection. There is room for two option cards with more I/O or other functionality
■ UL Listed
- Hand-Held Auxiliary 24V Power Supply allows programming/monitoring of control module without applying full power to the drive
- Control logic can be powered from an external auxiliary control panel, internal drive functions and fieldbus if necessary
■ Brake Chopper standard
- NEMA Type 1 and NEMA Type 12 enclosures available

Open Drives

Technical Data and Specifications

Table 40-34. SLX9000 Specifications

Description	Specification
Input Ratings Input Voltage $\left(\mathrm{V}_{\text {in }}\right)$ $+10 \% /-15 \%$ Input Frequency ($\mathrm{f}_{\text {in }}$) $50 / 60 \mathrm{~Hz}$ (variation up to $45-66 \mathrm{~Hz}$) Connection to Power Once per minute or less (typical operation) High Withstand Rating 100 kAIC	

Output Ratings

Output Voltage	0 to $\mathrm{V}_{\text {in }}$
Continuous Output Current	I_{H} rated 100% at $122^{\circ} \mathrm{F}\left(50^{\circ} \mathrm{C}\right)$ I_{L} rated 100% at $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$
Overload Current $\left(\mathrm{I}_{\mathrm{H}} / \mathrm{I}_{\mathrm{L}}\right)$	$150 \% \mathrm{I}_{\mathrm{H}}, 110 \% \mathrm{I}_{\mathrm{L}}$ for 1 min.
Output Frequency	0 to 320 Hz
Frequency Resolution	.01 Hz
Initial Output Current $\left(\mathrm{I}_{\mathrm{H}}\right)$	250% for 2 seconds

Control Method	Frequency Control (V/f) Open Loop: Sensorless Vector Control
Switching Frequency	Adjustable with Parameter 2.6.9 1 to 16 kHz ; default 10 kHz
Frequency Reference	Analog Input: Resolution .1\% (10-bit), accuracy $\pm 1 \% \mathrm{~V} / \mathrm{Hz}$ Panel Reference: Resolution .01 Hz
Field Weakening Point	30 to 320 Hz
Acceleration Time	0 to 3000 sec .
Deceleration Time	0 to 3000 sec .
Braking Torque	DC brake: $30 \% \times \mathrm{T}_{\mathrm{n}}$ (without brake option)
Ambient Conditions	
Ambient Operating Temperature	$14^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right)$, no frost to $122^{\circ} \mathrm{F}\left(+50^{\circ} \mathrm{C}\right) \mathrm{I}_{\mathrm{H}}$ $14^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right)$, no frost to $104^{\circ} \mathrm{F}\left(+40^{\circ} \mathrm{C}\right) \mathrm{I}_{\mathrm{L}}$
Storage Temperature	$-40^{\circ} \mathrm{F}\left(-40^{\circ} \mathrm{C}\right)$ to $158^{\circ} \mathrm{F}\left(70^{\circ} \mathrm{C}\right)$
Relative Humidity	0 to 95% RH, noncondensing, non-corrosive, no dripping water
Air Quality	Chemical vapors: IEC 721-3-3, unit in operation, class 3C2; Mechanical particles: IEC 721-3-3, unit in operation, class 3S2
Altitude	100% load capacity (no derating) up to 3280 $\mathrm{ft} .(1000 \mathrm{~m}) ; 1 \%$ derating for each 328 ft . 100 m) above 3280 ft . (1000 m); max. 9842 ft . (3000 m)
Vibration	EN 50178, EN 60068-2-6; 5 to 50 Hz , Displacement amplitude 1 mm (peak) at 3 to 15.8 Hz , Max. acceleration amplitude 1G at 15.8 to 150 Hz
Shock	EN 50178, EN 60068-2-27 UPS Drop test (for applicable UPS weights) Storage and shipping: max. 15G, 11 ms (in package)
Enclosure Class	NEMA 1/IP21 or NEMA 12/IP54

Description	Specification
Standards	
Product	IEC 61800-2
Safety	UL 508C
EMC (at default settings)	Immunity: Fulfills all EMC immunity requirements; Emissions: EN 61800-3, LEVEL H
Control Connections	
Analog Input Voltage	0 to $10 \mathrm{~V}, \mathrm{R}=200 \mathrm{k} \Omega$ (-10 to 10 V joystick control) Resolution .1\%; accuracy $\pm 1 \%$
Analog Input Current	0(4) to 20 mA ; $\mathrm{R}_{\mathrm{i}}-250 \Omega$ differential
Digital Inputs	Positive or negative logic; 18 to 30V DC
Auxiliary Voltage	$+24 \mathrm{~V} \pm 15 \%$, max. 250 mA
Output Reference Voltage	+10V +3\%, max. load 10 mA
Analog Output	O(4) to 20 mA ; R_{L} max. 500 ; Resolution 10 bit; Accuracy $\pm 2 \%$
Relay Outputs	1 programmable Form C relay output Switching capacity: 24V DC / 8A, 250V AC / 8A, 125V DC / 0.4A
Protections	
Overcurrent Protection	Trip limit $4.0 \times \mathrm{l}_{\mathrm{H}}$ instantaneously
Overvoltage Protection	Yes
Undervoltage Protection	Yes
Earth Fault Protection	In case of earth fault in motor or motor cable, only the frequency converter is protected
Input Phase Supervision	Trips if any of the input phases are missing
Motor Phase Supervision	Trips if any of the output phases are missing
Overtemperature Protection	Yes
Motor Overload Protection	Yes
Motor Stall Protection	Yes
Motor Underload Protection	Yes
Short Circuit Protection	Yes (+24V and +10V Reference Voltages)

Table 40-35. Standard I/O Specifications

Description	Specification
3- Digital Input Programmable	$24 \mathrm{~V}:$ " $0 " \leq 10 \mathrm{~V}, " 1 " \geq 18 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}>5 \mathrm{k} \Omega$
2 - Analog Input Configurable w/Jumpers	Voltage: $0- \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}>200 \mathrm{k} \Omega$ Current: $0(4)-20 \mathrm{~mA}, \mathrm{R}_{\mathrm{i}}=250 \mathrm{k} \Omega$
1- Digital Output Programmable	Form C Relays 250V AC 2 Amp or 30 V DC2 Amp resistive, 8 Amp switching
1- Analog Output Programmable Configurable w/Jumper	$0-20 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}<500$ ohms, resolution 10 Bits/0.1\%
1- RS-485 Serial	RS-485 Modbus Communication

Open Drives

Catalog Number Selection
Table 40-36. SLX9000 Adjustable Frequency Drive Catalog Numbering System

(1) 480 V Drives up to $30 \mathrm{hp}\left(\mathrm{I}_{\mathrm{H}}\right)$ are only available with Brake Chopper Option B.
(2) Factory promise delivery. Consult Sales Office for availability.

Product Selection

480V SLX9000 Drives

Table 40-37. 380 - 500V, NEMA Type 1 Drive

Frame Size	Delivery Code	$\begin{aligned} & \mathrm{hp} \\ & \left(\mathrm{I}_{\mathrm{H}}\right) \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Current } \\ \left(I_{H}\right) \end{array}$	$\begin{aligned} & \mathbf{h p} \\ & \left(l_{L}\right) \end{aligned}$	Current (I_{L})	Catalog Number	Price U.S. \$
MF4	W	$\begin{array}{\|l\|} \hline 1 \\ 1-1 / 2 \\ 2 \\ 3 \\ 5 \\ - \end{array}$	$\begin{aligned} & 2.2 \\ & 3.3 \\ & 4.3 \\ & 5.6 \\ & 7.6 \\ & 9 \end{aligned}$	$\begin{aligned} & 1-1 / 2 \\ & 2 \\ & 3 \\ & 5 \\ & \hline-1-1 / 2 \end{aligned}$	$\begin{array}{\|c\|} \hline 3.3 \\ 4.3 \\ 5.6 \\ 7.6 \\ 9 \\ 12 \end{array}$	SLX001A1-4A1B0 SLXF15A1-4A1B0 SLX002A1-4A1B0 SLX003A1-4A1B0 SLX005A1-4A1B0 SLX006A1-4A1B0	
MF5	W	$\begin{array}{\|l\|} \hline 7-1 / 2 \\ 10 \\ 15 \end{array}$	$\begin{aligned} & \hline 12 \\ & 16 \\ & 23 \end{aligned}$	$\begin{aligned} & \hline 10 \\ & 15 \\ & 20 \end{aligned}$	$\begin{array}{\|l} \hline 16 \\ 23 \\ 31 \end{array}$	SLX007A1-4A1B0 SLX010A1-4A1B0 SLX015A1-4A1B0	
MF6	W	$\begin{aligned} & 20 \\ & 25 \\ & 30 \end{aligned}$	$\begin{aligned} & \hline 31 \\ & 38 \\ & 46 \end{aligned}$	$\begin{aligned} & 25 \\ & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & 38 \\ & 46 \\ & 61 \end{aligned}$	$\begin{aligned} & \text { SLX020A1-4A1B0 } \\ & \text { SLX025A1-4A1B0 } \\ & \text { SLX030A1-4A1B0 } \end{aligned}$	

Table 40-38. 380-500V, NEMA Type 12 Drive

Frame Size	Delivery Code	hp $\left(\mathbf{I}_{\mathbf{H}}\right)$	Current $\left(\mathbf{I}_{\mathbf{H}}\right)$	hp $\left(\mathbf{I}_{\mathrm{L}}\right)$	Current $\left(\mathbf{I}_{\mathrm{L}}\right)$	Catalog Number	Price U.S. \mathbf{S}
MF4	F1	1	2.2	$1-1 / 2$	3.3	SLX001A2-4A1B0	
		$1-1 / 2$	3.3	2	4.3	SLXF15A2-4A1B0	
		2	4.3	3	5.6	SLX002A2-4A1B0	
		3	5.6	5	7.6	SLX003A2-4A1B0	
		-	7.6	-	9	SLX005A2-4A1B0	
MF5	F1	$7-1 / 2$	12	$7-1 / 2$	12	SLX006A2-4A1B0	
		10	16	10	16	SLX007A2-4A1B0	
		15	23	20	23	SLX010A2-4A1B0	
MF6	F1	20	31	25	38	SLX020A2-4A1B0	
		25	38	30	46	SLX025A2-4A1B0	
		30	46	40	61	SLX030A2-4A1B0	

Open Drives

SLX9000 Series Option Board Kits

The SLX9000 Series drives can accommodate a wide selection of expander and adapter option boards to customize the drive for your application needs. The drive's control unit is designed to accept a total of two option boards (see Figure 40-11).

The SLX9000 Drive accommodates the standard I/O and an integrated RS-485 (Modbus) connector.

Figure 40-11. SLX9000 Series Option Boards

Table 40-39. Option Board Kits

Option Kit Description (2)	Allowed Slot Locations	Field Installed		Factory Installed		SLX9000 Programs
		Catalog Number	Price U.S. \$	Option Designator	Adder U.S. \$	
Extended I/O Card Options						
3 DI, 1 RO (NO/NC), 1 DO	D	OPTAA		AA		X
$3 \mathrm{DI}, 1 \mathrm{RO}(\mathrm{NO}), 1 \mathrm{TI}$	D	OPTAI		AI		X
1 RO (NC/NO), 1 RO (NO), 1 Therm	D, E	OPTB2		B2		X
1 Al (mA isolated), 2 AO (mA isolated), 1 ext +24V DC/EXT +24V DC	D, E	OPTB4		B4		X
3 RO (NO)	D, E	OPTB5		B5		X
Communication Cards						
Johnson Controls N2	D, E	OPTC2		CA		X
Modbus TCP	D, E	OPTCI		Cl		X
BACnet	D, E	OPTCJ		CJ		X
Modbus	D, E	OPTC2		C2		X
Profibus DP	D, E	OPTC3		C3		X
LonWorks	D, E	OPTC4		C4		X
Profibus DP (D9 Connector)	D, E	OPTC5		C5		X
CanOpen (Slave)	D, E	OPTC6		C6		X
DeviceNet	D, E	OPTC7		C7		X
Keypad						
SLX9000 Series LCD Keypad (Replacement Keypad)		KEYPAD-LCD		-		X
SLX9000 Series Remote Mount Keypad Unit (Keypad not included, includes 6.5 ft . cable, keypad holder, mounting hardware)		OPTDRA-02L		-		X

(1) Option card must be installed in one of the slots listed for that card. Slot indicated in Bold is the preferred location.
(2) $\mathrm{AI}=$ Analog Input; $\mathrm{AO}=$ Analog Output, DI = Digital Input, DO = Digital Output, RO = Relay Output

Johnson Controls Metasys ${ }^{\text {TM }}$ N2 Network Communications

The OPTC2 fieldbus board provides communication between the 9000X Drive and a Johnson Controls Metasys ${ }^{\text {TM }} \mathrm{N} 2$ network. With this connection, the drive can be controlled, monitored and programmed from the Metasys system. The N2 fieldbus is available as a factory installed option and as a field installable kit.

Modbus/TCP Network Communications

The Modbus/TCP Network Card OPTCI is used for connecting the 9000X Drive to Ethernet networks utilizing Modbus protocol. It includes an RJ-45 pluggable connector. This interface provides a selection of standard and custom register values to communicate drive parameters. The board supports 10 Mbps and 100 Mbps communication speeds. The IP address of the board is configurable over Ethernet using a supplied software tool.

BACnet Network Communications

The BACnet Network Card OPTCJ is used for connecting the 9000 X Drive to BACnet networks. It includes a 5.08 mm pluggable connector. Data transfer is Master-Slave/Token

Passing (MS/TP) RS-485. This interface uses a collection of 30 Binary Value Objects (BVOs) and 35 Analog Value Objects (AVOs) to communicate drive parameters. The card supports 9.6, 19.2 and 38.4 Kbaud communication speeds and supports network addresses 1-127.

Modbus RTU Network Communications

The Modbus Network Card OPTC2 is used for connecting the 9000X Drive as a slave on a Modbus network. The interface is connected by a 9-pin DSUB connector (female) and the baud rate ranges from 300 to 19200 baud. Other communication parameters include an address range from 1 to 247; a parity of None, Odd or Even; and the stop bit is 1.

Profibus Network Communications

The Profibus Network Card OPTC3 is used for connecting the 9000X Drive as a slave on a Profibus-DP network. The interface is connected by a 9-pin DSUB connector (female). The baud rates range from 9.6 K baud to 12 M baud, and the addresses range from 1 to 127.

Open Drives

LonWorks Network Communications

The LonWorks Network Card OPTC4 is used for connecting the 9000X Drive on a LonWorks network. This interface uses Standard Network Variable Types (SNVT) as data types. The channel connection is achieved using a FTT10A Free Topology transceiver via a single twisted transfer cable. The communication speed with LonWorks is $78 \mathrm{kBits} / \mathrm{s}$.

CanOpen (Slave) Communications

The CanOpen (Slave) Network Card OPTC6 is used for connecting the 9000X Drive to a host system. According to ISO11898 standard cables to be chosen for CAN bus should have a nominal impedance of 120Ω, and specific line delay of nominal $5 \mathrm{nS} / \mathrm{m}$. 120Ω line termination resistors required for installation.

DeviceNet Network Communications

The DeviceNet Network Card OPTC7 is used for connecting the 9000X Drive on a DeviceNet Network. It includes a 5.08 mm pluggable connector. Transfer method is via CAN using a 2-wire twisted shielded cable with 2 -wire bus power cable and drain. The baud rates used for communication include 125 K baud, 250 K baud and 500 K baud.

Options

Control Panel Options

Table 40-40. Control Panel Factory Options

Description	Factory Installed		Field Installed	
			NEMA Type 1	
	Option Code	Adder U.S. \$	Catalog Number	Price U.S. $\$$
SLX9000 Series LCD Keypad - This option is standard on all drives and consists of an RS-232 connection, backlit alphanumeric LCD display with nine indicators for the RUN status and two indicators for the control source. The seven pushbuttons on the panel are used for panel programming and monitoring of all SLX9000 parameters. The panel is detachable and isolated from the input line potential.	A		KEYPAD-LCD	
Keypad Remote Mounting Kit - This option is used to remote mount the SLX9000 keypad. Includes 6.5 ft . cable, keypad holder and mounting hardware.	-		OPTDRA-02L	

Table 40-41. Miscellaneous Options

Description	Catalog Number	Price U.S. \$
External Dynamic Braking Resistors — Used with the Dynamic Braking Chopper Circuit to absorb motor regenerative energy for stopping the load and to dissipate the energy flowing back into the drive. Resistors are separated into Standard Duty and Heavy-Duty. Standard Duty is defined as 20\% duty or less with 100\% braking torque, while Heavy-Duty is defined as 50\% duty or less with 150% braking torque. Consult factory.		

(1) Consult factory.

Brake Chopper Options

The Brake Chopper Circuit option is used for applications that require dynamic braking. Dynamic Braking resistors are not included with drive purchase. Consult the factory for dynamic braking resistors which are supplied separately. Resistors are not UL Listed.

Table 40-42. Conformal (Varnished) Coating
Adder-380-500V,
(See Catalog Number Description to order.)

Frame	Delivery Code	Adder U.S. \$
MF4	FP	
MF5	FP	
MF6	FP	

Table 40-43. Conformal Coated Board Kits (2)

Field Installed		Factory Installed	
Catalog Number	Price U.S. \$	Option Designator	Adder U.S. \$
OPT_V (4)		$\boxed{3}$	

(2) See Option Catalog Numbers on Page 40-31.
(3) Construct Catalog Numbers for factory installed per Table 40-36 on Page 40-29.
(4) Replace "_-" with the correct Catalog Number from Page 40-31. Example: OPTC2V.

Open Drives

Accessories

NEMA Type 12 Conversion Kit

The NEMA Type 12 kit option is used to convert a NEMA Type 1 to a NEMA Type 12 drive. The NEMA Type 12 Kit consists of a metal drive shroud, fan kit for some frames, adapter plate and plugs.

Table 40-44. NEMA Type 12 Conversion Kit

Frame Size	Delivery Code	Approximate Dimensions in Inches (mm)			Approximate Weight in Lb. (kg)	Catalog Number	Price U.S. \$
		Length	Width	Height	Weight		
MF4	W	13 (330)	7 (178)	4 (102)	4 (1.8)	OPTN12FR4	
MF5	W	16 (406)	8 (203)	7 (178)	5 (2.3)	OPTN12FR5	
MF6	W	21 (533)	10 (254)	5 (127)	7 (3.2)	OPTN12FR6	

Flange Kits

Flange Kit Type 12

The flange kit is utilized when the power section is mounted through the back panel of an enclosure. Includes flange mount brackets and NEMA Type 12 fan components. Metal shroud not included.

Table 40-45. Flange Kit Type 12 -
MF4 - MF6 (1)

Frame Size	Delivery Code	Catalog Number	Price U.S. \$
MF4	W	OPTTHRFR4	
MF5	W	OPTTHRFR5	
MF6	W	OPTTHRFR6	

(1) For installation of an SLX9000 NEMA Type 1 drive into a NEMA Type 12 oversized enclosure.

Flange Kit Type 1

Flange kits for NEMA 1 enclosure drive rating are determined by rating of drive.
Table 40-46. Flange Kit Type 1 -
MF4 - MF6 ${ }^{\text {² }}$

Frame Size	Delivery Code	Catalog Number	Price U.S. \$
MF4 FP OPTTHR4 MF5 FP OPTTHR5			
MF6	FP	OPTTHR6	

(2) For installation of an SLX9000 NEMA Type 1 drive into a NEMA Type 1 oversized enclosure.

Flange Kit Type 12

Flange kits for NEMA 12 enclosure drive rating are determined by rating of drive.

Table 40-47. Flange Kit Type 12 MF4 - MF6 (3)

Frame Size	Delivery Code	Catalog Number	Price U.S. \$
MF4	FP	OPTTHR4	
MF5	FP	OPTTHR5	
MF6	FP	OPTTHR6	

(3) For installation of an SLX9000 NEMA Type 12 drive into a NEMA Type 12 oversized enclosure.

Dimensions

Figure 40-12. NEMA Type 1 and NEMA Type 12 SLX9000 Drive Dimensions, MF4 - MF6
Table 40-48. SLX9000 Drive Dimensions

Frame Size	Voltage	$\mathrm{hp}\left(\mathrm{l}_{\mathrm{H}}\right)$	Approximate Dimensions in Inches (mm)											Weight Lbs. (kg)	Knockouts @ Inches (mm) N1 (O.D.)
			H1	H2	H3	D1	D2	D3	W1	W2	W3	R1 dia.	R2 dia.		
MF4	480 V	1-5	$\begin{aligned} & \hline 12.9 \\ & (327) \end{aligned}$	$\begin{aligned} & \hline 12.3 \\ & (313) \end{aligned}$	$\begin{aligned} & \hline 11.5 \\ & (292) \end{aligned}$	$\begin{aligned} & \hline 7.5 \\ & (190) \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & \text { (77) } \end{aligned}$	$\begin{array}{\|l\|} \hline 5.0 \\ (126) \end{array}$	$\begin{aligned} & \hline 5.0 \\ & (128) \end{aligned}$	$\begin{array}{\|l\|} \hline 3.9 \\ (100) \end{array}$	-	$\begin{aligned} & \hline .5 \\ & (13) \end{aligned}$	$\begin{array}{\|l} \hline .3 \\ (7) \\ \hline \end{array}$	$\begin{aligned} & \hline 11.0 \\ & (5) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3 @ 1.1 \\ & (28) \end{aligned}$
MF5	480 V	7-1/2-15	$\begin{aligned} & \hline 16.5 \\ & (419) \end{aligned}$	$\begin{array}{\|l\|} \hline 16.0 \\ (406) \end{array}$	$\begin{aligned} & \hline 15.3 \\ & (389) \end{aligned}$	$\begin{aligned} & \hline 8.4 \\ & (214) \end{aligned}$	$\begin{aligned} & \hline 3.9 \\ & (100) \end{aligned}$	$\begin{aligned} & \hline 5.8 \\ & (148) \end{aligned}$	$\begin{aligned} & \hline 5.6 \\ & (143) \end{aligned}$	$\begin{array}{\|l\|} \hline 3.9 \\ (100) \end{array}$	-	$\begin{aligned} & \hline .5 \\ & (13) \end{aligned}$	$\begin{array}{\|l\|} \hline .3 \\ (7) \end{array}$	17.9 (8)	$\begin{aligned} & \hline 2 @ 1.5 \\ & (37) \\ & 1 @ 1.1 \\ & (28) \\ & \hline \end{aligned}$
MF6	480 V	20-30	$\begin{aligned} & 22.0 \\ & \text { (558) } \end{aligned}$	$\begin{array}{\|l\|} \hline 21.3 \\ (541) \end{array}$	$\begin{aligned} & \hline 20.4 \\ & (519) \end{aligned}$	$\begin{aligned} & 9.3 \\ & (237) \end{aligned}$	$\begin{aligned} & \hline 4.2 \\ & (105) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 6.5 \\ (165) \end{array}$	$\begin{aligned} & \hline 7.6 \\ & (195) \end{aligned}$	$\begin{array}{\|l\|} \hline 5.8 \\ (148) \end{array}$	-	$\begin{aligned} & \hline .6 \\ & (15.5) \end{aligned}$	$\begin{array}{\|l} \hline .4 \\ \text { (9) } \end{array}$	$\begin{aligned} & 40.8 \\ & (19) \end{aligned}$	$\begin{aligned} & 3 \text { @ } 1.5 \\ & (37) \end{aligned}$

Open Drives

Figure 40-13. SLX9000 Dimensions, NEMA Type 1 and NEMA Type 12 with Flange Kit, MF4 - MF6
Table 40-49. Dimensions for SLX9000, MF4 - MF6 with Flange Kit

Frame Size	Approximate Dimensions in Inches (mm)									
	W1	W2	H1	H2	H3	H4	H5	D1	D2	Dia. A
MF4	$\begin{array}{\|l\|} \hline 5.0 \\ (128) \end{array}$	$\begin{array}{\|l\|} \hline 4.5 \\ (113) \end{array}$	$\begin{aligned} & \hline 13.3 \\ & (337) \end{aligned}$	$\begin{aligned} & \hline 12.8 \\ & (325) \end{aligned}$	$\begin{aligned} & \hline 12.9 \\ & (327) \end{aligned}$	$\begin{array}{\|l\|} \hline 1.2 \\ (30) \end{array}$	$\begin{array}{\|l\|} \hline .9 \\ (22) \\ \hline \end{array}$	$\begin{aligned} & \hline 7.5 \\ & (190) \end{aligned}$	$\begin{array}{\|l\|} \hline 3.0 \\ \text { (77) } \end{array}$	$\begin{array}{\|l} \hline .3 \\ (7) \end{array}$
MF5	$\begin{array}{\|l\|} \hline 5.6 \\ (143) \end{array}$	$\begin{aligned} & \hline 4.7 \\ & (120) \end{aligned}$	$\begin{aligned} & \hline 17.0 \\ & (434) \end{aligned}$	$\begin{aligned} & \hline 16.5 \\ & (420) \end{aligned}$	$\begin{array}{\|l\|} \hline 16.5 \\ (419) \end{array}$	$\begin{array}{\|l\|} \hline 1.4 \\ \text { (36) } \end{array}$	$\begin{array}{\|l\|} \hline .7 \\ \hline(18) \\ \hline \end{array}$	$\begin{aligned} & \hline 8.4 \\ & (214) \end{aligned}$	$\begin{aligned} & \hline 3.9 \\ & (100) \end{aligned}$	$\begin{array}{\|l} \hline .3 \\ (7) \end{array}$
MF6	$\begin{array}{\|l\|} \hline 7.7 \\ (195) \end{array}$	$\begin{aligned} & 6.7 \\ & (170) \end{aligned}$	$\begin{aligned} & 22.0 \\ & (560) \end{aligned}$	$\begin{aligned} & 21.6 \\ & (549) \end{aligned}$	$\begin{array}{\|l} \hline 22.0 \\ (558) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 1.2 \\ (30) \end{array}$	$\begin{array}{\|l\|} \hline .8 \\ (20) \\ \hline \end{array}$	$\begin{aligned} & 9.3 \\ & (237) \end{aligned}$	$\begin{aligned} & 4.2 \\ & (106) \end{aligned}$	$\begin{aligned} & \hline .3 \\ & \text { (7) } \end{aligned}$

Table 40-50. Dimensions for the Flange Opening, MF4 - MF6

Frame Size	Approximate Dimensions in Inches (mm)							
	W3	W4	W5	H6	H7	H8	H9	Dia. B
MF4	$\begin{aligned} & 4.8 \\ & (123) \end{aligned}$	$\begin{array}{\|l\|} \hline 4.5 \\ (113) \end{array}$	-	$\begin{aligned} & 12.4 \\ & (315) \end{aligned}$	$\begin{aligned} & 12.8 \\ & (325) \end{aligned}$	-	$.2$ (5)	$\begin{aligned} & .3 \\ & \text { (7) } \\ & \hline \end{aligned}$
MF5	$\begin{aligned} & \hline 5.3 \\ & (135) \end{aligned}$	$\begin{array}{\|l\|} \hline 4.7 \\ (120) \end{array}$	-	$\begin{aligned} & \hline 16.2 \\ & (410) \end{aligned}$	$\begin{aligned} & \hline 16.5 \\ & (420) \end{aligned}$	-	$\begin{aligned} & \hline .2 \\ & (5) \end{aligned}$	$\begin{array}{\|l} \hline .3 \\ (7) \\ \hline \end{array}$
MF6	$\begin{aligned} & \hline 7.3 \\ & (185) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 6.7 \\ (170) \\ \hline \end{array}$	$\begin{aligned} & \hline 6.2 \\ & (157) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 21.2 \\ & (539) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 21.6 \\ & (549) \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline .3 \\ (7) \end{array}$	$\begin{aligned} & \hline .2 \\ & (5) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l\|} \hline .3 \\ 17 \end{array}$

Spare Units \& Replacement Parts

Table 40-51. SLX9000 Spare Units \& Replacement Parts

Frame	MF4						MF5			MF6			Delivery Code	Catalog Number	Price U.S. \$
hp (l_{H})	1	1-1/2	2	3	5	7-1/2 ${ }^{(1)}$	7-1/2	10	15	20	25	30			
	Control Board														
	1	1	1	1	1	1	1	1	1	1	1	1	W	VB00351	
	Power Boards														
	1												FB	VB00350-0003-5	
		1											FB	VB00350-0004-5	
			1										FB	VB00350-0005-5	
				1									FB	VB00350-0007-5	
					1								FB	VB00350-0009-5	
						1							FB	VB00350-0012-5	
							1						FB	VB00357-0016-5	
								1					FB	VB00357-0023-5	
									1				FB	VB00357-0031-5	
										1			FB	VB00358-0038-5	
											1		FB	VB00358-0046-5	
												1	FB	VB00358-0061-5	
	Electrolytic Capacitors														
	2	2	2	2									W	PP01000	
					2	2							W	PP01001	
							2	2					W	PP01002	
									2				W	PP01003	
										2	2	2	W	PP01004	
	Cooling Fans														
	1	1	1	1	1	1							W	PP01060	
							1	1	1				W	PP01061	
										1	1	1	W	PP01062	
	1	1	1	1	1	1							W	PP01086	
							1	1	1				W	PP01088	
										1	1	1	W	PP01049	
	IGBT Modules														
							1						W	CP01306	
								1					W	CP01307	
									1				W	CP01308	
										1	1		W	CP01367	
												1	W	CP01368	
										1	1		W	PP01022	
												1	W	PP01023	
	1	1	1										FP	PP01032	
				1	1	1							FP	PP01033	
	Capacitors														
	1	1	1	1	1	1							FP	PP04051	
	1	1	1	1	1	1							FP	PP04052	
							1	1	1				FP	PP05051	
							2	2	2				FP	PP00035	
										1	1	1	FP	PP06051	
										1	1	1	FP	PP06052	

[^1]
Enclosed Drives

Contents

DescriptionSLX9000 Enclosed Drives
Product Description 40-37
Features 40-37
Standards and Certifications 40-37
Technical Data and Specifications 40-38
Catalog Number Selection 40-39
Product Selection 40-42
Dimensions 40-44

Product Description

■ Standard Enclosed - covers a wide range of the most commonly ordered options. Pre-engineering eliminates the lead time normally associated with customer specific options.
■ Modified Standard Enclosed applies to specific customer requirements that vary from the Standard Enclosed offering, such as the need for an additional indicating light or minor modifications to drawings. Consult your Eaton representative for assistance in pricing and lead time.

- Custom Engineered - for those applications with more unique or complex requirements, these are individually engineered to the customer's needs. Consult your Eaton representative for assistance in pricing and lead time.

SLX9000 Enclosed Drives

Features

- NEMA Type 1, Type 12 or Type 3R enclosures
■ Input Voltage: 480 V
■ Complete range of control, network and power options
■ Horsepower range:
- $480 \mathrm{~V}-1$ to $30 \mathrm{hp} \mathrm{I}_{\mathrm{H}}$;
$1-1 / 2$ to 40 hp I
- HMCP padlockable

Standards and Certifications

■ UL Listed
■ cUL Listed

Figure 40-14. Power Diagram for Bypass Options RB and RA

Technical Data and Specifications

Table 40-52. Specifications

Feature Description	SLX9000 Enclosed Products - NEMA Type 1, NEMA Type 12 or NEMA Type 3R
Primary Design Features	

Feature Description	SLX9000 Enclosed Products NEMA Type 1, NEMA Type 12 or NEMA Type 3R
Input/Output Interface Features (Continued)	
Discrete Outputs:	
Fault Alarm	Standard
Drive Running	Standard
Drive at Set Speed	Programmable
Optional Parameters	14
Dry Contacts	1 (Relay Form C)
Additional Discrete Outputs	Optional
Communications:	
RS-232	Standard
RS-422/485	Optional
Device $\mathrm{Net}^{\text {TM }}$	Optional
Modbus RTU	Optional
CanOpen (Slave)	Optional
Profibus-DP	Optional
Lonworks ${ }^{\circledR}$	Optional
Johnson Controls Metasys ${ }^{\text {TM }}$ N2	Optional

Performance Features
Sensorless Vector Control Standard Volts/Hertz Control Standard IR and Slip Compensation Standard Electronic Reversing Standard Dynamic Braking Standard DC Braking Standard PID Setpoint Controller Programmable Critical Speed Lockout Standard Current (Torque) Limit Standard Adjustable Acceleration/Deceleration Standard Linear or S Curve Accel/Decel Standard Jog at Preset Speed Standard Thread/Preset Speeds 7 Automatic Restart Selectable Coasting Motor Start Standard Coast or Ramp Stop Selection Standard Elapsed Time Meter Optional Carrier Frequency Adjustment $1-16 \mathrm{kHz}$ Standard Conditions for Application and Service Operating Ambient Temperature $0-40^{\circ} \mathrm{C}$ Storage Temperature $-40-60^{\circ} \mathrm{C}$ Humidity (Maximum), 95% Non-condensing Altitude (Maximum without Derate) 3300 ft. (1000m) Line Voltage Variation $+10 /-15 \%$ Line Frequency Variation $45-66 \mathrm{~Hz}$ Efficiency $>96 \%$ Power Factor (Displacement) >96

Table 40-53. Standard I/O Specifications

Description	Specification
3- Digital Input Programmable	$24 \mathrm{~V}: " 0 " \leq 10 \mathrm{~V}, " 1 " \geq 18 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}>5 \mathrm{k} \Omega$
2 - Analog Input Configurable w/Jumpers	Voltage: $0- \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}>200 \mathrm{k} \Omega$ Current: $0(4)-20 \mathrm{~mA}, \mathrm{R}_{\mathrm{i}}=250 \mathrm{k} \Omega$
1 - Digital Output Programmable	Form C Relays 250 V AC 2 Amp or 30 V DC2 Amp resistive, 8 Amp switching
1- Analog Output Programmable Configurable w/Jumper	$0-20 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}<500$ ohms, resolution 10 Bits/0.1\%
1 - RS-485 Serial	RS-485 Modbus Communication

Catalog Number Selection

Table 40-54. SLX9000 Enclosed NEMA Type 1/12/3R Drive Catalog Numbering System

[^2]
Control/Communication Option Descriptions

Table 40-55. Available Control/Communications Options

Option	Description	Option Type
K1	Door-Mounted Speed Potentiometer - Provides the SLX9000 with the ability to adjust the frequency reference using a doormounted potentiometer. This option uses the 10V DC reference to generate a $0-10 \mathrm{~V}$ signal at the analog voltage input signal terminal. When the HOA bypass option is added, the speed is controlled when the HOA switch is in the hand position. Without the HOA bypass option, a 2-position switch (labeled local/remote) is provided on the keypad to select speed reference from the Speed Potentiometer or a remote speed signal.	Control
K2	Door-Mounted Speed Potentiometer with HOA Selector Switch — Provides the SLX9000 with the ability to start/stop and adjust the speed reference from door-mounted control devices or remotely from customer supplied inputs. In HAND position, the drive will start and the speed is controlled by the door-mounted speed potentiometer. The drive will be disabled in the OFF position. When AUTO is selected, the drive run and speed control commands are via user-supplied dry contact and $4-20 \mathrm{~mA}$ signal.	Control
K3	3-15 psig Follower - Provides a pneumatic transducer which converts a 3-15 psig pneumatic signal to either 0-8V DC or a 1 -9V DC signal interface with the SLX9000.	Control
K4	HAND/OFF/AUTO Switch for Non-bypass Configurations - Provides a three-position selector switch that allows the user to select either a Hand or Auto mode of operation. Hand mode is defaulted to keypad operation, and Auto mode is defaulted to control from an external terminal source. These modes of operation can be configured via programming to allow for alternate combinations of start and speed sources. Start and speed sources include Keypad, I/O and FieldBus.	Control
K5	MANUAL/AUTO Speed Reference Switch - Provides a door-mounted selector switch for Manual/Auto speed reference.	Control
K6	START/STOP Pushbuttons - Provides door-mounted START and STOP pushbuttons for either bypass or non-bypass configurations.	Control
KB	115V Control Transformer - 150 VA - Provides a fused control power transformer with 115V for customer use.	Control
KF	Bypass Test Switch for RB and RA - Allows the user to energize the AF drive for testing while operating the motor on the bypass controller. The Test Switch is mounted on the inside of the enclosure door.	Addl. Bypass
KO	Standard Elapsed Time Meter - Provides a door-mounted elapsed run time meter.	Control
L1	Power On and Fault Pilot Lights ($\mathbf{2 2} \mathbf{~ m m}$) - Provides a white power on light that indicates power to the enclosed cabinet and a red fault light indicates a drive fault has occurred.	Light
L2	Bypass Pilot Lights for RB, RA Bypass Options - A green light indicates when the motor is running in inverter mode and an amber light indicates when the motor is running in bypass mode. The lights are mounted on the enclosure door, above the switches.	Addl. Bypass
LA	Green RUN Light (22 mm) - Provides a green run light that indicates the drive is running.	Light
LD	Green STOP Light (22 mm) - Provides a green stop light that indicates the drive is stopped.	Light
LE	Red Run Pilot Light (22 mm) - Provides a red run pilot light that indicates the drive is running.	Light
LF	Red STOP Light (22 mm) - Provides a red stop light that indicates the drive is stopped.	Light
LJ	Power On Light (22 mm) - Provides a white power on light that indicates the drive enclosure power is on.	Light
LU	Misc. Light (22 mm) - Provides a misc. "user defined" pilot light. User to define light function and color.	Light
P1	Input Disconnect Assembly Rated to 100 kAIC - High Interruption Circuit Breaker that provides a means of short circuit protection for the power cables between it and the SLX9000, and protection from high-level ground faults on the power cable. Allows a convenient means of disconnecting the SLX9000 from the line and the operating mechanism can be padlocked in the OFF position. This is factory mounted in the enclosure.	Input
P3	Input Line Fuses Rated to $\mathbf{2 0 0}$ kAIC - Provides high-level fault protection of the SLX9000 input power circuit from the load side of the fuses to the input side of the power transistors. This option consists of three 200 kA fuses, which are factory mounted in the enclosure.	Input
P5	5\% Input Reactance-Add additional input reactance to increase total from 3\% standard to optional 5\%.	Input
P7	MOV Surge Suppressor - Provides a Metal Oxide Varistor (MOV) connected to the line side terminals and is designed to clip line side transients.	Input
PE	Output Contactor - Provides a means for positive disconnection of the drive output from the motor terminals. The contactor coil is controlled by the drive's run or permissive logic. NC and NO auxiliary contacts rated at 10A, 600 V AC are provided for customer use. Bypass Options RB and RA include an Output Contactor as standard. This option includes a low VA 115V AC fused Control Power Transformer and is factory mounted in the enclosure.	Output
PF	Output Filter - Used to reduce the transient voltage (DV/DT) at the motor terminals. The Output Filter is recommended for cable lengths exceeding 100 ft . 30 m) with a drive of 3 hp and above, for cable lengths of 33 ft . $(10 \mathrm{~m})$ with a drive of 2 hp and below, or for a drive rated at $525-690 \mathrm{~V}$. This option is mounted in the enclosure, and may be used in conjunction with a Brake Chopper Circuit.	Output
PH	Single Overload Relay - Uses a bimetallic overload relay to provide additional overload current protection to the motor on configurations without bypass options. It is included with the Bypass Configurations for overload current protection in the bypass mode. The Overload Relay is mounted within the enclosure, and is manually resettable. Heater pack included.	Output
PI	Dual Overload Relays - This option is recommended when a single drive is operating 2 motors and overload current protection is needed for each of the motors. The standard configuration includes two bimetallic overload relays, each sized to protect a motor with 50% of the drive hp rating. For example, a 100 hp drive would include two overload relays sized to protect two 50 hp motors. The relays are mounted within the enclosure, and are manually resettable. Heater packs not included.	Output
PN	Dual Overloads for Bypass - This option is recommended when a single drive is operating 2 motors in the bypass mode and overload current protection is needed for each of the motors. The standard configuration includes two bimetallic overload relays, each sized to protect a motor with 50% of the drive hp rating. For example, a 100 hp drive would include two overload relays sized to protect two 50 hp motors. The relays are mounted within the enclosure, and are manually resettable.	Addl. Bypass

Enclosed Drives

Table 40-55. Available Control/Communications Options (Continued)

Option	Description	Option Type
RA	Manual HOA Bypass Controller - The Manual HAND/OFF/AUTO (HOA) - 3-contactor - bypass option provides a means of bypassing the SLX9000, allowing the AC motor to be operated at full speed directly from the AC supply line. This option consists of an input disconnect, a fused control power transformer, and a full voltage bypass starter with a door mounted HOA selector switch and an INVERTER/BYPASS switch. The HOA switch provides the ability to start and stop the drive in the inverter mode. A Freedom Series IEC input contactor, a Freedom Series IEC output contactor, and a Freedom Series IEC starter with a bimetallic overload relay is included. The contactors are mechanically and electrically interlocked (see power diagram on Page 40-37).	Bypass
RB	Manual IOB Bypass Controller - The Manual INVERTER/OFF/BYPASS (IOB) - 3-contactor - bypass option provides a means of bypassing the SLX9000, allowing the AC motor to be operated at full speed directly from the AC supply line. This option consists of an input disconnect, a fused control power transformer, and a full voltage bypass starter with a door mounted IOB selector switch. A Freedom Series IEC input contactor, a Freedom Series IEC output contactor, and a Freedom Series IEC starter with a bimetallic overload relay is included. The contactors are mechanically and electrically interlocked (see power diagram on Page 40-37).	Byp
S9	Space Heater - Prevents condensation from forming in the enclosure when the drive is inactive or in storage. Includes a thermostat for variable temperature control. Requires a customer supplied 115V remote supply source.	Enclosure

Note: For availability, see Product Selection for base drive voltage required

SLX9000 Series Option Board Kits

The SLX9000 Series drives can accommodate a wide selection of expander and adapter option boards to customize the drive for your application needs. The drive's control unit is designed to accept a total of two option boards (see Figure 40-15).

The SLX9000 Drive accommodates the standard I/O and an integrated RS-485 (Modbus) connector.

Figure 40-15. 9000X Series Option Boards

Table 40-56. I/O Specifications for the Control/Communication Options

Description	Specifications
Analog voltage, input	$0- \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{i}} \geq 200 \mathrm{k} \Omega$
Analog current, input	0 (4) - $20 \mathrm{~mA}, \mathrm{R}_{\mathrm{i}}=250 \Omega$
Digital Input	24 V : " 0 " $\leq 10 \mathrm{~V}, ~ " 1 " \geq 18 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}>5 \mathrm{k} \Omega$
Aux. voltage	$24 \mathrm{~V}(\pm 20 \%)$, max. 50 mA
Reference voltage	$10 \mathrm{~V} \pm 3 \%$, max. 10 mA
Analog current, output	0 (4) - $20 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=500 \mathrm{k} \Omega$, resolution 10 bit, accuracy $\leq \pm 2 \%$
Relay output Max. switching voltage Max. switching load Max. continuous load	300 V DC, 250 V AC 8A/24V DC, .4A/300V DC, $2 \mathrm{kVA} / 250 \mathrm{~V}$ AC 2A rms
Thermistor input	Rtrip $=4.7 \mathrm{k} \Omega$

Table 40-57. Option Board Kits

Option Kit Description (2)	Allowed Slot Locations	Field Installed		Factory Installed		SLX9000 Programs
		Catalog Number	Price U.S. \$	Option Designator	Adder U.S. \$	

3 DI, 1 RO (NO/NC), 1 DO	D	OPTAA	AA	X
$3 \mathrm{DI}, 1 \mathrm{RO}$ (NO), 1 TI	D	OPTAI	AI	X
1 RO (NC/NO), 1 RO (NO), 1 Therm	D, E	OPTB2	B2	X
1 Al (mA isolated), 2 AO (mA isolated), 1 ext +24V DC/EXT +24V DC	D, E	OPTB4	B4	X
3 RO (NO)	D, E	OPTB5	B5	X
Communication Cards				
Johnson Controls N2	D, E	OPTC2	CA	X
Modbus	D, E	OPTC2	C2	X
Modbus TCP	D, E	OPTCI	Cl	X
BACnet	D, E	OPTCJ	CJ	X
Profibus DP	D, E	OPTC3	C3	X
LonWorks	D, E	OPTC4	C4	X
Profibus DP (D9 Connector)	D, E	OPTC5	C5	X
CanOpen (Slave)	D, E	OPTC6	C6	X
DeviceNet	D, E	OPTC7	C7	X

Keypad

[^3](2) $\mathrm{Al}=$ Analog Input; $\mathrm{AO}=$ Analog Output, $\mathrm{DI}=$ Digital Input, $\mathrm{DO}=$ Digital Output, RO = Relay Output

Johnson Controls Metasys ${ }^{\text {TM }}$ N2 Network Communications
The OPTC2 fieldbus board provides communication between the SLX9000 drive and a Johnson Controls Metasys ${ }^{\text {TM }} \mathrm{N} 2$ network. With this connection, the drive can be controlled, monitored and programmed from the Metasys system. The N2 fieldbus is available as a factory installed option and as a field installable kit.

Modbus RTU Network Communications

The Modbus Network Card OPTC2 is used for connecting the 9000X Drive as a slave on a Modbus network. The interface is connected by a 9 -pin DSUB connector (female) and the baud rate ranges from 300 to 19200 baud. Other communication parameters include an address range from 1 to 247; a parity of None, Odd or Even; and the stop bit is 1.

Modbus/TCP Network Communications

The Modbus/TCP Network Card OPTCI is used for connecting the 9000X Drive to Ethernet networks utilizing Modbus protocol. It includes an RJ-45 pluggable connector. This interface provides a selection of standard and custom register values to communicate drive parameters. The board supports 10 Mbps and 100 Mbps communication speeds. The IP address of the board is configurable over Ethernet using a supplied software tool.

BACnet Network Communications

The BACnet Network Card OPTCJ is used for connecting the 9000X Drive to BACnet networks. It includes a 5.08 mm pluggable connector. Data transfer is Master-Slave/Token Passing (MS/TP) RS-485. This interface uses a collection of 30 Binary Value Objects (BVOs) and 35 Analog Value Objects (AVOs) to communicate drive parameters. The card supports

Product Selection

When Ordering

- Select a Base Catalog Number that meets the application requirements - nominal horsepower, voltage and enclosure rating (the enclosed drive's continuous output amp rating should be equal to or greater than the motor's full load amp rating). The base enclosed package includes a standard drive, door mounted Local/Remote Keypad and enclosure.
9.6, 19.2 and 38.4 Kbaud communication speeds and supports network addresses 1-127.

Profibus Network Communications

The Profibus Network Card OPTC3 is used for connecting the SLX9000 as a slave on a Profibus-DP network. The interface is connected by a 9-pin DSUB connector (female). The baud rates range from 9.6 K baud to 12 M baud, and the addresses range from 1 to 127.

LonWorks Network Communications

The LonWorks Network Card OPTC4 is used for connecting the SLX9000 on a LonWorks network. This interface uses Standard Network Variable Types (SNVT) as data types. The channel connection is achieved using a FTT-10A Free Topology transceiver via a single twisted transfer cable. The communication speed with LonWorks is $78 \mathrm{kBits} / \mathrm{s}$.

CanOpen (Slave) Communications

The CanOpen (Slave) Network Card OPTC6 is used for connecting the SLX9000 to a host system. According to ISO11898 standard cables to be chosen for CAN bus should have a nominal impedance of 120Ω, and specific line delay of nominal $5 \mathrm{nS} / \mathrm{m} .120 \Omega$ line termination resistors required for installation.

DeviceNet Network Communications

The DeviceNet Network Card OPTC7 is used for connecting the SLX9000 on a DeviceNet Network. It includes a 5.08 mm pluggable connector. Transfer method is via CAN using a 2 -wire twisted shielded cable with 2 -wire bus power cable and drain. The baud rates used for communication include 125K baud, 250k baud and 500K baud.

480V Drives

Table 40-58. 480V AC Input Base Drive

$\begin{array}{\|l\|} \hline \text { Enclosure } \\ \text { Size }{ }^{-1} \end{array}$	hp	Current(A)	NEMA Type 1			NEMA Type 12			NEMA Type 3R		
			Frame Size	Base Catalog Number ${ }^{(2)}$	Price U.S. \$	Frame Size	Base Catalog Number ${ }^{(2)}$	$\begin{aligned} & \text { Price } \\ & \text { U.S. } \end{aligned}$	Frame Size	Base Catalog Number ${ }^{(2)}$	Price U.S. S
High Overload Drive and Enclosure											
MF0	$\begin{aligned} & 1 \\ & 1-1 / 2 \\ & 2 \\ & 3 \\ & 5 \end{aligned}$	$\begin{aligned} & \hline 2.2 \\ & 3.3 \\ & 4.3 \\ & 5.6 \\ & 7.6 \end{aligned}$	MF4 MF4 MF4 MF4 MF4	SLX00114EA SLXF1514EA SLX00214EA SLX00314EA SLX00514EA		MF4 MF4 MF4 MF4 MF4	$\begin{aligned} & \text { SLX00124EA } \\ & \text { SLXF1524EA } \\ & \text { SLX00224EA } \\ & \text { SLX00324EA } \\ & \text { SLX00524EA } \end{aligned}$		MF4 MF4 MF4 MF4 MF4	$\begin{aligned} & \hline \text { SLX00134EA } \\ & \text { SLXF1534EA } \\ & \text { SLX00234EA } \\ & \text { SLX00334EA } \\ & \text { SLX00534EA } \end{aligned}$	
MF1	$\begin{aligned} & 7-1 / 2 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \hline 12 \\ & 16 \\ & 23 \end{aligned}$	$\begin{aligned} & \text { MF5 } \\ & \text { MF5 } \\ & \text { MF5 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { SLX00714EA } \\ \text { SLX01014EA } \\ \text { SLX01514EA } \end{array}$		MF5 MF5 MF5	$\begin{aligned} & \text { SLX00724EA } \\ & \text { SLX01024EA } \\ & \text { SLX01524EA } \end{aligned}$		MF5 MF5 MF5	$\begin{aligned} & \hline \text { SLX00734EA } \\ & \text { SLX01034EA } \\ & \text { SIX01534FA } \end{aligned}$	
MF2	$\begin{aligned} & 20 \\ & 25 \\ & 30 \end{aligned}$	$\begin{array}{\|l\|} \hline 31 \\ 38 \\ 46 \end{array}$	$\begin{array}{\|l\|} \hline \text { MF6 } \\ \text { MF6 } \\ \text { MF6 } \\ \hline \end{array}$	$\begin{aligned} & \text { SLX02014EA } \\ & \text { SLX02514EA } \\ & \text { SLX03014EA } \end{aligned}$		$\begin{array}{\|l\|} \hline \text { MF6 } \\ \text { MF6 } \\ \text { MF6 } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { SLX02024EA } \\ & \text { SLX02524EA } \\ & \text { SLX03024EA } \end{aligned}$		$\begin{aligned} & \hline \text { MF6 } \\ & \text { MF6 } \\ & \text { MF6 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SLX02034EA } \\ & \text { SLX02534EA } \\ & \text { SLX03034EA } \end{aligned}$	
Low Overload Drive and Enclosure											
MF0	$\begin{aligned} & 1-1 / 2 \\ & 2 \\ & 3 \\ & 5 \\ & 7-1 / 2 \end{aligned}$	$\begin{array}{r} 3.3 \\ 4.3 \\ 5.6 \\ 7.6 \\ 12 \end{array}$	MF4 MF4 MF4 MF4 MF4	SLXF1514BA SLX00214BA SLX00314BA SLX00514BA SLX00714BA		MF4 MF4 MF4 MF4 MF4	$\begin{aligned} & \hline \text { SLXF1524BA } \\ & \text { SLX00224BA } \\ & \text { SLX00324BA } \\ & \text { SLX00524BA } \\ & \text { SLX00724BA } \end{aligned}$		MF4 MF4 MF4 MF4 MF4	$\begin{aligned} & \hline \text { SLXF1534BA } \\ & \text { SLX00234BA } \\ & \text { SLX00334BA } \\ & \text { SLX00534BA } \\ & \text { SLX00734BA } \end{aligned}$	
MF1	$\begin{aligned} & 10 \\ & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & \hline 16 \\ & 23 \\ & 31 \end{aligned}$	$\begin{aligned} & \hline \text { MF5 } \\ & \text { MF5 } \\ & \text { MF5 } \\ & \hline \end{aligned}$	SLX01014BA SLX01514BA SLX02014BA		MF5 MF5 MF5	$\begin{aligned} & \text { SLX01024BA } \\ & \text { SLX01524BA } \\ & \text { SLX02024BA } \end{aligned}$		MF5 MF5 MF5	$\begin{array}{\|l\|} \hline \text { SLX01034BA } \\ \text { SLX01534BA } \\ \text { SLX02034BA } \end{array}$	
MF2	$\begin{aligned} & 25 \\ & 30 \\ & 40 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 38 \\ 46 \\ 61 \\ \hline \end{array}$	$\begin{aligned} & \text { MF6 } \\ & \text { MF6 } \\ & \text { MF6 } \end{aligned}$	$\begin{aligned} & \text { SLX02514BA } \\ & \text { SLX03014BA } \\ & \text { SLX04014BA } \end{aligned}$		$\begin{aligned} & \text { MF6 } \\ & \text { MF6 } \\ & \text { MF6 } \end{aligned}$	$\begin{aligned} & \hline \text { SLX02524BA } \\ & \text { SLX03024BA } \\ & \text { SLX04024BA } \end{aligned}$		MF6 MF6 MF6	$\begin{array}{\|l\|} \hline \text { SLX02534BA } \\ \text { SLX03034BA } \\ \text { SLX04034BA } \end{array}$	

[^4](2) Includes drive, keypad and enclosure.

Table 40-59. 480V Control Options

Catalog Number	Door-Mounted Speed Potentiometer	Door-Mounted Speed Potentiometer with HOA Selector Switch	3-15 psig Follower	HAND/OFF/ AUTO Switch (22 mm)	MANUAL/AUTO Ref Switch (22 mm)	START/STOP Pushbuttons (22 mm)	115 Volt Control Transformer 150 VA	Standard Elapsed Time Meter
Suffix ${ }^{\text {III }}$,	K1	K2	K3	K4	K5	K6	KB	KO
hp	Adder U.S. S	Adder U.S. \$						
1-40								

Table 40-60. 480V Light Options

Catalog Number	Power On/Fault Pilot Lights ($\mathbf{2 2} \mathbf{~ m m}$)	Green RUN Light (22 mm)	Green STOP Light ($\mathbf{2 2} \mathbf{~ m m}$)	Red RUN Light (22 mm)	Red STOP Light (22 mm)	Power On Light ($\mathbf{2 2} \mathbf{~ m m}$)	Misc Light (22 mm)
Suffix ${ }^{\text {IIM }}$,	L1	LA	LD	LE	LF	LJ	LU
hp	Adder U.S. $\$$	Adder U.S. S	Adder U.S. S	Adder U.S. \$	Adder U.S. \$	Adder U.S. \$	Adder U.S. \$
1-40							

Table 40-61. 480V Bypass Options (1)

Catalog Number Suffix IIIC	Bypass Test Switch for RA, RB	Bypass Pilot Lights for RA, RB Options	Dual Overloads for Bypass	Manual HOA Bypass Controller	Manual IOB Bypass Controller
	KF	Adder U.S. \$	Adder U.S. $\$$	PN	RA
			Adder U.S. $\$$	Adder U.S. \$	Adder U.S. \$
25					
30					
40					

(1) See Pages 40-40 and 40-41 for details.

Table 40-62. 480V Enclosure Options

Catalog Number Suffix II	Space Heater ${ }^{(2)}$
	S9
Enclosure Size	Adder U.S. $\$$
MF0 MF2	

MF0 - MF2
(2) Requires customer supplied 115V AC supply.

Table 40-63. 480V Power Options

Catalog Number Suffix ${ }^{\prime \prime \prime}$,	Input				Output			
	Input Disconnect (HMCP) 100 kAIC	Input Line Fuses 200 kAIC	5\% Input Reactance	Input Power Surge Protection	Output Contactor	Output Filter	Single Overload Relay ${ }^{3}$	Dual Overload Relays ${ }^{3}$
	P1	P3	P5	P7	PE	PF	PH	PI
hp	Adder U.S. \$							
$\begin{aligned} & 1-2 \\ & 3-5 \\ & 7-1 / 2 \end{aligned}$								
$\begin{array}{\|l} \hline 10 \\ 15 \\ 20 \end{array}$								
25								
$\begin{array}{\|l} \hline 30 \\ 40 \end{array}$								

(3) Heater packs not included.

Dimensions

Enclosure Size MFO without Filter

Figure 40-16. Approximate Dimensions
Table 40-64. Approximate Dimensions and Shipping Weight — Enclosed Products

Voltage AC	$\operatorname{lip}_{\left(\mathrm{I}_{\mathrm{H}}\right)}$	$\mathbf{h p}_{\left(I_{L}\right)}$	Approximate Dimensions in Inches (mm)										
			H1	H2	H3	H4	H5	W1	W2	W3	W4	W5	W6
480 V	1-5	$\begin{array}{\|l\|} \hline 1-1 / 2- \\ 7-1 / 2 \end{array}$	$\begin{array}{\|l\|} \hline 43.00 \\ (1092) \end{array}$	$\begin{aligned} & 20.00 \\ & (508) \end{aligned}$	$\begin{aligned} & \hline 1.50 \\ & (38) \end{aligned}$	$\begin{aligned} & \hline 10.03 \\ & (255) \end{aligned}$	$\begin{aligned} & \hline 6.53 \\ & (166) \end{aligned}$	$\begin{aligned} & 10.88 \\ & (276) \end{aligned}$	$\begin{array}{\|l\|} \hline 9.87 \\ (251) \end{array}$	$\begin{aligned} & \hline .50 \\ & (13) \end{aligned}$	$\begin{aligned} & \hline 7.38 \\ & (187) \end{aligned}$	$\begin{aligned} & \hline 5.44 \\ & (138) \end{aligned}$	$\begin{aligned} & 3.50 \\ & (89) \end{aligned}$

Table 40-64. Approximate Dimensions and Shipping Weight — Enclosed Products (Continued)

Voltage AC	$\begin{aligned} & \mathrm{hp} \\ & \left(\mathrm{I}_{\mathrm{H}}\right) \end{aligned}$	$\begin{aligned} & \mathrm{hp} \\ & \left(I_{L}\right) \end{aligned}$	Approximate Dimensions in Inches (mm)										Max. Approx. Wt. Lbs. (kg)
			D1	D2	D3	D4	D5	D6	Dia. 1	Dia. 2	Dia. 3	Dia. 4	
480 V	1-5	$\begin{array}{\|l\|} \hline 1-1 / 2- \\ 7-1 / 2 \end{array}$	$\begin{aligned} & \hline 9.72 \\ & (247) \end{aligned}$	$\begin{aligned} & \hline 7.70 \\ & (195) \end{aligned}$	$\begin{aligned} & \hline 4.13 \\ & (105) \end{aligned}$	$\begin{aligned} & \hline 8.31 \\ & (211) \end{aligned}$	$\begin{aligned} & \hline 3.89 \\ & (99) \end{aligned}$	$\begin{aligned} & 2.14 \\ & (54) \end{aligned}$	$\begin{aligned} & \hline .41 \\ & (10) \end{aligned}$	$\begin{array}{\|l\|} \hline 1.12 \\ (29) \end{array}$	$\begin{array}{\|l\|} \hline .88 \\ (22) \end{array}$	$\begin{array}{\|l\|} \hline 1.13 \\ (29) \\ \hline \end{array}$	49 (22)

Enclosure Size MFO with Filter

Figure 40-17. Approximate Dimensions
Table 40-65. Approximate Dimensions and Shipping Weight - Enclosed Products

Voltage AC	$\operatorname{lip}_{\left(\mathbf{l}_{\mathrm{H}}\right)}$	$\begin{aligned} & \mathrm{hp} \\ & \left(\mathrm{I}_{\mathrm{L}}\right) \end{aligned}$	Approximate Dimensions in Inches (mm)											
			H1	H2	H3	H4	H5	H6	W1	W2	W3	W4	W5	W6
480 V	1-5	$\begin{aligned} & \hline 1-1 / 2- \\ & 7-1 / 2 \end{aligned}$	$\begin{aligned} & \hline 51.28 \\ & (1303) \end{aligned}$	$\begin{aligned} & \hline 8.28 \\ & (210) \end{aligned}$	$\begin{aligned} & 20.00 \\ & (508) \end{aligned}$	$\begin{aligned} & \hline 1.50 \\ & (38) \end{aligned}$	$\begin{aligned} & 18.30 \\ & (465) \end{aligned}$	$\begin{aligned} & 14.80 \\ & (378) \end{aligned}$	$\begin{aligned} & \hline 10.88 \\ & (276) \end{aligned}$	$\begin{aligned} & \hline 9.87 \\ & (251) \end{aligned}$	$\begin{array}{\|l\|} \hline .50 \\ (13) \end{array}$	$\begin{aligned} & \hline 7.38 \\ & (187) \end{aligned}$	$\begin{aligned} & \hline 5.44 \\ & (138) \end{aligned}$	$\begin{array}{\|l\|} \hline 3.50 \\ (89) \end{array}$

Table 40-65. Approximate Dimensions and Shipping Weight - Enclosed Products (Continued)

Voltage AC	$\begin{aligned} & \mathrm{hp} \\ & \left(\mathrm{l}_{\mathrm{H}}\right) \end{aligned}$	$\begin{aligned} & \text { hp } \\ & \left(I_{L}\right) \end{aligned}$	Approximate Dimensions in Inches (mm)										Max. Approx. Wt. Lbs. (kg)
			D1	D2	D3	D4	D5	D6	Dia. 1	Dia. 2	Dia. 3	Dia. 4	
480 V	1-5	$\begin{aligned} & 1-1 / 2- \\ & 7-1 / 2 \end{aligned}$	$\begin{aligned} & 9.72 \\ & (247) \end{aligned}$	$\begin{aligned} & \hline 77.70 \\ & (195) \end{aligned}$	$\begin{aligned} & \hline 4.13 \\ & (105) \end{aligned}$	$\begin{array}{\|l} \hline 8.31 \\ (211) \end{array}$	$\begin{array}{\|l\|} \hline 3.89 \\ (99) \end{array}$	$\begin{aligned} & 2.14 \\ & (54) \end{aligned}$	$\begin{aligned} & .41 \\ & (10) \end{aligned}$	$\begin{aligned} & 1.12 \\ & (29) \end{aligned}$	$\begin{array}{\|l\|} \hline .88 \\ (22) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 1.13 \\ (29) \end{array}$	49 (22)

Enclosure Size MF1 without Filter

Figure 40-18. Approximate Dimensions
Table 40-66. Approximate Dimensions and Shipping Weight - Enclosed Products

Voltage AC	$\begin{aligned} & \mathrm{hp} \\ & \left(\mathrm{I}_{\mathrm{H}}\right) \end{aligned}$	$\begin{aligned} & \text { hp } \\ & \left(l_{L}\right) \end{aligned}$	Approximate Dimensions in Inches (mm)										
			H1	H2	H3	H4	H5	W1	W2	W3	W4	W5	W6
480 V	7-1/2-15	10-20	$\begin{aligned} & \hline 47.25 \\ & (1200) \end{aligned}$	$\begin{aligned} & 22.13 \\ & (562) \end{aligned}$	$\begin{array}{\|l\|} \hline 1.50 \\ (38) \end{array}$	$\begin{aligned} & 9.50 \\ & (241) \end{aligned}$	$\begin{aligned} & \hline 6.00 \\ & (152) \end{aligned}$	$\begin{aligned} & 12.87 \\ & (327) \end{aligned}$	$\begin{array}{\|l\|} \hline 11.87 \\ (302) \end{array}$	$\begin{array}{\|l\|} \hline .50 \\ (13) \end{array}$	$\begin{aligned} & \hline 8.88 \\ & (225) \end{aligned}$	$\begin{aligned} & \hline 6.44 \\ & (164) \end{aligned}$	$\begin{aligned} & \hline 4.00 \\ & (102) \end{aligned}$

Table 40-66. Approximate Dimensions and Shipping Weight - Enclosed Products (Continued)

Voltage AC	$\operatorname{lip}_{\left(I_{H}\right)}$	$\begin{aligned} & \mathrm{hp} \\ & \left(\mathrm{I}_{\mathrm{L}}\right) \end{aligned}$	Approximate Dimensions in Inches (mm)									Max. Approx. Wt. Lbs. (kg)
			D1	D2	D3	D4	D5	Dia. 1	Dia. 2	Dia. 3	Dia. 4	
480 V	7-1/2-15	10-20	$\begin{aligned} & \hline 10.72 \\ & (272) \end{aligned}$	$\begin{aligned} & \hline 8.67 \\ & (220) \end{aligned}$	$\begin{aligned} & 2.51 \\ & (64) \end{aligned}$	$\begin{aligned} & \hline 3.64 \\ & (92) \end{aligned}$	$\begin{aligned} & \hline 4.64 \\ & (118) \end{aligned}$	$\begin{aligned} & .41 \\ & (10) \end{aligned}$	$\begin{aligned} & 1.69 \\ & (43) \end{aligned}$	$\begin{array}{\|l\|} \hline .88 \\ (22) \end{array}$	$\begin{array}{\|l\|} \hline 1.69 \\ (43) \end{array}$	67 (30)

Enclosure Size MF1 with Filter

Figure 40-19. Approximate Dimensions
Table 40-67. Approximate Dimensions and Shipping Weight — Enclosed Products

Voltage AC	$\begin{aligned} & \text { hp } \\ & \left(\mathbf{l}_{\mathrm{H}}\right) \end{aligned}$	$\begin{aligned} & \text { hp } \\ & \text { (li) } \end{aligned}$	Approximate Dimensions in Inches (mm)											
			H1	H2	H3	H4	H5	H6	W1	W2	W3	W4	W5	W6
480 V	7-1/2-15	10-20	$\begin{array}{\|l\|} \hline 58.05 \\ \text { (1475) } \end{array}$	$\begin{aligned} & \hline 10.80 \\ & (274) \end{aligned}$	$\begin{aligned} & \hline 22.13 \\ & (562) \end{aligned}$	$\begin{aligned} & 1.50 \\ & (38) \end{aligned}$	$\begin{aligned} & 20.28 \\ & (515) \end{aligned}$	$\begin{aligned} & 16.78 \\ & (426) \end{aligned}$	$\begin{aligned} & 12.87 \\ & (327) \end{aligned}$	$\begin{aligned} & 11.87 \\ & (302) \end{aligned}$	$\begin{aligned} & .50 \\ & (13) \end{aligned}$	$\begin{aligned} & 8.88 \\ & (225) \end{aligned}$	$\begin{aligned} & \hline 6.44 \\ & (164) \end{aligned}$	$\begin{aligned} & \hline 4.00 \\ & (102) \end{aligned}$

Table 40-67. Approximate Dimensions and Shipping Weight - Enclosed Products (Continued)

Voltage AC	$\begin{aligned} & \mathrm{hp} \\ & \left(\mathrm{l}_{\mathrm{H}}\right) \end{aligned}$	$\begin{aligned} & \mathrm{hp} \\ & \left(\mathrm{I}_{\mathrm{L}}\right) \end{aligned}$	Approximate Dimensions in Inches (mm)									Max.Approx. Wt.Lbs. (kg)
			D1	D2	D3	D4	D5	Dia. 1	Dia. 2	Dia. 3	Dia. 4	
480 V	7-1/2-15	10-20	$\begin{aligned} & 10.72 \\ & (272) \end{aligned}$	$\begin{aligned} & \hline 8.67 \\ & (220) \end{aligned}$	$\begin{aligned} & 2.32 \\ & (59) \end{aligned}$	$\begin{array}{\|l} \hline 3.45 \\ (88) \end{array}$	$\begin{aligned} & 4.45 \\ & (113) \end{aligned}$	$\begin{aligned} & \hline .41 \\ & (10) \end{aligned}$	$\begin{aligned} & 1.69 \\ & (43) \end{aligned}$	$\begin{aligned} & \hline .88 \\ & (22) \end{aligned}$	$\begin{aligned} & \hline 1.69 \\ & (43) \end{aligned}$	67 (30)

Enclosure Size MF2

Figure 40-20. Approximate Dimensions
Table 40-68. Approximate Dimensions and Shipping Weight — Enclosed Products

Voltage AC	$\lim _{\left(l_{H}\right)}$	$\begin{aligned} & \mathbf{h p} \\ & \left(l_{L}\right) \end{aligned}$	Approximate Dimensions in Inches (mm)																			Max. Approx. Wt. Lbs. (kg)
			H1	H2	H3	W1	W2	W3	W4	W5	W6	W7	D1	D2	D3	D4	Dia. 1	Dia. 2	Dia. 3	Dia. 4	Dia. 5	
480 V	$\begin{aligned} & 20- \\ & 30 \end{aligned}$	$\begin{aligned} & 25- \\ & 40 \end{aligned}$	$\begin{array}{\|l\|} 37.00 \\ (940) \end{array}$	$\begin{array}{\|l\|} \hline 36.00 \\ (914) \end{array}$	$\begin{array}{\|l\|} \hline .50 \\ \hline(13) \\ \hline \end{array}$	$\begin{aligned} & 25.00 \\ & (635) \end{aligned}$	$\begin{aligned} & 21.00 \\ & (533) \end{aligned}$	$\begin{array}{\|l\|} \hline 2.00 \\ (51) \end{array}$	$\begin{aligned} & 10.69 \\ & (271) \end{aligned}$	$\begin{array}{\|l\|} \hline 7.44 \\ (189) \end{array}$	$\begin{array}{l\|} \hline 4.94 \\ (125) \end{array}$	$\begin{array}{\|l\|} \hline 13.44 \\ (341) \end{array}$	$\begin{aligned} & 12.19 \\ & (310) \end{aligned}$	$\begin{aligned} & 10.16 \\ & (258) \end{aligned}$	$\begin{array}{\|l\|} 3.19 \\ (81) \end{array}$	$\begin{array}{\|l\|} \hline 3.12 \\ (79) \end{array}$	$\begin{array}{\|l\|} \hline .41 \\ (10) \end{array}$	$\begin{array}{\|l\|} \hline 1.69 \\ (43) \end{array}$	$\begin{array}{\|l\|} \hline .87 \\ (22) \end{array}$	$\begin{array}{\|l\|} \hline .88 \\ (22) \end{array}$	$\begin{aligned} & 1.69 \\ & (43) \end{aligned}$	126 (57)

Product Family Overview

Contents
Description Page
SVX9000 Open Drives
Product Description...... 40-51
Features 40-51
Technical Data and Specifications 40-52
Catalog Number Selection 40-53
Product Selection. 40-54
Options 40-60
Accessories 40-61
Dimensions. 40-62
Spare Units \&
Replacement Parts 40-79
SVX9000 Enclosed Drives
Product Description...... . 40-85
Features 40-85
Standards and
Certifications 40-85
Technical Data and Specifications 40-86
Catalog Number Selection 40-87
Product Selection. 40-92
Dimensions. 40-101
SVX9000 VFD Pump Panels
Product Description 40-112
Features 40-112
Standards and Certifications 40-112
Technical Data and Specifications 40-113
Catalog Number Selection 40-114
Product Selection 40-118
Dimensions 40-124
Wiring Diagrams 40-130

Overview

With the SVX9000 series sensorless vector control, Eaton's expanded Cutler-Hammer ${ }^{\circledR}$ drive offering now covers a complete line of PWM adjustable frequency (speed) drives in ratings from:

- 208 V - $3 / 4$ to $100 \mathrm{hp} \mathrm{I}_{\mathrm{H}}$; 1 to $100 \mathrm{hp} \mathrm{I}_{\mathrm{L}}$
- $230 \mathrm{~V}-3 / 4$ to $100 \mathrm{hp} \mathrm{I}_{\mathrm{H}}$; 1 to 100 hp I
- 480 V - 1 to $1900 \mathrm{hp} \mathrm{I}_{\mathrm{H}}$; $1-1 / 2$ to $2200 \mathrm{hp} \mathrm{I}_{\mathrm{L}}$
- 575 V - 2 to $2000 \mathrm{hp} \mathrm{I}_{\mathrm{H}}$; 3 to 2300 hp I

The 9000X Family of Drives includes HVX9000, SVX9000, SLX9000 and SPX9000 drives. 9000X Series drive ratings are rated for either high overload (I_{H}) or low overload (I_{L}). I I_{L} indicates 110% overload capacity for 1 minute out of 10 minutes. I_{H} indicates 150% overload capacity for 1 minute out of 10 minutes.

A full range of enclosure types and options are available to meet a wide array of applications - from simple variable torque to more complex industrial applications such as conveyors, mixers and machine controls.

Application Description

Application Engineering

Proper selection and application of all drive system components is essential to assure that an adjustable frequency drive system will safely and reliably provide the performance required for any given application. The party responsible for the overall design and operation of the facility must make sure that qualified personnel are employed to select all components of the drive system, including appropriate safety devices. Eaton's Cutler-Hammer AF Drives Application Engineering Department is prepared to provide assistance to answer any questions about the technical capabilities of Cutler-Hammer drives.

Motor Selection

The basic requirement of motor selection is to match the torque vs. speed capability of the motor to the torque vs. speed requirement of the driven load.

Motor Torque vs. Speed Capability

As the speed of a motor is reduced below its 60 Hz base speed, motor cooling becomes less effective because of the reduced speed of the self-cooling fan. This limitation determines the maximum torque for continuous operation at any operating speed. The maximum intermittent operating torque is determined by the motor's torque vs. current characteristics and the output current capability of the adjustable frequency controller.

Multiple Motor Operation

A number of motors can be connected in parallel to a single controller. Since the frequency of the power supplied by the controller is the same for each motor, the motors will always operate at the same speed. Application Engineering assistance must be requested for all multiple motor applications to assure compliance with all controller design limitations.

Special Types of Motors

Standard NEMA Designs A and B three-phase motors are the only motors recommended for use in the majority of applications, but other types of motors are occasionally used. If the existing motor used in the application or the motor proposed for use with the drive system is a type other than NEMA Design A or B, Application Engineering assistance must be requested to make certain that the drive is properly applied.

Controller Selection

The basic requirement of controller selection is to match the output current, voltage and frequency capabilities of the controller with the requirements of the connected motor.

Output Current

The controller must be selected and applied such that the average operating motor current and horsepower do not exceed the continuous current and horsepower ratings of the controller. The intermittent operating current must not exceed the intermittent current rating of the controller.

Motor Protection

Cutler-Hammer adjustable frequency drives include electronic motor overload protection circuits that are designed to meet the requirements of NEC article 430-2 provided that only one motor is connected to the output of the controller.

Output Voltage and Frequency

When they are shipped, AF controllers are adjusted to provide a maximum output voltage and frequency equivalent to the input line voltage and frequency. The controllers can be adjusted to operate above line frequency, but a hazard of personal injury or equipment damage may exist when the motor is operated above base speed. Before adjusting the drive to operate above line frequency, make sure that the motor and the driven machinery can safely be operated at the resulting speed.

Controller Features

Operator Control and Interface Requirements

Since there are many possible configurations and many ways of achieving a specific end result, it pays to consider the operator control and interface requirements carefully. A simplified and more economical drive package can often be achieved by selecting from standard product offerings rather than specifying a custom designed configuration.

Installation Compatibility

The successful application of an AC drive requires the assurance that the drive will be compatible with the environment in which it will be installed. In planning the installation, be sure to carefully consider the heat produced by the drive, the altitude and temperature limits and the need for clean cooling air. Other important considerations include acoustical noise, vibration, electromagnetic compatibility, power quality, controller input harmonic current and power distribution equipment requirements.

Auxiliary Equipment and Accessories

Adjustable drives are generally designed to have a motor directly connected to the controller output terminals with no other equipment connected in series or parallel. Motor starters, disconnect switches, surge absorbers, dv/dt suppression circuits, output chokes, output transformers and any other equipment under consideration for installation on the output of the controller should not be installed without first requesting Application Engineering assistance. Power factor correction capacitors must never, under any circumstances, be connected at the output of the controller. They would serve no useful purpose, and they may damage the controller.

Enclosure Definitions

■ NEMA Type 1 - Enclosures are intended for indoor use primarily to provide a degree of protection against contact with enclosed equipment and provide a degree of protection against a limited amount of falling dirt in locations where unusual service conditions do not exist. Top or side openings in the NEMA Type 1 enclosure allow for the free exchange of inside and outside air while meeting the UL rod entry and rust resistance design tests.

■ NEMA Type 12 - Enclosures are intended for indoor use primarily to provide a degree of protection against circulating dust, falling dirt and dripping noncorrosive liquids. To meet UL drip, dust and rust resistance tests, NEMA Type 12 enclosures have no openings to allow for the exchange of inside and outside air.
■ Chassis IP00 - Similar to Protected Chassis IP20 except power terminals are protected by plastic shielding only. Primarily intended to be mounted inside a surrounding protective enclosure.

- NEMA 3R - Similar in design to NEMA Type 12 except with more stringent design and test requirements.

Motor Protection

DV/DT and Peak Motor Voltage Solutions

Today's AFD products offer significantly improved performance, but at the potential cost of motor insulation stress. The fast switching time of the IGBT devices used in newer AFDs can
cause a transmission line effect in the output power leads to the motor, leading to possibly damaging voltage levels. To meet this need, NEMA has introduced a motor in MG1, Part 31, which provides an insulation system designed to maintain normal motor life in AFD applications. For existing motors, a motor protection scheme is required for longer cable runs. Eaton offers three standard solutions for existing systems.

- MotoR $\mathbf{x}_{\mathbf{x}}$

This patented Cutler-Hammer solution provides an energy recovery system which clamps the peak motor voltage to a safe level for standard motors. This option is used when the distance between a single motor and the drive is 600 feet or less.

- Output Line Reactor

This option provides an output line reactor, reducing the DV/DT of the AFD output voltage and lessening the transmission line effect, to lower the peak voltage at the motor terminals.

Product Availability Codes

The product availability codes indicate the type of facility (warehouse, Mod Center or factory) that the product will ship from and, if it is not in stock, the number of working days needed to assemble the product from receipt of the order to shipment from the designated facility. Please note that this lead-time does not include any in-transit time from our facility to your facility.

Table 40-69. Product Availability Codes

Codes	Description
W	Warehouse stocked item. Shipped on customer request date. If item is backordered, please check Vista/VISTALINE or contact your Customer Support Center for product availability.
F1	Factory assemble-to-order. Shipped from factory within 1 working day after receipt of order on Vista.
FA	Factory assemble-to-order. Shipped from factory within 2-3 working days after receipt of order on Vista.
FB	Factory assemble-to-order. Shipped from factory within 4-10 working days after receipt of order on Vista.
FC	Factory assemble-to-order. Shipped from factory within 11-15 working days after receipt of order on Vista.
FD	Factory assemble-to-order. Shipped from factory within 16-20 working days after receipt of order on Vista.
FP	Factory assemble-to-order. Shipped from factory on negotiated promise date.
MA	Mod Center assemble-to-order. Shipped from Mod Center within 1-3 working days after receipt of order on Vista.
MB	Mod Center assemble-to-order. Shipped from Mod Center within 4-10 working days after receipt of order on Vista.
MP	Mod Center assemble-to-order. Shipped from Mod Center on negotiated promise date.

Product availability codes contained herein for a given product may be quantity sensitive and are subject to change without notice. For the most current information, refer to the Product Identification Inquiry (PIN) screen on Vista.

Open Drives

SVX9000 Open Drives

SVX9000 Open Drives

Product Description

Cutler-Hammer ${ }^{\circledR}$ SVX9000 Series Adjustable Frequency Drives from Eaton's electrical business are the next generation of drives specifically engineered for today's commercial and industrial applications. The power unit makes use of the most sophisticated semiconductor technology and a highly modular construction that can be flexibly adapted to the customer's needs.

The input and output configuration $(\mathrm{I} / \mathrm{O})$ is designed with modularity in mind. The I/O is compromised of option cards, each with its own input and output configuration. The control module is designed to accept a total of five of these cards. The cards contain not only normal analog and digital inputs but also fieldbus cards.
These drives continue the tradition of robust performance, and raise the bar on features and functionality, ensuring the best solution at the right price.

Features

■ Robust design - proven 500,000 hours MTBF

- Integrated 3\% line reactors standard on drives from FR4 through FR9
- EMI/RFI Filters H standard up to $200 \mathrm{hp} \mathrm{I} \mathrm{H}^{2} 480 \mathrm{~V}, 100 \mathrm{hp} \mathrm{I}_{\mathrm{H}} 230 \mathrm{~V}$
- Simplified operating menu allows for typical programming changes, while programming mode provides control of everything
■ Quick Start Wizard built into the programming of the drive ensures a smooth start-up
- Keypad can display up to three monitored parameters simultaneously
- LOCAL/REMOTE operation from keypad
- Copy/Paste function allows transfer of parameter settings from one drive to the next
- Standard NEMA Type 12 keypad on all drives
- The SVX can be flexibly adapted to a variety of needs using our preinstalled "Seven in One" Precision application programs consisting of:
- Basic
- Standard
- Local/Remote
- Multi Step Speed Control
- PID Control
- Multi-Purpose Control
- Pump and Fan Control with Auto Change
■ Additional I/O and communication cards provide plug and play functionality
- I/O connections with simple quick connection terminals
■ UL Listed
■ Hand-Held Auxiliary 240 Power Supply allows programming/monitoring of control module without applying full power to the drive
- Control logic can be powered from an external auxiliary control panel, internal drive functions and fieldbus if necessary
- Brake Chopper standard from:
$1-30 \mathrm{hp} / 380-500 \mathrm{~V}$
3/4-15 hp/208-230V
■ NEMA Type 1 and NEMA Type 12 enclosures available, Frame Sizes FR4 - FR9
- Open Chassis FR10 and greater
- NEMA Type 1 and NEMA Type 12 available in FR10 Freestanding design; NEMA Type 1 available in FR11 Freestanding design
■ Standard option board configuration includes an A9 I/O board and an A2 relay output board installed in slots A and B

Technical Data and Specifications

Table 40-70. SVX9000 Specifications

Description	Specification
Input Ratings	
Input Voltage ($\mathrm{V}_{\text {in }}$)	+10\% / -15\%
Input Frequency ($\mathrm{f}_{\text {in }}$)	$50 / 60 \mathrm{~Hz}$ (variation up to $45-66 \mathrm{~Hz}$)
Connection to Power	Once per minute or less (typical operation)
High Withstand Rating	100 kAIC
Output Ratings	
Output Voltage	0 to $\mathrm{V}_{\text {in }}$
Continuous Output Current	${ }^{\mathrm{I}} \mathrm{H}$ rated 100% at $122^{\circ} \mathrm{F}\left(50^{\circ} \mathrm{C}\right)$, FR9 and below I_{L} rated 100% at $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right), \mathrm{FR9}$ and below $\mathrm{I}_{\mathrm{H}} / \mathrm{I}_{\mathrm{L}} 100 \%$ at $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right), \mathrm{FR} 10$ and above
Overload Current ($\mathrm{l}_{\mathrm{H}} / \mathrm{l}_{\mathrm{L}}$)	$150 \% \mathrm{I}_{\mathrm{H}}, 110 \% \mathrm{I}_{\mathrm{L}}$ for 1 min .
Output Frequency	0 to 320 Hz
Frequency Resolution	. 01 Hz
Initial Output Current (I_{H})	250\% for 2 seconds
Control Characteristics	
Control Method	Frequency Control (V/f) Open Loop: Sensorless Vector Control, Closed Loop: SPX9000 Drives Only
Switching Frequency Frame 4-6 Frame 7-12	Adjustable with Parameter 2.6.9 1 to 16 kHz ; default 10 kHz 1 to 10 kHz ; default 3.6 kHz
Frequency Reference	Analog Input: Resolution .1\% (10-bit), accuracy $\pm 1 \% \mathrm{~V} / \mathrm{Hz}$ Panel Reference: Resolution .01 Hz
Field Weakening Point	30 to 320 Hz
Acceleration Time	0 to 3000 sec .
Deceleration Time	0 to 3000 sec .
Braking Torque	DC brake: $30 \% \times \mathrm{T}_{\mathrm{n}}$ (without brake option)
Ambient Conditions	
Ambient Operating Temperature	$14^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right)$, no frost to $122^{\circ} \mathrm{F}\left(+50^{\circ} \mathrm{C}\right) \mathrm{I}_{\mathrm{H}}$ (FR4 - FR9) $14^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right)$, no frost to $104^{\circ} \mathrm{F}\left(+40^{\circ} \mathrm{C}\right) \mathrm{I}_{\mathrm{H}}$ (FR10 and up) $14^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right)$, no frost to $104^{\circ} \mathrm{F}\left(+40^{\circ} \mathrm{C}\right) \mathrm{I} \mathrm{L}$ (all frames)
Storage Temperature	$-40^{\circ} \mathrm{F}\left(-40^{\circ} \mathrm{C}\right)$ to $158^{\circ} \mathrm{F}\left(70^{\circ} \mathrm{C}\right)$
Relative Humidity	0 to 95% RH, noncondensing, non-corrosive, no dripping water
Air Quality	Chemical vapors: IEC 721-3-3, unit in operation, class 3C2; Mechanical particles: IEC 721-3-3, unit in operation, class 3S2
Altitude	100% load capacity (no derating) up to 3280 $\mathrm{ft} .(1000 \mathrm{~m}) ; 1 \%$ derating for each 328 ft . 100 m) above 3280 ft . (1000 m); max. 9842 ft . (3000 m)
Vibration	EN 50178, EN 60068-2-6; 5 to 50 Hz, Displacement amplitude 1 mm (peak) at 3 to 15.8 Hz , Max. acceleration amplitude 1G at 15.8 to 150 Hz
Shock	EN 50178, EN 60068-2-27 UPS Drop test (for applicable UPS weights) Storage and shipping: max. 15G, 11 ms (in package)
Enclosure Class	NEMA 1/IP21 or NEMA 12/IP54, Open Chassis/IP20

Description	Specification
Standards	
Product	IEC 61800-2
Safety	UL 508C
EMC (at default settings)	Immunity: Fulfills all EMC immunity requirements; Emissions: EN 61800-3, LEVEL H
Control Connections	
Analog Input Voltage	0 to $10 \mathrm{~V}, \mathrm{R}=200 \mathrm{k} \Omega$ (-10 to 10 V joystick control) Resolution .1\%; accuracy $\pm 1 \%$
Analog Input Current	0 (4) to 20 mA ; $\mathrm{R}_{\mathrm{i}}-250 \Omega$ differential
Digital Inputs (6)	Positive or negative logic; 18 to 30V DC
Auxiliary Voltage	+24V $\pm 15 \%$, max. 250 mA
Output Reference Voltage	+10V +3\%, max. load 10 mA
Analog Output	0(4) to 20 mA ; R_{L} max. 500 ; Resolution 10 bit; Accuracy $\pm 2 \%$
Digital Outputs	Open collector output, $50 \mathrm{~mA} / 48 \mathrm{~V}$
Relay Outputs	2 programmable Form C relay outputs Switching capacity: 24V DC / 8A, 250V AC / 8A, 125 V DC / 0.4A
Protections	
Overcurrent Protection	Trip limit $4.0 \times \mathrm{I}_{\mathrm{H}}$ instantaneously
Overvoltage Protection	Yes
Undervoltage Protection	Yes
Earth Fault Protection	In case of earth fault in motor or motor cable, only the frequency converter is protected
Input Phase Supervision	Trips if any of the input phases are missing
Motor Phase Supervision	Trips if any of the output phases are missing
Overtemperature Protection	Yes
Motor Overload Protection	Yes
Motor Stall Protection	Yes
Motor Underload Protection	Yes
Short Circuit Protection	Yes (+24V and +10V Reference Voltages)

Table 40-71. Standard I/O Specifications

Description	Specification
6 - Digital Input Programmable	24 V : "0" 10 V , " 1 " $\geq 18 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}>5 \mathrm{k} \Omega$
2 - Analog Input Configurable w/Jumpers	Voltage: $0- \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}>200 \mathrm{k} \Omega$ Current: 0 (4) - $20 \mathrm{~mA}, \mathrm{R}_{\mathrm{i}}=250 \mathrm{k} \Omega$
2 - Digital Output Programmable	Form C Relays 250V AC 2 Amp or 30V DC2 Amp resistive
1 - Digital Output Programmable	Open collector 48V DC 50 mA
1 - Analog Output Programmable Configurable w/Jumper	$0-20 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}<500 \text { ohms, }$ resolution 10 Bits/0.1\%

Open Drives

Catalog Number Selection

Table 40-72. Adjustable Frequency Drive Catalog Numbering System

(1) All 230V Drives and 480V Drives up to $200 \mathrm{hp}\left(\mathrm{I}_{\mathrm{H}}\right)$ are only available with Input Option 1 (EMC Level H). 480 V Drives $250 \mathrm{hp}\left(\mathrm{I}_{\mathrm{H}}\right)$ or larger are available with Input Option 2 (EMC Level N). 480 V Drives are available with Input Option 4 (EMC Level L). 575 V Drives 200 hp (l_{H}) or larger are only available with Input Option 2. 575V Drives up to $150 \mathrm{hp}\left(\mathrm{I}_{\mathrm{H}}\right)$ are only available with Input Option 4 (EMC Level L).
(2) 480 V Drives up to $30 \mathrm{hp}\left(\mathrm{I}_{\mathrm{H}}\right)$ are only available with Brake Chopper Option B. 480 V Drives $40 \mathrm{hp}\left(\mathrm{I}_{\mathrm{H}}\right)$ or larger come standard with Brake Chopper Option N. 230 V Drives up to $15 \mathrm{hp}\left(\mathrm{I}_{\mathrm{H}}\right)$ are only available with Brake Chopper Option B. 230 V Drives 20 hp or larger come standard with Brake Chopper Option N. All 575V Drives come standard without Brake Chopper Option (N). Note: N = No Brake Chopper.
(3) 480 V Drives $250 \mathrm{hp}\left(\mathrm{I}_{\mathrm{H}}\right)$ and larger are available with enclosure style $\mathbf{0}$ (Chassis); 690 V Drives 200 hp (l_{H}) and larger are available with enclosure style 0 (Chassis).
(4) 480 V and 690 V FR10 Freestanding Drives are available with enclosure style 1 (NEMA Type 1) and enclosure style 2 (NEMA Type 12). FR11 Freestanding Drives only available with enclosure style 1 (NEMA Type 1).
(5) Factory promise delivery. Consult Sales Office for availability.

Product Selection

230V SVX9000 Drives

Table 40-73. 208 - 240V, NEMA Type 1 Drive

Frame Size	Delivery Code	hp (l_{H})	Current $(1 \mathrm{H})$	$\mathrm{hp}(\mathrm{l}$)	Current (I_{L})	Catalog Number	Price U.S. \$
FR4	W	$\begin{aligned} & \hline 3 / 4 \\ & 1 \\ & 1-1 / 2 \\ & 2 \\ & 3 \end{aligned}$	$\begin{array}{r} \hline 3.7 \\ 4.8 \\ 6.6 \\ 7.8 \\ 11 \end{array}$	$\begin{aligned} & \hline 1 \\ & 1-1 / 2 \\ & 2 \\ & 3 \end{aligned}$	$\begin{gathered} \hline 4.8 \\ 6.6 \\ 7.8 \\ 11 \\ 12.5 \end{gathered}$	SVXF07A1-2A1B1 SVX001A1-2A1B1 SVXF15A1-2A1B1 SVX002A1-2A1B1 SVX003A1-2A1B1	
FR5	W	$\begin{aligned} & \overline{5} \\ & 7-1 / 2 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 17.5 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \\ & 7-1 / 2 \\ & 10 \end{aligned}$	$\begin{aligned} & 17.5 \\ & 25 \\ & 31 \\ & \hline \end{aligned}$	SVX004A1-2A1B1 SVX005A1-2A1B1 SVX007A1-2A1B1	
FR6	W	$\begin{aligned} & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 31 \\ & 48 \end{aligned}$	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & 48 \\ & 61 \end{aligned}$	SVX010A1-2A1B1 SVX015A1-2A1B1	
FR7	W	$\begin{aligned} & 20 \\ & 25 \\ & 30 \end{aligned}$	$\begin{aligned} & 61 \\ & 75 \\ & 88 \end{aligned}$	$\begin{aligned} & 25 \\ & 30 \\ & 40 \end{aligned}$	$\begin{array}{\|r} \hline 75 \\ 88 \\ 114 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { SVX020A1-2A1N1 } \\ & \text { SVX025A1-2A1N1 } \\ & \text { SVX030A1-2A1N1 } \end{aligned}$	
FR8	W	$\begin{aligned} & 40 \\ & 50 \\ & 60 \end{aligned}$	$\begin{array}{\|l\|} \hline 114 \\ 140 \\ 170 \\ \hline \end{array}$	$\begin{aligned} & 50 \\ & 60 \\ & 75 \end{aligned}$	$\begin{array}{\|l\|} \hline 140 \\ 170 \\ 205 \end{array}$	SVX040A1-2A1N1 SVX050A1-2A1N1 SVX060A1-2A1N1	
FR9	W	$\begin{array}{\|r\|} \hline 75 \\ 100 \end{array}$	$\begin{array}{\|l\|} \hline 205 \\ 261 \end{array}$	100	261	$\begin{aligned} & \hline \text { SVX075A1-2A1N1 } \\ & \text { SVX100A1-2A1N1 } \end{aligned}$	

Table 40-74. 208-240V, NEMA Type 12 Drive

Frame Size	Delivery Code	hp ($\mathbf{H}_{\mathbf{H}}$)	Current (I_{H})	hp (L_{L})	Current (lL)	Catalog Number	$\begin{aligned} & \text { Price } \\ & \text { IUS. } \end{aligned}$
FR4	F1	$\begin{aligned} & \hline 3 / 4 \\ & 1 \\ & 1-1 / 2 \\ & 2 \\ & 3 \end{aligned}$	$\begin{array}{r} \hline 3.7 \\ 4.8 \\ 6.6 \\ 7.8 \\ 11 \end{array}$	$\begin{aligned} & 1 \\ & 1-1 / 2 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 4.8 \\ 6.6 \\ 7.8 \\ 11 \\ 12.5 \end{gathered}$	SVXF07A2-2A1B1 SVX001A2-2A1B1 SVXF15A2-2A1B1 SVX002A2-2A1B1 SVX003A2-2A1B1	
FR5	F1	$\begin{aligned} & \overline{5} \\ & 7-1 / 2 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 17.5 \\ & 25 \end{aligned}$	$\begin{aligned} & 5 \\ & 7-1 / 2 \\ & 10 \end{aligned}$	$\begin{aligned} & 17.5 \\ & 25 \\ & 31 \end{aligned}$	SVX004A2-2A1B1 SVX005A2-2A1B1 SVX007A2-2A1B1	
FR6	F1	$\begin{aligned} & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 31 \\ & 48 \end{aligned}$	$\begin{array}{r} 15 \\ 20 \\ \hline \end{array}$	$\begin{aligned} & 48 \\ & 61 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SVX010A2-2A1B1 } \\ & \text { SVX015A2-2A1B1 } \end{aligned}$	
FR7	W	$\begin{aligned} & 20 \\ & 25 \\ & 30 \end{aligned}$	$\begin{aligned} & 61 \\ & 75 \\ & 88 \end{aligned}$	$\begin{aligned} & 25 \\ & 30 \\ & 40 \\ & \hline \end{aligned}$	$\begin{array}{r} 75 \\ 88 \\ 114 \\ \hline \end{array}$	SVX020A2-2A1N1 SVX025A2-2A1N1 SVX030A2-2A1N1	
FR8	FP	$\begin{aligned} & 40 \\ & 50 \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & 114 \\ & 140 \\ & 170 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 60 \\ & 75 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 140 \\ & 170 \\ & 205 \\ & \hline \end{aligned}$	SVX040A2-2A1N1 SVX050A2-2A1N1 SVX060A2-2A1N1	
FR9	FP	$\begin{array}{r} 75 \\ 100 \\ \hline \end{array}$	$\begin{aligned} & 205 \\ & 261 \\ & \hline \end{aligned}$	100	261	$\begin{aligned} & \text { SVX075A2-2A1N1 } \\ & \text { SVX100A2-2A1N1 } \end{aligned}$	

480V SVX9000 Drives

Table 40-75. 380 - 500V, NEMA Type 1 Drive

Frame Size	Delivery Code	hp ($\mathrm{I}_{\mathbf{H}}$)	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Current } \\ \left(\mathbf{I H}^{\prime}\right) \end{array} \\ \hline \end{array}$	hp ($\mathrm{l}_{\text {L }}$)	Current $\left(I_{L}\right)$	Catalog Number	Price U.S.
FR4	W	$\begin{aligned} & 1 \\ & 1-1 / 2 \\ & 2 \\ & 3 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.2 \\ & 3.3 \\ & 4.3 \\ & 5.6 \\ & 7.6 \\ & 9 \end{aligned}$	$\begin{aligned} & 1-1 / 2 \\ & 2 \\ & 3 \\ & 5 \\ & -7-1 / 2 \end{aligned}$	$\begin{gathered} \hline 3.3 \\ 4.3 \\ 5.6 \\ 7.6 \\ 9 \\ 12 \end{gathered}$	SVX001A1-4A1B1 SVXF15A1-4A1B1 SVX002A1-4A1B1 SVX003A1-4A1B1 SVX005A1-4A1B1 SVX006A1-4A1B1	
FR5	W	$\begin{aligned} & \hline 7-1 / 2 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 12 \\ & 16 \\ & 23 \end{aligned}$	$\begin{aligned} & 10 \\ & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & 16 \\ & 23 \\ & 31 \end{aligned}$	SVX007A1-4A1B1 SVX010A1-4A1B1 SVX015A1-4A1B1	
FR6	W	$\begin{aligned} & 20 \\ & 25 \\ & 30 \end{aligned}$	$\begin{aligned} & 31 \\ & 38 \\ & 46 \end{aligned}$	$\begin{aligned} & 25 \\ & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & 38 \\ & 46 \\ & 61 \end{aligned}$	SVX020A1-4A1B1 SVX025A1-4A1B1 SVX030A1-4A1B1	
FR7	W	$\begin{aligned} & 40 \\ & 50 \\ & 60 \end{aligned}$	$\begin{aligned} & 61 \\ & 72 \\ & 87 \end{aligned}$	$\begin{aligned} & 50 \\ & 60 \\ & 75 \end{aligned}$	$\begin{array}{r} \hline 72 \\ 87 \\ 105 \end{array}$	SVX040A1-4A1N1 SVX050A1-4A1N1 SVX060A1-4A1N1	
FR8	W	$\begin{array}{r} 75 \\ 100 \\ 125 \end{array}$	$\begin{aligned} & 105 \\ & 140 \\ & 170 \end{aligned}$	$\begin{aligned} & 100 \\ & 125 \\ & 150 \end{aligned}$	$\begin{aligned} & 140 \\ & 170 \\ & 205 \end{aligned}$	SVX075A1-4A1N1 SVX100A1-4A1N1 SVX125A1-4A1N1	
FR9	W	$\begin{aligned} & \hline 150 \\ & 200 \\ & \hline \end{aligned}$	$\begin{aligned} & 205 \\ & 245 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 200 \\ & 250 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 261 \\ & 300 \\ & \hline \end{aligned}$	SVX150A1-4A1N1 SVX200A1-4A1N1	

Open Drives

Table 40-76. 380-500V, NEMA Type 1 Freestanding Drive

Frame Size	Delivery Code	hp (I \mathbf{H})	Current $\left(\mathbf{I}_{\mathbf{H}}\right)$	hp (I)	Current $\left(\mathbf{I}_{\mathrm{L}}\right)$	Catalog Number	Price U.S. \mathbf{S}
FR10	W	250	330	300	385	SPX250A1-4A4N1	
	FP	300	385	350	460	SPX300A1-4A4N1	
	W	350	460	400	520	SPX350A1-4A4N1	
FR11	FP	400	520	500	590	SPX400A1-4A4N1	
	FP	500	590	550	650	SPX500A1-4A4N1	
	FP	550	650	600	730	SPX550A1-4A4N1	

Note: Integrated fuses as standard. Limited option selection available; 115V Transformer (KB), Light Kit (L1), HOA (K4), Speed Potentiometer w/HOA (K2), Disconnect Switch (P2). See Enclosed 480V option selection.

Table 40-77. 380-500V, NEMA Type 12 Drive

Frame Size	Delivery Code	hp (l_{H})	Current $\left(\mathrm{I}_{\mathrm{H}}\right)$	hp (l_{L})	Current (I_{L})	Catalog Number	Price U.S. \$
FR4	F1	$\begin{aligned} & \hline 1 \\ & 1-1 / 2 \\ & 2 \\ & 3 \\ & 5 \\ & - \end{aligned}$	$\begin{aligned} & 2.2 \\ & 3.3 \\ & 4.3 \\ & 5.6 \\ & 7.6 \\ & 9 \end{aligned}$	$\begin{aligned} & 1-1 / 2 \\ & 2 \\ & 3 \\ & 5 \\ & -7-1 / 2 \end{aligned}$	$\begin{gathered} \hline 3.3 \\ 4.3 \\ 5.6 \\ 7.6 \\ 9 \\ 12 \end{gathered}$	SVX001A2-4A1B1 SVXF15A2-4A1B1 SVX002A2-4A1B1 SVX003A2-4A1B1 SVX005A2-4A1B1 SVX006A2-4A1B1	
FR5	F1	$\begin{aligned} & \hline 7-1 / 2 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 12 \\ & 16 \\ & 23 \end{aligned}$	$\begin{aligned} & 10 \\ & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & 16 \\ & 23 \\ & 31 \end{aligned}$	SVX007A2-4A1B1 SVX010A2-4A1B1 SVX015A2-4A1B1	
FR6	F1	$\begin{aligned} & 20 \\ & 25 \\ & 30 \end{aligned}$	$\begin{aligned} & 31 \\ & 38 \\ & 46 \end{aligned}$	$\begin{aligned} & 25 \\ & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & 38 \\ & 46 \\ & 61 \end{aligned}$	SVX020A2-4A1B1 SVX025A2-4A1B1 SVX030A2-4A1B1	
FR7	W	$\begin{aligned} & 40 \\ & 50 \\ & 60 \end{aligned}$	$\begin{aligned} & 61 \\ & 72 \\ & 87 \\ & \hline \end{aligned}$	$\begin{aligned} & 50 \\ & 60 \\ & 75 \end{aligned}$	$\begin{array}{\|r\|} \hline 72 \\ 87 \\ 105 \end{array}$	SVX040A2-4A1N1 SVX050A2-4A1N1 SVX060A2-4A1N1	
FR8	W	$\begin{array}{\|r\|} \hline 75 \\ 100 \\ 125 \end{array}$	$\begin{array}{\|l\|} \hline 105 \\ 140 \\ 170 \end{array}$	$\begin{aligned} & 100 \\ & 125 \\ & 150 \end{aligned}$	$\begin{array}{\|l\|} \hline 140 \\ 170 \\ 205 \\ \hline \end{array}$	SVX075A2-4A1N1 SVX100A2-4A1N1 SVX125A2-4A1N1	
FR9	W	$\begin{aligned} & 150 \\ & 200 \end{aligned}$	$\begin{aligned} & 205 \\ & 245 \end{aligned}$	$\begin{aligned} & 200 \\ & 250 \end{aligned}$	$\begin{aligned} & 261 \\ & 300 \end{aligned}$	$\begin{aligned} & \hline \text { SVX150A2-4A1N1 } \\ & \text { SVX200A2-4A1N1 } \end{aligned}$	

Table 40-78. 380-500V, NEMA Type 12 Freestanding Drive

Frame Size	Delivery Code	hp (IH)	Current $\left(\mathbf{I}_{\mathbf{H}}\right)$	hp (I/L)	Current $\left(\mathbf{I}_{\mathrm{L}}\right)$	Catalog Number	Price U.S. $\$$
 FR10 FP 250 330 300 385 SPX250A2-4A4N11							
	FP	300	385	350	460	SPX300A2-4A4N1	
	FP	350	460	400	520	SPX350A2-4A4N1	

Note: Integrated fuses as standard. Limited option selection available; 115V Transformer (KB), Light Kit (L1), HOA (K4), Speed Potentiometer w/HOA (K2), Disconnect Switch (P2). See Enclosed 480 V option selection.

Table 40-79. 480V 380 - 500, Open Chassis Drive

Frame Size	Delivery Code	hp (H_{H})	Current (H_{H})	hp (l_{L})	Current (L_{L})	Catalog Number	Price U.S. \$
FR10 (1)	W	$\begin{aligned} & 250 \\ & 300 \\ & 350 \end{aligned}$	$\begin{aligned} & 330 \\ & 385 \\ & 460 \end{aligned}$	$\begin{aligned} & 300 \\ & 350 \\ & 400 \end{aligned}$	$\begin{aligned} & 385 \\ & 460 \\ & 520 \end{aligned}$	SPX250A0-4A2N1 SPX300A0-4A2N1 SPX350A0-4A2N1	
FR11	W	$\begin{aligned} & 400 \\ & 500 \end{aligned}$	$\begin{aligned} & 520 \\ & 590 \\ & 650 \end{aligned}$	$\begin{aligned} & 500 \\ & \overline{600} \end{aligned}$	$\begin{aligned} & 590 \\ & 650 \\ & 730 \end{aligned}$	SPX400A0-4A2N1 SPX500A0-4A2N1 SPX550A0-4A2N1	
FR12	$\begin{array}{\|l\|} \hline F P \\ W \\ \text { FP } \end{array}$	$\begin{aligned} & \overline{600} \\ & \overline{700} \end{aligned}$	$\begin{aligned} & \hline 730 \\ & 820 \\ & 920 \end{aligned}$	$\begin{aligned} & \overline{700} \\ & 800 \end{aligned}$	$\begin{array}{r} \hline 820 \\ 920 \\ 1030 \end{array}$	$\begin{aligned} & \hline \text { SPX600A0-4A2N1 } \\ & \text { SPX650A0-4A2N1 } \\ & \text { SPX700A0-4A2N1 } \end{aligned}$	
FR13	FP	$\begin{array}{r} \hline 800 \\ 900 \\ 1000 \end{array}$	$\begin{aligned} & 1030 \\ & 1150 \\ & 1300 \end{aligned}$	$\begin{array}{\|r} \hline 900 \\ 1000 \\ 1200 \end{array}$	$\begin{aligned} & \hline 1150 \\ & 1300 \\ & 1450 \end{aligned}$	$\begin{aligned} & \hline \text { SPX800A0-4A2N1 } \\ & \text { SPX900A0-4A2N1 } \\ & \text { SPXH10A0-4A2N1 } \end{aligned}$	
FR14	FP	$\begin{aligned} & \hline 1200 \\ & 1600 \\ & 1900 \end{aligned}$	$\begin{aligned} & 1600 \\ & 1940 \\ & 2300 \end{aligned}$	$\begin{aligned} & \hline 1500 \\ & 1800 \\ & 2200 \end{aligned}$	$\begin{aligned} & \hline 1770 \\ & 2150 \\ & 2700 \end{aligned}$	SPXH12A0-4A2N1 SPXH16A0-4A2N1 SPXH19A0-4A2N1	

[^5]
575V SVX9000 Drives

Table 40-80. 525-690V, NEMA Type 1 Drive

Frame Size	Delivery Code	$\mathrm{hp}\left(\mathrm{l}_{\mathrm{H}}\right)$	Current $\left(\mathbf{I}_{\mathrm{H}}\right)$	hp (I_{L})	Current (I_{L})	Catalog Number	Price U.S. \$
FR6	W	$\begin{aligned} & \hline 2 \\ & 3 \\ & -5 \\ & 7-1 / 2 \\ & 10 \\ & 15 \\ & 20 \\ & 25 \end{aligned}$	3.33 4.5 5.5 7.5 10 13.5 18 22 27	$\begin{aligned} & \frac{3}{\overline{5}} \\ & 7-1 / 2 \\ & 10 \\ & 15 \\ & 20 \\ & 25 \\ & 30 \end{aligned}$	$\begin{gathered} \hline 4.5 \\ 5.5 \\ 7.5 \\ 10 \\ 13.5 \\ 18 \\ 22 \\ 27 \\ 34 \end{gathered}$	SVX002A1-5A4N1 SVX003A1-5A4N1 SVX004A1-5A4N1 SVX005A1-5A4N1 SVX007A1-5A4N1 SVX010A1-5A4N1 SVX015A1-5A4N1 SVX020A1-5A4N1 SVX025A1-5A4N1	
FR7	W	$\begin{aligned} & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & 34 \\ & 41 \end{aligned}$	$\begin{aligned} & 40 \\ & 50 \end{aligned}$	$\begin{aligned} & 41 \\ & 52 \end{aligned}$	SVX030A1-5A4N1 SVX040A1-5A4N1	
FR8	W	$\begin{aligned} & 50 \\ & 60 \\ & 75 \end{aligned}$	$\begin{aligned} & 52 \\ & 62 \\ & 80 \end{aligned}$	$\begin{array}{r} 60 \\ 75 \\ 100 \end{array}$	$\begin{array}{\|r\|} \hline 62 \\ 80 \\ 100 \end{array}$	SVX050A1-5A4N1 SVX060A1-5A4N1 SVX075A1-5A4N1	
FR9	W	$\begin{aligned} & 100 \\ & 125 \\ & 150 \end{aligned}$	$\begin{array}{\|l\|} \hline 100 \\ 125 \\ 144 \\ 170 \end{array}$	$\begin{aligned} & 125 \\ & 150 \\ & -200 \end{aligned}$	$\begin{array}{\|l\|} \hline 125 \\ 144 \\ 170 \\ 208 \\ \hline \end{array}$	SVX100A1-5A4N1 SVX125A1-5A4N1 SVX150A1-5A4N1 SVX175A1-5A4N1	

Table 40-81. 525 - 690V, NEMA Type 1 Freestanding Drive

Frame Size	Delivery Code	$\mathrm{hp}\left(\mathrm{I}_{\mathrm{H}}\right)$	Current $(1 \mathrm{H})$	hp (l_{L})	Current (I_{L})	Catalog Number	Price U.S. \$
FR10	FP	$\begin{aligned} & 200 \\ & 250 \\ & 300 \end{aligned}$	$\begin{aligned} & 208 \\ & 261 \\ & 325 \end{aligned}$	$\begin{aligned} & 250 \\ & 300 \\ & 400 \end{aligned}$	$\begin{aligned} & 261 \\ & 325 \\ & 385 \end{aligned}$	SPX200A1-5A4N1 SPX250A1-5A4N1 SPX300A1-5A4N1	
FR11	FP	$\begin{array}{\|l} \hline 400 \\ 450 \\ 500 \end{array}$	$\begin{array}{\|l} 385 \\ 460 \\ 502 \end{array}$	$\begin{aligned} & 450 \\ & 500 \\ & 550 \end{aligned}$	$\begin{aligned} & 460 \\ & 502 \\ & 590 \end{aligned}$	SPX400A1-5A4N1 SPX450A1-5A4N1 SPX500A1-5A4N1	

Note: Integrated fuses as standard. Limited option selection available; 115V Transformer (KB), Light Kit (L1), HOA (K4), Speed Potentiometer w/HOA (K2), Disconnect Switch (P2). See Enclosed 480V option selection.

Table 40-82. 525-690V, NEMA Type 12 Drive

Frame Size	Delivery Code	$\mathrm{hp}\left(\mathrm{I}_{\mathrm{H}}\right)$	Current $\left(\mathbf{I}_{\mathbf{H}}\right)$	hp (l)	Current (I_{L})	Catalog Number	Price U.S. \$
FR6	F1	$\begin{aligned} & \hline 2 \\ & 3 \\ & -5 \\ & 7-1 / 2 \\ & 10 \\ & 15 \\ & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & \hline 3.33 \\ & 4.5 \\ & 5.5 \\ & 7.5 \\ & 10 \\ & 13.5 \\ & 18 \\ & 22 \\ & 27 \end{aligned}$	$\begin{aligned} & \hline 3 \\ & \overline{5} \\ & 7-1 / 2 \\ & 10 \\ & 15 \\ & 20 \\ & 25 \\ & 30 \end{aligned}$	$\begin{gathered} \hline 4.5 \\ 5.5 \\ 7.5 \\ 10 \\ 13.5 \\ 18 \\ 22 \\ 27 \\ 34 \end{gathered}$	SVX002A2-5A4N1 SVX003A2-5A4N1 SVX004A2-5A4N1 SVX005A2-5A4N1 SVX007A2-5A4N1 SVX010A2-5A4N1 SVX015A2-5A4N1 SVX020A2-5A4N1 SVX025A2-5A4N1	
FR7	FP	$\begin{aligned} & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & 34 \\ & 41 \end{aligned}$	$\begin{aligned} & 40 \\ & 50 \end{aligned}$	$\begin{aligned} & 41 \\ & 52 \end{aligned}$	SVX030A2-5A4N1 SVX040A2-5A4N1	
FR8	FP	$\begin{aligned} & 50 \\ & 60 \\ & 75 \end{aligned}$	$\begin{aligned} & 52 \\ & 62 \\ & 80 \end{aligned}$	$\begin{array}{\|r\|} \hline 60 \\ 75 \\ 100 \end{array}$	$\begin{array}{\|r} \hline 62 \\ 80 \\ 100 \\ \hline \end{array}$	SVX050A2-5A4N1 SVX060A2-5A4N1 SVX075A2-5A4N1	
FR9	FP	$\begin{aligned} & \hline 100 \\ & 125 \\ & 150 \end{aligned}$	$\begin{aligned} & \hline 100 \\ & 125 \\ & 144 \\ & 170 \end{aligned}$	$\begin{array}{\|l} \hline 125 \\ 150 \\ -200 \end{array}$	$\begin{array}{\|l\|} \hline 125 \\ 144 \\ 170 \\ 208 \end{array}$	SVX100A2-5A4N1 SVX125A2-5A4N1 SVX150A2-5A4N1 SVX175A2-5A4N1	

Open Drives

Table 40-83. 525-690V, NEMA Type 12 Freestanding Drive

Frame Size	Delivery Code	hp (I $\left.\mathbf{I}_{\mathbf{H}}\right)$	Current $\left(\mathbf{I}_{\mathbf{H}}\right)$	hp (I)	Current $\left(\mathbf{I}_{\mathbf{L}}\right)$	Catalog Number	Price U.S. $\mathbf{\$}$
FR10	FP	200	208	250	261	SPX200A2-5A4N1	
		250	261	300	325	SPX20AA2-5A4N1	

Note: Integrated fuses as standard. Limited option selection available; 115V Transformer (KB), Light Kit (L1), HOA (K4), Speed Potentiometer w/HOA (K2), Disconnect Switch (P2). See Enclosed 480V option selection.

Table 40-84. 525-690V, Open Chassis Drive

Frame Size	Delivery Code	hp (l_{H})	Current $\left(\mathrm{I}_{\mathrm{H}}\right)$	hp ($\mathrm{l}_{\text {L }}$)	Current (ll)	Catalog Number	Price U.S. $\$$
FR10	FP	$\begin{aligned} & 200 \\ & 250 \\ & 300 \end{aligned}$	$\begin{aligned} & 208 \\ & 261 \\ & 325 \\ & \hline \end{aligned}$	$\begin{aligned} & 250 \\ & 300 \\ & 400 \end{aligned}$	$\begin{aligned} & 261 \\ & 325 \\ & 385 \\ & \hline \end{aligned}$	SPX200A0-5A2N1 SPX250A0-5A2N1 SPX300A0-5A2N1	
FR11	FP	$\begin{aligned} & 400 \\ & 450 \\ & 500 \end{aligned}$	$\begin{aligned} & \hline 385 \\ & 460 \\ & 502 \end{aligned}$	$\begin{aligned} & 450 \\ & 500 \end{aligned}$	$\begin{aligned} & 460 \\ & 502 \\ & 590 \end{aligned}$	SPX400A0-5A2N1 SPX450A0-5A2N1 SPX500A0-5A2N1	
FR12	FP	$\begin{aligned} & \overline{600} \\ & 700 \end{aligned}$	$\begin{aligned} & 590 \\ & 650 \\ & 750 \end{aligned}$	$\begin{aligned} & 600 \\ & 700 \\ & 800 \end{aligned}$	$\begin{aligned} & 650 \\ & 750 \\ & 820 \end{aligned}$	SPX550A0-5A2N1 SPX600A0-5A2N1 SPX700A0-5A2N1	
FR13	FP	$\begin{array}{r} 800 \\ 900 \\ 1000 \end{array}$	$\begin{array}{r} 820 \\ 920 \\ 1030 \end{array}$	$\begin{array}{r} 900 \\ 1000 \\ 1250 \end{array}$	$\begin{array}{r} 920 \\ 1030 \\ 1180 \end{array}$	SPX800A0-5A2N1 SPX900A0-5A2N1 SPXH10A0-5A2N1	
FR14	FP	$\begin{array}{\|l\|} \hline 1350 \\ 1500 \\ 2000 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 1300 \\ 1500 \\ 1900 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 1500 \\ 2000 \\ 2300 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 1500 \\ 1900 \\ 2250 \\ \hline \end{array}$	SPXH13A0-5A2N1 SPXH15A0-5A2N1 SPXH20A0-5A2N1	

Open Drives

9000X Series Option Board Kits

The 9000X Series drives can accommodate a wide selection of expander and adapter option boards to customize the drive for your application needs. The drive's control unit is designed to accept a total of five option boards (see Figure 40-21).

The 9000X Series factory installed standard board configuration includes an A9 I/O board and an A2 relay output board, which are installed in slots A and B.

Figure 40-21. 9000X Series Option Boards

Table 40-85. Option Board Kits

Option Kit Description (2)	Allowed Slot Locations (1)	Field Installed		Factory Installed		SVX Ready Programs						
		Catalog Number	$\begin{aligned} & \hline \text { Price } \\ & \text { U.S. \$ } \end{aligned}$	Option Designator	$\begin{aligned} & \hline \text { Adder } \\ & \text { U.S. \$ } \end{aligned}$	Basic	Local/ Remote	Standard	MSS	PID	Multi-P.	PFC
Standard I/0 Cards (See Figure 40-21)												
2 RO (NC/NO)	B	OPTA2		-		X	X	X	X	X	X	X
$\begin{aligned} & 6 \mathrm{DI}, 1 \mathrm{DO}, 2 \mathrm{Al}, 1 \mathrm{AO}, 1+10 \mathrm{~V} \mathrm{DC} \text { ref, } \\ & 2 \text { ext +24V DC/ EXT +24V DC } \end{aligned}$	A	OPTA9		-		X	X	X	X	X	X	X
Extended I/O Card Options												
2 RO, Therm - SPX Only	B	OPTA3		A3		-	X	X	X	X	X	X
Encoder low volt $+5 \mathrm{~V} / 15 \mathrm{~V} / 24 \mathrm{~V}$ SPX Only	C	OPTA4		A4		-	X	X	X	X	X	X
Encoder high volt $+\mathbf{1 5 V} / 24 \mathrm{~V}$ SPX Only	C	OPTA5		A5		-	X	X	X	X	X	X
Double encoder - SPX Only	C	OPTA7		A7		X	X	X	X	X	X	X
6 DI, 1 DO, 2 Al, 1 AO - SPX Only	A	OPTA8		A8		-	X	X	X	X	X	X
3 DI (Encoder 10 - 24V), Out +15V/+24V, 2 DO (pulse+direction) - SPX Only	C	OPTAE		AE		X	X	X	X	X	X	X
$\begin{aligned} & 6 \mathrm{DI}, 1 \mathrm{ext} \\ & +24 \mathrm{~V} \text { DC/EXT + } 24 \mathrm{~V} \text { DC } \end{aligned}$	B, C, D, E	OPTB1		B1		-	-	-	-	-	X	X
1 RO (NC/NO), 1 RO (NO), 1 Therm	B, C, D, E	OPTB2		B2		-	-	-	-	-	X	X
1 Al (mA isolated), 2 AO (mA isolated), 1 ext +24V DC/EXT +24V DC	B, C, D, E	OPTB4		B4		X	X	X	X	X	X	X
3 RO (NO)	B, C, D, E	OPTB5		B5		-	-	-	-	-	X	X
1 ext +24V DC/EXT +24V DC, 3 Pt100	B, C, D, E	OPTB8		B8		-	-	-	-	-	-	-
$\begin{aligned} & 1 \mathrm{RO}(\mathrm{NO}), 5 \mathrm{DI} \\ & 42-240 \mathrm{~V} \text { AC Input } \\ & \hline \end{aligned}$	B,C, D, E	OPTB9		B9		-	-	-	-	-	X	X
Communication Cards												
Modbus ${ }^{(3)}$	D, E	OPTC2		C2		X	X	X	X	X	X	X
Johnson Controls N2 ${ }^{(3)}$	D, E	OPTC2		CA		-	-	-	-	-	-	-
Modbus TCP	D, E	OPTCI		CI		X	X	X	X	X	X	X
BACnet	D, E	OPTCJ		CJ		X	X	X	X	X	X	X
Ethernet IP	D, E	OPTCK		CK		X	X	X	X	X	X	X
Profibus DP	D, E	OPTC3		C3		X	X	X	X	X	X	X
LonWorks	D, E	OPTC4		C4		X	X	X	X	X	X	X
Profibus DP (D9 Connector)	D, E	OPTC5		C5		X	X	X	X	X	X	X
CanOpen (Slave) ${ }^{(4)}$	D, E	OPTC6		C6		X	X	X	X	X	X	X
DeviceNet	D, E	OPTC7		C7		X	X	X	X	X	X	X
Modbus (D9 Type Connector)	D, E	OPTC8		C8		X	X	X	X	X	X	X
Adapter - SPX Only	D, E	OPTD1		D1		X	X	X	X	X	X	X
Adapter - SPX Only	D, E	OPTD2		D2		X	X	X	X	X	X	X
RS-232 with D9 Connection	D, E	OPTD3		D3		X	X	X	X	X	X	X
Keypad												
9000X Series Local/ Remote Keypad (Replacement Keypad)	-	$\begin{aligned} & \text { KEYPAD- } \\ & \text { LOC/ } \\ & \text { REM } \\ & \hline \end{aligned}$		-		-	-	-	-	-	-	-
9000X Series Remote Mount Keypad Unit (Keypad not included, includes 10 ft . cable, keypad holder, mounting hardware)	-	$\begin{aligned} & \hline \text { OPTRMT- } \\ & \text { KIT- } \\ & \text { 9000X } \end{aligned}$		-		-	-	-	-	-	-	-
9000X Series RS-232 Cable, 13 ft .	-	PP00104		-		-	-	-	-	-	-	-

[^6]
Open Drives

Modbus RTU Network Communications

The Modbus Network Card OPTC2 is used for connecting the 9000X Drive as a slave on a Modbus network. The interface is connected by a 9 -pin DSUB connector (female) and the baud rate ranges from 300 to 19200 baud. Other communication parameters include an address range from 1 to 247; a parity of None, Odd or Even; and the stop bit is 1 .

Profibus Network Communications

The Profibus Network Card OPTC3 is used for connecting the 9000X Drive as a slave on a Profibus-DP network. The interface is connected by a 9-pin DSUB connector (female). The baud rates range from 9.6 K baud to 12 M baud, and the addresses range from 1 to 127.

LonWorks Network Communications

The LonWorks Network Card OPTC4 is used for connecting the 9000X Drive on a LonWorks network. This interface uses Standard Network Variable Types (SNVT) as data types. The channel connection is achieved using a FTT-10A Free Topology transceiver via a single twisted transfer cable. The communication speed with LonWorks is $78 \mathrm{kBits} / \mathrm{s}$.

CanOpen (Slave) Communications

The CanOpen (Slave) Network Card OPTC6 is used for connecting the 9000X Drive to a host system. According to ISO11898 standard cables to be chosen for CAN bus should have a nominal impedance of 120Ω, and specific line delay of nominal $5 \mathrm{nS} / \mathrm{m}$. 120Ω line termination resistors required for installation.

DeviceNet Network Communications

The DeviceNet Network Card OPTC7 is used for connecting the 9000X Drive on a DeviceNet Network. It includes a 5.08 mm pluggable connector. Transfer method is via CAN using a 2-wire twisted shielded cable with 2 -wire bus power cable and drain. The baud rates used for communication include 125 K baud, 250 K baud and 500 K baud.

Johnson Controls Metasys ${ }^{\text {TM }}$ N2 Network Communications

The OPTC2 fieldbus board provides communication between the 9000X Drive and a Johnson Controls Metasys ${ }^{\text {TM }}$ N2 network. With this connection, the drive can be controlled, monitored and programmed from the Metasys system. The N2 fieldbus is available as a factory installed option and as a field installable kit.

Modbus/TCP Network Communications

The Modbus/TCP Network Card OPTCI is used for connecting the 9000X Drive to Ethernet networks utilizing Modbus protocol. It includes an RJ-45 pluggable connector. This interface provides a selection of standard and custom register values to communicate drive parameters. The board supports 10 Mbps and 100 Mbps communication speeds. The IP address of the board is configurable over Ethernet using a supplied software tool.

BACnet Network Communications

The BACnet Network Card OPTCJ is used for connecting the 9000X Drive to BACnet networks. It includes a 5.08 mm pluggable connector. Data transfer is Master-Slave/Token Passing (MS/TP) RS-485. This interface uses a collection of 30 Binary Value Objects (BVOs) and 35 Analog Value Objects (AVOs) to communicate drive parameters. The card supports 9.6, 19.2 and 38.4 Kbaud communication speeds and supports network addresses 1-127.

Ethernet/IP Network Communications

The Ethernet/IP Network Card OPTCK is used for connecting the 9000X Drive to Ethernet/Industrial Protocol networks. It includes an RJ-45 pluggable connector. The interface uses CIP objects to communicate drive parameters (CIP is "Common Industrial Protocol", the same protocol used by DeviceNet). The board supports 10 Mbps and 100 Mbps communication speeds. The IP address of the board is configurable by Static, BOOTP and DHCP methods.

Open Drives

Options

Control Panel Options

Table 40-86. Control Panel Factory Options

Description	Factory Installed		Field Installed	
			NEMA Type 1	
	Option Code	Adder U.S. \$	Catalog Number	Price U.S. $\$$
Local/Remote Keypad SVX9000 Control Panel - This option is standard on all drives and consists of an RS-232 connection, backlit alphanumeric LCD display with nine indicators for the RUN status and two indicators for the control source. The nine pushbuttons on the panel are used for panel programming and monitoring of all SVX9000 parameters. The panel is detachable and isolated from the input line potential. Include LOC/REM key to choose control location.	A		KEYPAD-LOC/REM	
Keypad Remote Mounting Kit - This option is used to remote mount the SVX9000 keypad. The footprint is compatible to the SV9000 remote mount kit. Includes 10 ft . cable, keypad holder and mounting hardware.	-		OPTRMT-KIT-9000X	

Table 40-87. Miscellaneous Options

| Description | Catalog
 Number | Price
 U.S. $\$$ |
| :--- | :--- | :--- | :--- |
| 9000XDrive - A PC-based tool for controlling and monitoring of the SVX9000. Features include: loading parameters that
 can be saved to a file or printed, setting references, starting and stopping the motor, monitoring signals in graphical or text
 form, and real-time display. To avoid damage to the drive or computer, SVDrivecable must be used. | 9000XDRIVE | |
| SVDrivecable - 6 ft. (1.8m) RS-232 cable (22 gauge) with a 7-pin connector on each end. Should be used in conjunction
 with the 9000X Drive option to avoid damage to the SVX9000 or computer. The same cable can be used for downloading
 specialized applications to the drive. | SVDRIVECABLE | |
| External Dynamic Braking Resistors - Used with the Dynamic Braking Chopper Circuit to absorb motor regenerative energy
 for stopping the load and to dissipate the energy flowing back into the drive. Resistors are separated into Standard Duty and
 Heavy-Duty. Standard Duty is defined as 20\% duty or less with 100\% braking torque, while Heavy-Duty is defined as 50\%
 duty or less with 150\% braking torque. Consult factory. | | |

(1) Consult factory.

Brake Chopper Options

The Brake Chopper Circuit option is used for applications that require dynamic braking. Dynamic Braking resistors are not included with drive purchase. Consult the factory for dynamic braking resistors which are supplied separately. Resistors are not UL Listed.

Table 40-88. Brake Chopper Circuit Adder -
NEMA Type 1, NEMA Type 12, Chassis

hp (IH)	Adder U.S. S		
	$\mathbf{2 0 8 -}$ $\mathbf{2 4 0 V}$	$\mathbf{3 8 0 -}$ $\mathbf{5 0 0 V}$	$\mathbf{5 2 5 -}$ $\mathbf{6 9 0}$
2 3 5 vt 5 ct $7-1 / 2 \mathrm{vt}$ $7-1 / 2 \mathrm{ct}$			
10			
15			
20			
25			
30			
40			
50			
60			
75			
100			
125			

Table 40-89. Conformal (Varnished) Coating Adder-208-240V, 380-500V, 525-690V (See Catalog Number Description to order.)

Frame	Delivery Code	Adder U.S. \$
FR4	FP	
FR5	FP	
FR6	FP	
FR7	FP	
FR8	FP	
FR9	FP	
FR10	FP	
FR11	FP	
FR12	FP	
FR13	FP	
FR14	FP	

Table 40-90. Conformal Coated Board Kits (2)

Field Installed		Factory Installed	
Catalog Number	Price U.S. \$	Option Designator	Adder U.S. \$
OPT_V © ${ }^{4}$		③	

2) See Option Catalog Numbers on Page 40-58.
(3) Construct Catalog Numbers for factory installed per Table 40-72 on Page 40-53.
(4) Replace "__" with the correct Catalog Number from Page 40-58. Example: OPTC2V.

Open Drives

Accessories

Demo Drive and Power Supply

Table 40-91. Demo Drive and Power Supply

Description	Catalog Number	Price U.S. \$
9000X Drive Demo 9000XDEMO Hand Held 24V Auxiliary Power Supply — used to supply power to the control module in order to perform keypad programming before the drive is connected to line voltage 9000XAUX24V		

NEMA Type 12 Conversion Kit

The NEMA Type 12 kit option is used to convert a NEMA Type 1 to a NEMA Type 12 drive. The NEMA Type 12 Kit consists of a metal drive shroud, fan kit for some frames, adaptor plate and plugs.

Table 40-92. NEMA Type 12 Conversion Kit

Frame Size	Delivery Code	Approximate Dimensions in Inches (mm)		Approximate Weight in Lb. (kg)	Catalog Number	Price U.S. \$					
	Length							Width	Height	Weight	

Flange Kits

Flange Kit Type 12

The flange kit is utilized when the power section is mounted through the back panel of an enclosure. Includes flange mount brackets and NEMA Type 12 fan components. Metal shroud not included.

Table 40-93. Flange Kit Type 12 -
Frames 4, 5 and 6 (1)

Frame Size	Delivery Code	Catalog Number	Price U.S. S
FR4	W	OPTTHRFR4	
FR5	W	OPTTHRFR5	
FR6	W	OPTTHRFR6	

(1) For installation of an SVX9000 NEMA Type 1 drive into a NEMA Type 12 oversized enclosure.

Flange Kit Type 1

Flange kits for NEMA 1 enclosure drive rating are determined by rating of drive.

Table 40-94. Flange Kit Type 1 -
Frames 4-9 (2)

Frame Size	Delivery Code	Catalog Number	Price U.S. $\$$
FR4	FP	OPTTHR4	
FR5	FP	OPTTHR5	
FR6	FP	OPTTHR6	
FR7	FP	OPTTHR7	
FR8	FP	OPTTHR8	
FR9	FP	OPTTHR9	

(2) For installation of an SVX9000 NEMA Type 1 drive into a NEMA Type 1 oversized enclosure.

Flange Kit Type 12

Flange kits for NEMA 12 enclosure drive rating are determined by rating of drive.

Table 40-95. Flange Kit Type 12 Frames 4-9 (3)

Frame Size	Delivery Code	Catalog Number	Price U.S. \$
FR4	FP	OPTTHR4	
FR5	FP	OPTTHR5	
FR6	FP	OPTTHR6	
FR7	FP	OPTTHR7	
FR8	FP	OPTTHR8	
FR9	FP	OPTTHR9	

(3) For installation of an SVX9000 NEMA Type 12 drive into a NEMA Type 12 oversized enclosure.

Adjustable Frequency Drives SVX9000

Dimensions

Figure 40-22. NEMA Type 1 and NEMA Type 12 9000X Drive Dimensions, FR4, FR5 and FR6
Table 40-96. 9000X Drive Dimensions

Frame Size	Voltage	hp ($\mathrm{H}^{\text {) }}$	Approximate Dimensions in Inches (mm)											Weight Lbs. (kg)	$\begin{array}{\|l\|} \hline \text { Knockouts @ Inches (mm) } \\ \hline \text { N1 (O.D.) } \\ \hline \end{array}$
			H1	H2	H3	D1	D2	D3	W1	W2	W3	R1 dia.	R2 dia.		
FR4	230 V	3/4-3	$\begin{aligned} & \hline 12.9 \\ & (327) \end{aligned}$	$\begin{aligned} & 12.3 \\ & (313) \end{aligned}$	$\begin{array}{\|l\|} \hline 11.5 \\ (292) \end{array}$	$\begin{aligned} & \hline 7.5 \\ & (190) \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & (77) \end{aligned}$	$\begin{aligned} & \hline 5.0 \\ & (126) \end{aligned}$	$\begin{aligned} & \hline 5.0 \\ & (128) \end{aligned}$	$\begin{aligned} & \hline 3.9 \\ & (100) \end{aligned}$	-	$\begin{aligned} & \hline .5 \\ & (13) \end{aligned}$	$\begin{aligned} & .3 \\ & (7) \end{aligned}$	11.0 (5)	$\begin{aligned} & \hline 3 @ 1.1 \\ & (28) \end{aligned}$
	480 V	1-5													
FR5	230 V	5-7-1/2	$\begin{aligned} & \hline 16.5 \\ & (419) \end{aligned}$	$\begin{array}{\|l\|} \hline 16.0 \\ (406) \end{array}$	$\begin{array}{\|l\|} \hline 15.3 \\ (389) \end{array}$	$\begin{array}{\|l\|} \hline 8.4 \\ (214) \end{array}$	$\begin{aligned} & \hline 3.9 \\ & (100) \end{aligned}$	$\begin{aligned} & \hline 5.8 \\ & (148) \end{aligned}$	$\begin{aligned} & \hline 5.6 \\ & (143) \end{aligned}$	$\begin{aligned} & \hline 3.9 \\ & (100) \end{aligned}$	-	$\begin{aligned} & \hline .5 \\ & (13) \end{aligned}$	$\begin{aligned} & \hline .3 \\ & \text { (7) } \end{aligned}$	17.9 (8)	$\begin{aligned} & 2 \text { @ } 1.5 \\ & (37) \\ & 1 @ 1.1 \\ & (28) \\ & \hline \end{aligned}$
	480 V	7-1/2-15													
FR6	230 V	10-15	$\begin{aligned} & \hline 22.0 \\ & (558) \end{aligned}$	$\begin{aligned} & 21.3 \\ & (541) \end{aligned}$	$\begin{aligned} & \hline 20.4 \\ & (519) \end{aligned}$	$\begin{array}{\|l\|} \hline 9.3 \\ (237) \end{array}$	$\begin{array}{\|l\|} \hline 4.2 \\ (105) \end{array}$	$\begin{aligned} & \hline 6.5 \\ & (165) \end{aligned}$	$\begin{aligned} & \hline 7.6 \\ & (195) \end{aligned}$	$\begin{array}{\|l\|} \hline 5.8 \\ (148) \end{array}$	-	$\begin{aligned} & \hline .6 \\ & (15.5) \end{aligned}$	$\begin{aligned} & \hline .4 \\ & (9) \end{aligned}$	$\begin{aligned} & \hline 40.8 \\ & (19) \end{aligned}$	$\begin{aligned} & \hline 3 @ 1.5 \\ & (37) \end{aligned}$
	480 V	20-30													
	575 V	2-25													

Open Drives

Figure 40-23. 9000X Dimensions, NEMA Type 1 and NEMA Type 12 with Flange Kit, FR4, FR5 and FR6
Table 40-97. Dimensions for 9000X, FR4, FR5 and FR6 with Flange Kit

Frame Size	Approximate Dimensions in Inches (mm)									
	W1	W2	H1	H2	H3	H4	H5	D1	D2	Dia. A
FR4	$\begin{array}{\|l\|} \hline 5.0 \\ (128) \end{array}$	$\begin{aligned} & \hline 4.5 \\ & (113) \end{aligned}$	$\begin{aligned} & \hline 13.3 \\ & (337) \end{aligned}$	$\begin{aligned} & \hline 12.8 \\ & (325) \end{aligned}$	$\begin{aligned} & \hline 12.9 \\ & (327) \end{aligned}$	$\begin{array}{\|l\|} \hline 1.2 \\ (30) \end{array}$	$\begin{array}{\|l\|} \hline .9 \\ (22) \\ \hline \end{array}$	$\begin{aligned} & \hline 7.5 \\ & (190) \end{aligned}$	$\begin{array}{\|l\|} \hline 3.0 \\ \text { (77) } \end{array}$	$\begin{array}{\|l} \hline .3 \\ (7) \end{array}$
FR5	$\begin{array}{\|l\|} \hline 5.6 \\ (143) \end{array}$	$\begin{aligned} & \hline 4.7 \\ & (120) \end{aligned}$	$\begin{aligned} & \hline 17.0 \\ & (434) \end{aligned}$	$\begin{aligned} & \hline 16.5 \\ & (420) \end{aligned}$	$\begin{array}{\|l\|} \hline 16.5 \\ (419) \end{array}$	$\begin{array}{\|l\|} \hline 1.4 \\ \text { (36) } \end{array}$	$\begin{array}{\|l\|} \hline .7 \\ \hline(18) \\ \hline \end{array}$	$\begin{aligned} & \hline 8.4 \\ & (214) \end{aligned}$	$\begin{aligned} & \hline 3.9 \\ & (100) \end{aligned}$	$\begin{array}{\|l} \hline .3 \\ (7) \end{array}$
FR6	$\begin{array}{\|l\|} \hline 7.7 \\ (195) \end{array}$	$\begin{aligned} & \hline 6.7 \\ & (170) \end{aligned}$	$\begin{aligned} & 22.0 \\ & (560) \end{aligned}$	$\begin{aligned} & 21.6 \\ & (549) \end{aligned}$	$\begin{array}{\|l} \hline 22.0 \\ (558) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 1.2 \\ (30) \end{array}$	$\begin{array}{\|l\|} \hline .8 \\ (20) \\ \hline \end{array}$	$\begin{aligned} & 9.3 \\ & (237) \end{aligned}$	$\begin{aligned} & 4.2 \\ & (106) \end{aligned}$	$\begin{aligned} & \hline .3 \\ & \text { (7) } \end{aligned}$

Table 40-98. Dimensions for the Flange Opening, FR4 to FR6

Frame Size	Approximate Dimensions in Inches (mm)							
	W3	W4	W5	H6	H7	H8	H9	Dia. B
FR4	$\begin{aligned} & \hline 4.8 \\ & (123) \end{aligned}$	$\begin{array}{\|l\|} \hline 4.5 \\ (113) \end{array}$	-	$\begin{aligned} & \hline 12.4 \\ & (315) \end{aligned}$	$\begin{aligned} & 12.8 \\ & (325) \end{aligned}$	-	$.2$ (5)	$\begin{aligned} & .3 \\ & \text { (7) } \end{aligned}$
FR5	$\begin{aligned} & \hline 5.3 \\ & (135) \end{aligned}$	$\begin{array}{\|l\|} \hline 4.7 \\ (120) \end{array}$	-	$\begin{aligned} & \hline 16.2 \\ & (410) \end{aligned}$	$\begin{aligned} & \hline 16.5 \\ & (420) \end{aligned}$	-	$\begin{aligned} & \hline .2 \\ & (5) \end{aligned}$	$\begin{array}{\|l} \hline .3 \\ (7) \end{array}$
FR6	$\begin{array}{\|l\|} \hline 7.3 \\ (185) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 6.7 \\ (170) \\ \hline \end{array}$	$\begin{aligned} & \hline 6.2 \\ & (157) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 21.2 \\ & (539) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 21.6 \\ & (549) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline .3 \\ & \text { (7) } \end{aligned}$	$\begin{aligned} & \hline .2 \\ & (5) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline .3 \\ & \text { (7) } \end{aligned}$

Figure 40-24. 9000X Dimensions, NEMA Type 1 and NEMA Type 12, FR7
Table 40-99. 9000X Drive Dimensions, FR7

Frame Size	Voltage	hp (l_{H})	Approximate Dimensions in Inches (mm)										Weight lbs. (kg)	$\begin{array}{\|l\|} \hline \text { Knockouts @ Inches (mm) } \\ \hline \text { N1 (O.D.) } \\ \hline \end{array}$
			H1	H2	H3	D1	D2	D3	W1	W2	R1 dia.	R2 dia.		
FR7	230 V	20-30	$\begin{array}{\|l\|} \hline 24.8 \\ (630) \end{array}$	$\begin{aligned} & 24.2 \\ & (614) \end{aligned}$	$\begin{aligned} & \hline 23.2 \\ & (590) \end{aligned}$	$\begin{aligned} & \hline 10.1 \\ & (257) \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & \text { (77) } \end{aligned}$	$\begin{aligned} & \hline 7.3 \\ & (184) \end{aligned}$	$\begin{array}{\|l\|} \hline 9.3 \\ (237) \end{array}$	$\begin{aligned} & \hline 7.5 \\ & (190) \end{aligned}$	$\begin{array}{\|l\|} \hline .7 \\ (18) \end{array}$	$.4$ (9)	$\begin{array}{\|l} \hline 77.2 \\ (35) \end{array}$	3 @ 1.5 (37)
	480 V	40-60												
	575 V	30-40												

Open Drives

Figure 40-25. 9000X Dimensions, NEMA Type 1 and NEMA Type 12, FR8
Table 40-100. 9000X Drive Dimensions, FR8

Frame Size	Voltage	$\mathrm{hp}\left(\mathrm{l}_{\mathrm{H}}\right)$	Approximate Dimensions in Inches (mm)								Weight lbs. (kg)
			D1	H1	H2	H3	W1	W2	R1 dia.	R2 dia.	
FR8	230 V	40-60	13.5 (344)	30.1 (764)	28.8 (732)	28.4 (721)	11.5 (291)	10 (255)	. 7 (18)	. 4 (9)	127 (58)
	480 V	75-125									
	575 V	50-75									

Figure 40-26. 9000X Dimensions, NEMA Type 1 and NEMA Type 12, with Flange Kit, FR7 and FR8
Table 40-101. Dimensions for 9000X, FR7 and FR8 with Flange Kit

Frame Size	Approximate Dimensions in Inches (mm)													
	W1	W2	W3	W4	H1	H2	H3	H4	H5	H6	H7	D1	D2	Dia. A
FR7	$\begin{aligned} & \hline 9.3 \\ & (237) \end{aligned}$	$\begin{aligned} & \hline 6.8 \\ & (175) \end{aligned}$	$\begin{aligned} & \hline 10.6 \\ & (270) \end{aligned}$	$\begin{array}{\|l} \hline 10.0 \\ (253) \end{array}$	$\begin{aligned} & \hline 25.6 \\ & (652) \end{aligned}$	$\begin{aligned} & \hline 24.8 \\ & (632) \end{aligned}$	$\begin{aligned} & \hline 24.8 \\ & (630) \end{aligned}$	$\begin{aligned} & \hline 7.4 \\ & (189) \end{aligned}$	$\begin{aligned} & \hline 7.4 \\ & (189) \end{aligned}$	$\begin{aligned} & \hline .9 \\ & (23) \end{aligned}$	$\begin{aligned} & \hline \hline 8 \\ & (20) \end{aligned}$	$\begin{aligned} & \hline 10.1 \\ & (257) \end{aligned}$	$\begin{aligned} & \hline 4.6 \\ & (117) \end{aligned}$	$\text { . } 3$ (6)
FR8	$\begin{aligned} & 11.2 \\ & (285) \end{aligned}$	-	$\begin{aligned} & 14.0 \\ & (355) \end{aligned}$	$\begin{array}{\|l\|} \hline 13.0 \\ (330) \end{array}$	$\begin{aligned} & 32.8 \\ & (832) \end{aligned}$	-	$\begin{aligned} & 29.3 \\ & (745) \end{aligned}$	$\begin{aligned} & \hline 10.2 \\ & (258) \end{aligned}$	$\begin{aligned} & 10.4 \\ & (265) \end{aligned}$	$\begin{array}{\|l\|} \hline 1.7 \\ \hline(43) \end{array}$	$\begin{aligned} & \hline 2.2 \\ & (57) \\ & \hline \end{aligned}$	$\begin{aligned} & 13.5 \\ & (344) \end{aligned}$	$\begin{aligned} & \hline 4.3 \\ & (110) \end{aligned}$	$\begin{array}{\|l} \hline .4 \\ \text { (9) } \end{array}$

Table 40-102. Dimensions for the Flange Opening, FR7/FR8

Frame Size	Approximate Dimensions in Inches (mm)									
	W5	W6	W7	H8	H9	H10	H11	H12	H13	Dia. B
FR7	$\begin{aligned} & \hline 9.2 \\ & (233) \end{aligned}$	$\begin{aligned} & \hline 6.9 \\ & (175) \end{aligned}$	$\begin{array}{\|l} \hline 10.0 \\ (253) \end{array}$	$\begin{aligned} & \hline 24.4 \\ & (619) \end{aligned}$	$\begin{aligned} & \hline 7.4 \\ & (189) \end{aligned}$	$\begin{aligned} & \hline 7.4 \\ & (189) \end{aligned}$	$\begin{aligned} & \hline 1.4 \\ & (35) \end{aligned}$	$\begin{array}{\|l\|} \hline 1.3 \\ (32) \end{array}$	$\begin{aligned} & \hline 1.0 \\ & (25) \end{aligned}$	$\begin{aligned} & \hline .3 \\ & (6) \end{aligned}$
FR8	$\begin{array}{\|l} \hline 11.9 \\ (301) \end{array}$	-	$\begin{array}{\|l\|} \hline 13.0 \\ (330) \\ \hline \end{array}$	$\begin{aligned} & 31.9 \\ & (810) \end{aligned}$	$\begin{array}{\|l\|} \hline 10.2 \\ (258) \end{array}$	$\begin{aligned} & \hline 10.4 \\ & (265) \end{aligned}$	-	-	$\begin{array}{\|l\|} \hline 1.3 \\ \text { (33) } \\ \hline \end{array}$	$\begin{aligned} & \hline .4 \\ & \text { (9) } \\ & \hline \end{aligned}$

Figure 40-27. 9000X Dimensions, NEMA Type 1 and NEMA Type 12, FR9
Table 40-103. 9000X Drive Dimensions, FR9

Frame Size	Voltage	$\mathrm{hp}\left(\mathrm{l}_{\mathrm{H}}\right)$	Approximate Dimensions in Inches (mm)									Weight lbs. (kg)
			H1	H2	H3	D1	D2	W1	W2	R1 dia.	R2 dia.	
FR9	230 V	75-100	$\begin{aligned} & \hline 45.3 \\ & (1150) \end{aligned}$	44.1	42.4	13.4	14.3	18.9	15.7	. 8	. 4	321.9
	480 V	150-200		(1120)	(1076)	(340)	(362)	(480)	(400)	(20)	(9)	(146)
	575 V	100-175										

Figure 40-28. 9000X Dimensions, NEMA Type 1 and NEMA Type 12 FR9
Table 40-104. Dimensions for 9000X, FR9

Frame	Approximate Dimensions in Inches (mm)														
	W1	W2	W3	W4	W5	H1	H2	H3	H4	H5	H6 ${ }^{1}$	D1	D2	D3	Dia.
FR9	$\begin{aligned} & \hline 18.9 \\ & (480) \end{aligned}$	$\begin{array}{\|l\|} \hline 15.7 \\ (400) \end{array}$	$\begin{aligned} & \hline 6.5 \\ & (165) \end{aligned}$	$\begin{array}{\|l} \hline .4 \\ (9) \end{array}$	$\begin{aligned} & \hline 2.1 \\ & (54) \end{aligned}$	$\begin{aligned} & \hline 45.3 \\ & (1150) \end{aligned}$	$\begin{aligned} & \hline 44.1 \\ & (1120) \end{aligned}$	$\begin{aligned} & \hline 28.3 \\ & (721) \end{aligned}$	$\begin{aligned} & \hline 8.0 \\ & (205) \end{aligned}$	$\begin{aligned} & \hline .6 \\ & (16) \end{aligned}$	$\begin{aligned} & \hline 7.4 \\ & (188) \end{aligned}$	$\begin{aligned} & 14.2 \\ & (361.5) \end{aligned}$	$\begin{array}{\|l\|} \hline 13.4 \\ (340) \end{array}$	$\begin{aligned} & 11.2 \\ & (285) \end{aligned}$	$\begin{aligned} & \hline .8 \\ & (21) \end{aligned}$

[^7]

Figure 40-29. 9000X Dimensions, NEMA Type 1 and NEMA Type 12 FR9 with Flange Kit
Table 40-105. Dimensions for 9000X, FR9 with Flange Kit

Frame	Approximate Dimensions in Inches (mm)															
Size	W1	W2	W3	W4	W5	H1	H2	H3	H4	H5	H6	H7	D1	D2	D3	Dia.
FR9	$\begin{aligned} & \hline 20.9 \\ & (530) \end{aligned}$	$\begin{array}{\|l} 20.0 \\ (510) \end{array}$	$\begin{aligned} & 19.1 \\ & \text { (485) } \end{aligned}$	$\begin{aligned} & \hline 7.9 \\ & (200) \end{aligned}$	$\begin{array}{\|l\|} \hline .2 \\ (5.5) \end{array}$	$\begin{aligned} & 51.7 \\ & (1312) \end{aligned}$	$\begin{aligned} & 45.3 \\ & (1150) \end{aligned}$	$\begin{aligned} & 16.5 \\ & (420) \end{aligned}$	$\begin{aligned} & 3.9 \\ & (100) \end{aligned}$	$\begin{aligned} & 1.4 \\ & \text { (35) } \end{aligned}$	$\begin{array}{\|l} \hline .4 \\ (9) \end{array}$	$\begin{aligned} & .1 \\ & (2) \end{aligned}$	$\begin{aligned} & 24.9 \\ & (362) \end{aligned}$	$\begin{array}{\|l\|} \hline 13.4 \\ (340) \end{array}$	$\begin{array}{\|l\|} \hline 4.3 \\ \text { (109) } \end{array}$	$\begin{array}{\|l\|} \hline .8 \\ (21) \end{array}$

Figure 40-30. 9000X Dimensions, NEMA Type 1 and NEMA Type 12 FR10 Freestanding Drive
Table 40-106. Dimensions for 9000X, FR10 Freestanding Drive

	Approximate Dimensions in Inches (mm)																				Weight lbs. (kg)
	W1	W2	W3	W4	W5	W6	W7	H1	H2	H3	D1	D2	D3	D4	D5	D6	D7	Dia. 1	Dia. 2	Dia. 3	
FR10	$\begin{aligned} & 23.43 \\ & (595) \end{aligned}$	$\begin{array}{\|l\|} \hline 2.46 \\ (62.5) \end{array}$	$\begin{aligned} & \hline 4.53 \\ & (115) \end{aligned}$	$\begin{array}{\|l\|} \hline .79 \\ (20) \end{array}$	$\begin{aligned} & 5.95 \\ & (151) \end{aligned}$	$\begin{array}{\|l\|} \hline 2.95 \\ (75) \end{array}$	$\begin{array}{\|l\|} \hline 3.11 \\ (79) \end{array}$	$\begin{aligned} & \hline 79.45 \\ & (2018) \end{aligned}$	$\begin{aligned} & \hline 74.80 \\ & (1900) \end{aligned}$	$\begin{array}{\|l\|} \hline 20.18 \\ (512.5) \end{array}$	$\begin{aligned} & 23.70 \\ & (602) \end{aligned}$	$\begin{aligned} & 17.44 \\ & (443) \end{aligned}$	$\begin{array}{\|l\|} \hline 19.02 \\ (483) \end{array}$	$\begin{aligned} & \hline .47 \\ & (12) \end{aligned}$	$\begin{array}{\|l\|} \hline 11.22 \\ (285) \end{array}$	$\begin{aligned} & 17.60 \\ & (447) \end{aligned}$	$\begin{aligned} & \hline 20.08 \\ & (510) \end{aligned}$	$\begin{aligned} & \hline .83 \\ & (21) \end{aligned}$	$\begin{array}{\|l} \hline 1.89 \\ (48) \end{array}$	$\begin{array}{\|l\|} \hline .43 \\ \hline(11) \end{array}$	$\begin{array}{\|l\|} \hline 857 \\ (389) \end{array}$

Figure 40-31. 9000X Dimensions, FR10 Open Chassis
Table 40-107. Dimensions for 9000X, FR10 Open Chassis

Frame Size	Voltage	hp ($\mathrm{H}^{\text {) }}$	Approximate Dimensions in Inches (mm)																Weight lbs. (kg)
			W1	W2	W3	W4	W5	H1	H2	H3	H4	H5	H6	H7	D1	D2	D3	D4	
FR10	480 V	250-350	$\begin{aligned} & \hline 19.7 \\ & (500) \end{aligned}$	$\begin{aligned} & \hline 16.7 \\ & (425) \end{aligned}$	$\begin{aligned} & \hline 1.2 \\ & (30) \end{aligned}$	$\begin{aligned} & \hline 2.6 \\ & \text { (67) } \end{aligned}$	$\begin{aligned} & \hline 12.8 \\ & (325) \end{aligned}$	$\begin{aligned} & \hline 45.9 \\ & (1165) \end{aligned}$	$\begin{aligned} & \hline 44.1 \\ & (1121) \end{aligned}$	$\begin{array}{\|l\|} \hline 34.6 \\ (879) \end{array}$	$\begin{array}{\|l\|} \hline 33.5 \\ (850) \end{array}$	$\begin{array}{\|l\|} \hline .7 \\ (17) \end{array}$	$\begin{aligned} & \hline 24.7 \\ & (627) \end{aligned}$	$\begin{aligned} & \hline 10.8 \\ & (275) \end{aligned}$	$\begin{aligned} & 19.9 \\ & (506) \end{aligned}$	$\begin{aligned} & 17.9 \\ & (455) \end{aligned}$	$\begin{aligned} & \hline 16.7 \\ & (423) \end{aligned}$	$\begin{aligned} & \hline 16.6 \\ & (421) \end{aligned}$	$\begin{aligned} & \hline 518 \\ & (235) \end{aligned}$
	575 V	200-300																	

Note: 9000X FR12 is built of two FR10 modules. Please refer to SPX9000 installation manual for mounting instructions.

Figure 40-32. 9000X Dimensions, NEMA Type 1 FR11 Freestanding Drive
Table 40-108. Dimensions for 9000X, NEMA Type 1 FR11 Freestanding Drive

Frame Size	Voltage	hp (l_{H})	Approximate Dimensions in Inches (mm)																			Weight lbs. (kg)
			W1	W2	W3	W4	W5	W6	W7	W8	H1	H2	H3	D1	D2	D3	D4	D5	Dia. 1	Dia. 2	Dia. 3	
FR11	480	400-550	$\begin{aligned} & 31.26 \\ & (794) \end{aligned}$	$\begin{array}{\|l\|} \hline 2.40 \\ (61) \end{array}$	$\begin{array}{\|l\|} \hline 6.50 \\ (165) \end{array}$	$\begin{array}{\|l\|} \hline .79 \\ (20) \end{array}$	$\begin{array}{\|l\|} \hline 3.43 \\ (87) \end{array}$	$\begin{aligned} & 2.95 \\ & (75) \end{aligned}$	$\begin{aligned} & 2.52 \\ & (64) \end{aligned}$	$\begin{array}{\|l\|} \hline 1.18 \\ (30) \end{array}$	$\begin{array}{\|l\|} \hline 79.45 \\ (2018) \end{array}$	$\begin{array}{\|l\|} \hline 74.80 \\ (1900) \end{array}$	$\begin{array}{\|l\|} \hline 20.18 \\ (512.5) \end{array}$	$\begin{aligned} & 23.70 \\ & (602) \end{aligned}$	$\begin{array}{\|l} \hline 11.22 \\ (285) \\ \hline \end{array}$	$\begin{aligned} & 19.09 \\ & (485) \end{aligned}$	$\begin{array}{\|l\|} \hline .47 \\ (12) \end{array}$	$\begin{array}{\|l\|} \hline 17.60 \\ (447) \end{array}$	$\begin{array}{\|l\|} \hline .83 \\ (21) \end{array}$	$\begin{array}{\|l\|} \hline 1.89 \\ (48) \end{array}$	$\begin{array}{\|l\|} \hline .35 \times .43 \\ (9 \times 11) \end{array}$	$\begin{aligned} & \hline 526 \\ & (239) \end{aligned}$

Figure 40-33. 9000X Dimensions, FR11 Open Chassis
Table 40-109. Dimensions for 9000X, FR11 Open Chassis

Frame Size	Voltage	hp (l_{H})	Approximate Dimensions in Inches (mm)							Weight lbs. (kg)
			W1	W2	W3	H1	H2	D1	D2	
FR11	480 V	400-550	$\begin{array}{\|l\|} \hline 27.9 \\ (709) \end{array}$	$\begin{aligned} & \hline 8.86 \\ & (225) \end{aligned}$	$\begin{array}{\|l\|} \hline 2.6 \\ \text { (67) } \end{array}$	$\begin{aligned} & \hline 45.5 \\ & (1155) \end{aligned}$	$\begin{aligned} & \hline 33.5 \\ & (850) \end{aligned}$	$\begin{aligned} & \hline 19.8 \\ & (503) \end{aligned}$	$\begin{aligned} & \hline 18.4 \\ & (468) \end{aligned}$	$\begin{array}{\|l\|} \hline 833 \\ (378) \end{array}$
	575 V	400-500								

Figure 40-34. 9000X Dimensions, FR13 Open Chassis Inverter
Table 40-110. Dimensions for 9000X, FR13 Open Chassis Inverter

Frame Size	Approximate Dimensions in Inches (mm)																						Weight lbs. (kg)
	W1	W2	W3	W4	W5	H1	H2	H3	H4	H5	D1	D2	D3	D4	D5	D6	D7	D8	Dia. 1	Dia. 2	Dia. 3	Dia. 4	
FR13	$\begin{aligned} & 27.87 \\ & (708) \end{aligned}$	$\begin{aligned} & 5.91 \\ & (150) \end{aligned}$	$\begin{aligned} & 26.65 \\ & (677) \end{aligned}$	$\begin{aligned} & 4.57 \\ & (116) \end{aligned}$	$\begin{array}{\|l\|} \hline 3.35 \\ (85) \end{array}$	$\begin{aligned} & 41.54 \\ & (1055) \end{aligned}$	$\begin{aligned} & \hline 2.46 \\ & (62.5) \end{aligned}$	$\begin{array}{\|l\|} \hline 39.86 \\ (1012.5) \end{array}$	$\begin{aligned} & 41.34 \\ & (1050) \end{aligned}$	$\begin{array}{\|l\|} \hline .79 \\ \hline(20) \\ \hline \end{array}$	$\begin{aligned} & 21.77 \\ & (553) \end{aligned}$	$\begin{aligned} & \hline .51 \\ & \hline(13) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline .63 \\ (16) \end{array}$	$\begin{array}{\|l\|} \hline 1.97 \\ (50) \end{array}$	$\begin{aligned} & 1.06 \\ & (27) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 1.57 \\ (40) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 5.91 \\ (150) \end{array}$	$\begin{aligned} & 9.64 \\ & (244.8) \end{aligned}$	$\begin{array}{\|l} \hline .35 x .59 \\ (9 x 15) \end{array}$	$\begin{array}{\|l\|} \hline .18 \\ (4.6) \end{array}$	$\begin{array}{\|l\|} \hline .51 \\ \hline(13) \\ \hline \end{array}$	$\begin{aligned} & \hline .37 \\ & (9.5) \end{aligned}$	$\begin{array}{\|l\|} \hline 683 \\ (310) \\ \hline \end{array}$

Note: 9000X FR14 is built of two FR13 modules. Please refer to SPX9000 installation manual for mounting instructions.
Note: FR13 is built from an inverter module and a converter module. Please refer to SPX9000 installation manual for mounting instructions.

Open Drives

Figure 40-35. 9000X Dimensions, FR13 Open Chassis Converter
Table 40-111. FR13 - Number of Input Units

480V	hp	Input Modules	690V	hp	Input Modules
SPX800A0-4A2N1	800	2	SPX800A0-5A2N1	800	2
			SPX900A0-5A2N1	900	2
			SPXH10A0-5A2N1	1000	2

Table 40-112. Dimensions for 9000X, FR13 Open Chassis Converter

Frame Size	Approximate Dimensions in Inches (mm)																						Weight lbs. (kg)
	W1	W2	W3	W4	W5	H1	H2	H3	H4	H5	D1	D2	D3	D4	D5	D6	D7	D8	D9	Dia. 1	Dia. 2	Dia. 3	
FR13	$\begin{array}{\|l\|} \hline 18.74 \\ (476) \end{array}$	$\begin{aligned} & 5.91 \\ & (150) \end{aligned}$	$\begin{array}{\|l\|} \hline 17.52 \\ (445) \end{array}$	$\begin{array}{\|l\|} \hline 4.57 \\ (116) \end{array}$	$\begin{array}{\|l\|} \hline 3.35 \\ (85) \end{array}$	$\begin{array}{l\|} \hline 41.54 \\ (1055) \end{array}$	$\begin{array}{\|l\|} \hline 2.46 \\ (62.5) \end{array}$	$\begin{array}{\|l\|} \hline 39.86 \\ (1012.5) \end{array}$	$\begin{array}{\|l\|} \hline 41.34 \\ (1050) \end{array}$	$\begin{array}{\|l\|} \hline .69 \\ (17.5) \end{array}$	$\begin{array}{l\|} \hline 14.69 \\ (373) \end{array}$	$\begin{array}{\|l\|} \hline .51 \\ (13) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline .73 \\ (18.5) \end{array}$	$\begin{array}{\|l\|} \hline 6.42 \\ (163) \end{array}$	$\begin{array}{\|l\|} \hline 2.56 \\ (65) \end{array}$	$\begin{array}{\|l\|} \hline 1.06 \\ (27) \end{array}$	$\begin{array}{\|l\|} \hline 1.57 \\ (40) \end{array}$	$\begin{array}{\|l\|} \hline 5.91 \\ (150) \end{array}$	$\begin{array}{\|l\|} \hline 5.24 \\ (133) \end{array}$	$\begin{array}{\|l\|} \hline .35 x .59 \\ (9 \times 15) \end{array}$	$\begin{array}{\|l\|} \hline .51 \\ (13) \end{array}$	$\begin{array}{\|l\|} \hline .37 \\ (9.5) \end{array}$	$\begin{aligned} & \hline 295 \\ & (134) \end{aligned}$

Open Drives

Figure 40-36. 9000X Dimensions, FR13 Open Chassis Converter - 900/1000 hp 480V
Table 40-113. FR13 - Number of Input Units

480V	hp	Input Modules
SPX900A0-4A2N1	900	3
SPXH10A0-4A2N1	1000	3

Table 40-114. Dimensions for 9000X, FR13 Open Chassis Converter - 900/1000 hp 480V

Frame Size	Approximate Dimensions in Inches (mm)																							Weight lbs. (kg)
	W1	W2	W3	W4	W5	H1	H2	H3	H4	H5	D1	D2	D3	D4	D5	D6	D7	D8	D9	Dia. 1	Dia. 2	Dia. 3	Dia. 4	
FR13	$\begin{array}{l\|} \hline 27.87 \\ (708) \end{array}$	$\begin{aligned} & 5.91 \\ & (150) \end{aligned}$	$\begin{array}{l\|} \hline 26.65 \\ (677) \end{array}$	$\begin{aligned} & 4.57 \\ & (116) \end{aligned}$	$\begin{array}{\|l\|} \hline 3.35 \\ (85) \end{array}$	$\begin{array}{l\|} \hline 41.54 \\ (1055) \end{array}$	$\begin{array}{\|l\|} \hline 2.46 \\ (62.5) \end{array}$	$\begin{array}{\|l\|} \hline 39.86 \\ (1012.5) \end{array}$	$\begin{array}{\|l\|} \hline 41.34 \\ (1050) \end{array}$	$\begin{array}{\|l\|} \hline .69 \\ (17.5) \end{array}$	$\begin{array}{\|l\|} \hline 14.69 \\ (373) \end{array}$	$\begin{array}{\|l\|} \hline .51 \\ \hline(13) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline .73 \\ (18.5) \end{array}$	$\begin{array}{\|l\|} \hline 6.42 \\ (163) \end{array}$	$\begin{aligned} & 2.56 \\ & (65) \end{aligned}$	$\begin{aligned} & 1.06 \\ & (27) \end{aligned}$	$\begin{array}{\|l\|} \hline 1.57 \\ (40) \end{array}$	$\begin{aligned} & 5.91 \\ & (150) \end{aligned}$	$\begin{array}{\|l\|} \hline 5.24 \\ (133) \end{array}$	$\begin{array}{\|l\|} \hline .35 \times .59 \\ (9 x 15) \end{array}$	$\begin{array}{\|l\|} \hline .18 \\ \hline(4.6) \end{array}$	$\begin{array}{\|l\|} \hline .51 \\ \hline(13) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline .37 \\ (9.5) \\ \hline \end{array}$	$\begin{aligned} & 443 \\ & (201) \end{aligned}$

Table 40-115. Choke Types

Catalog Number	Frame Size	Choke Type
Voltage Range 380-500V		
SPX 2504	FR10	CHK0400
SPX 3004	FR10	CHK0520
SPX 3504	FR10	CHK0520
SPX 4004	FR11	$2 \times$ CHK0400
SPX 5004	FR11	$2 \times$ CHK0400
SPX 5504	FR11	$2 \times$ CHK0400
SPX 6004	FR12	$2 \times$ CHK0520
SPX 6504	FR12	$2 \times$ CHK0520
SPX 7004	FR12	$2 \times$ CHK0520
SPX 8004	FR13	$2 \times$ CHK0400
SPX 9004	FR13	$3 \times$ CHK0520
SPX H10 4	FR13	$3 \times$ CHK0520
SPX H12 4	FR14	$4 \times$ CHK0520
SPX H16 4	FR14	$6 \times$ CHK0400
Voltage Range 525-690V		
SPX 2005	FR10	CHK0261
SPX 2505	FR10	CHK0400
SPX 3005	FR10	CHK0400
SPX 4005	FR11	CHK0520
SPX 4505	FR11	CHK0520
SPX 5005	FR11	$2 \times$ CHK0400
SPX 5505	FR12	$2 \times$ CHK0400
SPX 6005	FR12	$2 \times$ CHK0400
SPX 7005	FR12	$2 \times$ CHK0400
SPX 8005	FR13	$2 \times$ CHK0400
SPX 9005	FR13	$2 \times$ CHK0400
SPX H10 5	FR13	$2 \times$ CHK0400
SPX H135	FR14	$4 \times$ CHK0400
SPX H15 5	FR14	$6 \times$ CHK0400

(1) Chokes are provided with all FR10 - FR14 drives.

Figure 40-37. Dimensions of AC Choke CHK0520 in Inches (mm)

Figure 40-38. Dimensions of AC Choke CHKO400 in Inches (mm)

Figure 40-39. Dimensions of AC Choke CHK0261 in Inches (mm)

Open Drives

Spare Units \& Replacement Parts

Table 40-116. 9000X Spare Units - SVX9000, 208-690V, Frames 4-12

Description	Catalog Number	Price U.S. \$
Control Unit - Includes the control board, blue base housing, installed SVX9000 software program and blue flip cover. Does not include any OPT boards or keypad. See Figure 40-21 and Table 40-85 (Page 40-58) for stan- dard and option boards and keypad.	CSBS00000000000	

Table 40-117. 9000X Series Replacement Parts - SVX9000 Drives, 208-240V

Frame:	4					5			6		7			8			Delivery Code	Catalog Number	$\begin{array}{\|l} \hline \text { Price } \\ \text { U.S. S } \end{array}$
hp (I_{H}):	3/4	1	1-1/2	2	3	5 (1)	5	7-1/2	10	15	20	25	30	40	50	60			
Control Board																			
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	W	VB00252	
Power Boards																			
	1																FB	VB00308-0004-2	
		1															FB	VB00308-0007-2	
			1														FB	VB00308-0008-2	
				1													FB	VB00310-0011-2	
					1												FB	VB00310-0012-2	
						1											FB	VB00313-0017-2	
							1										FB	VB00313-0025-2	
								1									FB	VB00313-0031-2	
									1								FB	VB00316-0048-2	
										1							FB	VB00316-0061-2	
											1						FB	VB00319-0075-2	
												1					FB	VB00319-0088-2	
													1				FB	VB00319-0114-2	
														1			FB	VB00322-0140-2	
															1		FB	VB00322-0170-2	
																1	FB	VB00322-0205-2	
Electrolytic Capacitors																			
	2	2	2														W	PP01000	
				2	2												W	PP01001	
						2	2										W	PP01002	
								2									W	PP01003	
									2	2							W	PP01004	
											2	2	2	4	4		W	PP01005	
																4	W	PP01099	
Cooling Fans																			
	1	1	1	1	1												W	PP01060	
						1	1	1									W	PP01061	
									1	1							W	PP01062	
											1	1	1				W	PP01063	
														1	1	1	FC	PP01123 ${ }^{(2)}$	
	1	1	1	1	1												W	PP01086	
						1	1	1	1	1							FC	PP01088	
											1	1	1				W	PP01049	
														1	2	2	FC	CP01180	
														1	1	1	FC	PP08037	

[^8](2) PP00061 capacitor not included in main fan; please order separately.

Table 40-117. 9000X Series Replacement Parts — SVX9000 Drives, 208-240V (Continued)

Frame:	4					5			6		7			8			Delivery Code	Catalog Number	$\begin{aligned} & \text { Price } \\ & \text { U.S. \$ } \end{aligned}$
hp ($\mathbf{l}_{\mathbf{H}}$):	3/4	1	1-1/2	2	3	$5{ }^{1}$	5	7-1/2	10	15	20	25	30	40	50	60			
IGBT Modules																			
	1	1															W	CP01304	
			1														W	CP01305	
				1	1	1											W	CP01306	
							1										W	CP01307	
								1									W	CP01308	
									1								W	PP01022	
										1							W	PP01023	
											1						W	PP01024	
												1					W	PP01025	
													1				W	PP01029	
														1			W	PP01026	
															1	1	W	PP01027	
Choppers/Rectifiers																			
									1								W	CP01367	
										1							W	CP01368	
	Diode/Thyristor Modules																		
											3	3	3				W	PP01035	
														3	3	3	W	CP01268	
	Rectifying Boards																		
											1	1	1				W	VB00242	
														1	1	1	W	VB00227	

(1) I_{L} only; has no corresponding I_{H} rated hp rating.

Table 40-118. 9000X Series Replacement Parts - FR4 - FR9 SVX9000 Drives, 380-500V

Frame:	4						5			6			7				8			9		Delivery Code	Catalog Number	Price U.S. \$
hp (\mathbf{H}_{H}):	1	1-1/2	2	3	5	7-1/2 ${ }^{(2)}$	7-1/2	10	15	20	25	30		40	50	60	75	100	125	150	200			
Control Board																								
	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	W	VB00252	
Power Boards																								
	1																					FB	VB00208-0003-5	
		1																				FB	VB00208-0004-5	
			1																			FB	VB00208-0005-5	
				1																		FB	VB00208-0007-5	
					1																	FB	VB00208-0009-5	
						1																FB	VB00210-0012-5	
							1															FB	VB00213-0016-5	
								1														FB	VB00213-0022-5	
									1													FB	VB00213-0031-5	
										1												FB	VB00216-0038-5	
											1											FB	VB00216-0045-5	
												1										FB	VB00216-0061-5	
														1								FB	VB00219-0072-5	
															1							FB	VB00219-0087-5	
																1						FB	VB00219-0105-5	
																	1					FB	VB00236-0140-5	
																		1				FB	VB00236-0168-5	
																			1			FB	VB00236-0205-5	
	Electrolytic Capacitors																							
	2	2	2	2																		W	PP01000	
					2	2																W	PP01001	
							2	2														W	PP01002	
									2													W	PP01003	
										2	2	2										W	PP01004	
														2	2	2	4	4	4	8	8	W	PP01005	

[^9]
Open Drives

Table 40-118. 9000X Series Replacement Parts — FR4 - FR9 SVX9000 Drives, 380 - 500V (Continued)

Frame:	4						5			6				7			8				9		Delivery Code	Catalog Number	$\begin{array}{\|l\|} \hline \text { Price } \\ \text { U.S. } \$ \end{array}$
hp (H_{H}):	1	1-1/2	2	3	5	7-1/2 ${ }^{1}$	7-1/2	10	15	20	25		30	40	50	60	75		100	125	150	200			
Cooling Fans																									
	1	1	1	1	1	1																	W	PP01060	
							1	1	1														W	PP01061	
										1	1		1										W	PP01062	
														1	1	1							W	PP01063	
					-												1	1	1	1			FC	PP01123 (2)	
																					1	1	FC	PP01080 ${ }^{(3)}$	
	1	1	1	1	1	1																	W	PP01086	
							1	1	1														FC	PP01088	
										1	1		1	1	1	1							W	PP01049	
																	1	1	1	1			FC	CP01180	
																					$1{ }^{4}$	2	W	PP01068	
																					1	1	FC	PP09051	
	IGBT Modules																								
	1	1	1																				W	CP01304	
				1	1																		W	CP01305	
						1	1																W	CP01306	
								1															W	CP01307	
									1														W	CP01308	
										1													W	PP01020	
											1												W	PP01022	
													1										W	PP01023	
														1									W	PP01024	
															1								W	PP01025	
																1							W	PP01029	
																	1						W	PP01026	
																		1	1	1			W	PP01027	
	Chopper/Rectifiers																								
										1	1												W	CP01367	
													1										W	CP01368	
	Diode/Thyristor Modules																								
														3	3	3							W	PP01035	
																	3	3	3	3			W	CP01268	
																					3	3	W	PP01037	
	Rectifying Boards																								
														1	1	1							W	VB00242	
																	1	1	1	1			W	VB00227	
																					1	1	W	VB00459	
	Rectifying Module Sub-assembly																								
																					1	1	W	FR09810	
	Power Module Sub-assemblies																								
																					1		W	FR09-150-4-ANS (5)	
																						1	W	FR09-200-4-ANS ${ }^{5}$	

[^10]${ }^{2}$ PP00061 capacitor not included in main fan; please order separately.
${ }^{3}$ PP00011 capacitor not included in main fan; please order separately.
(4) For FR9 NEMA Type 12 you need two PP01068 internal fans.
(5) See Table 40-122 for details.

Table 40-119. 9000X Series Replacement Parts - FR10 - FR12 SVX9000 Drives, 380 - 500V

Frame:	10			11			12			Delivery Code	Catalog Number	Price U.S. \$
hp (l_{H}):	250	300	350	400	500	550	600	650	700			
	Control Board											
	1	1	1	1	1	1	1	1	1	W	VB00561 ${ }^{1}$	
	Shunt Boards											
	6									FC	VB00537	
		6								FC	VB00497	
			6				12	12	12	FC	VB00498	
				9						FC	VB00538	
					9					FC	VB00513	
						9				FC	VB00514	
	Driver Boards											
				3	3	3				FC	VB00489	
	1	1	1				2	2	2	FC	VB00487	
	Driver Adapter Board											
	1	1	1				2	2	2	FC	VB00330	
	ASIC Board											
	1	1	1	1	1	1	2	2	2	FC	VB00451	
	Feedback Interface Board											
							2	2	2	FC	VB00448	
	Star Coupler Board											
							1	1	1	FC	VB00336	
	Power Modules											
	1	1	1	2	2	2	2	2	2	FC	FR10820 ${ }^{(2)}$	
	2	2	2							FC	FR10828	
	1									FC	FR10-250-4-ANS ${ }^{(3)}$	
		1								FC	FR10-300-4-ANS ${ }^{(3)}$	
			1				2	2	2	FC	FR10-350-4-ANS ${ }^{(3)}$	
				3						FC	FR11-400-4-ANS (3)	
					3					FC	FR11-500-4-ANS (3)	
						3				FC	FR11-550-4-ANS ${ }^{3}$	
	Electrolytic Capacitors											
	2	2	2	3	3	3	4	4	4	FC	PP00060	
	12	12	12	18	18	18	24	24	24	FC	PP01005	
	Fuses											
	1	1	1	1	1	1	2	2	2	FC	PP01094	
	2	2	2	2	2	2	4	4	4	FC	PP01095	
	Cooling Fans and Isolation Transformers											
	2	2	2	3	3	3	4	4	4	FC	VB00299	
	2	2	2	3	3	3	4	4	4	FC	PP01080 ${ }^{4}$	
	2	2	2				4	4	4	FC	PP01068	
	1	1	1	1	1	1	2	2	2	FC	PP01096	
	1	1	1				2	2	2	FC	FR10844	
	1	1	1	3	3	3	2	2	2	FC	FR10845	
	1	1	1				2	2	2	FC	FR10846	
	1	1	1	3	3	3	2	2	2	FC	FR10847	
	Rectifying Board											
	1	1	1	2	2	2	2	2	2	FC	VB00459	

[^11](2) Rectifying board not included.
(3) See Table 40-122 for details.
(4) PP00060 capacitor not included in main fan; please order separately.

Open Drives

Table 40-120. 9000X Series Replacement Parts — FR6 - FR9 SVX9000 Drives, 525 - 690V

Frame:	6									7		8			9				Delivery Code	Catalog Number	Price U.S. \$
hp ($\mathbf{I}_{\mathbf{H}}$):	2	3	$5{ }^{1}$	5	7-1/2	10	15	20	25	30	40	50	60	75	100	125	150	$200{ }^{(1)}$			
Control Board																					
	1	1	1	1	1	1	1	1	1	1	1					1	1	1	W	VB00252	
Driver Board																					
	1																		FB	VB00404-0004-6	
		1																	FB	VB00404-0005-6	
			1																FB	VB00404-0007-6	
				1															FB	VB00404-0010-6	
					1														FB	VB00404-0013-6	
						1													FB	VB00404-0018-6	
							1												FB	VB00404-0022-6	
								1											FB	VB00404-0027-6	
									1										FB	VB00404-0034-6	
Power Boards																					
										1									FB	VB00419-0041-6	
											1								FB	VB00419-0052-6	
												1							FB	VB00422-0062-6	
													1						FB	VB00422-0080-6	
														1					FB	VB00422-0100-6	

Electrolytic Capacitors

2	2	2	2	2	2	2	2	2										FC	PP01093		
									2	2	4	4		8	8	8	8	FC	PP01041		
													4					FC	PP01040		

Fuses																				
										1	1	1	1	1	1	1	W	PP01094		
										2	2	2	2	2	2	2	W	PP01095		

Cooling Fans																	
1	1	1	1	1													
					1	1	1	1									
									1	1							
											1	1	1				
1	1	1	1	1	1	1	1	1	1	1							
											1	1	1				
														1	1	1	$1{ }^{3}$
														1	1	1	1

														1	1	1	FC	VB00299	
IGBT Modules																			
3	3	3	3	3	3	3	3	3									FC	PP01091	
									1	1							FC	PP01089	
											1	1	1				FC	PP01127	

									3		3											FC	PP01071		
																3		3		3	3	FC	PP01072		
Rectifying Boards																									
									1		1											FC	VB00442		
																1		1		1	1	FC	VB00460		

(1) I_{L} only; has no corresponding I_{H} rated hp rating.
(2) See Table 40-122 for details.
${ }^{(3)}$ For NEMA Type 12, two PP01068 internal fans are needed.

Open Drives

Table 40-121. 9000X Series Replacement Parts - FR10 - FR12 SVX9000 Drives, 525-690V

Frame:	10			11			12			Delivery Code	Catalog Number	Price U.S. \$
hp (l_{H}):	200	250	300	400	450	500	550	600	700			
Component Boards												
	1	1	1	1	1	1	1	1	1	W	VB00561 ${ }^{1}$	
	1	1	1	1	1	1	2	2	2	FC	VB00451	
	6									FC	VB00545	
		6								FC	VB00510	
			6				12	12	12	FC	VB00511	
	1	1	1				2	2	2	FC	VB00330	
	1	1	1				2	2	2	FC	VB00487	
				3	3	3				FC	VB00489	
				9						FC	VB00546	
					9					FC	VB00547	
						9				FC	VB00512	
							2	2	2	FC	VB00448	
							1	1	1	FC	VB00336	
	Power Modules											
	1	1	1	2	2	2	2	2	2	FC	FR10821 ${ }^{(2)}$	
	2	2	2							FC	FR10829	
	1									FC	FR10-200-5-ANS ${ }^{(3)}$	
		1								FC	FR10-250-5-ANS ${ }^{(3)}$	
			1				2	2	2	FC	FR10-300-5-ANS ${ }^{(3)}$	
				3						FC	FR11-400-5-ANS ${ }^{(3)}$	
					3					FC	FR11-450-5-ANS ${ }^{(3)}$	
						3				FC	FR11-500-5-ANS ${ }^{3}$	
	Electrolytic Capacitors											
	2	2	2	3	3	3	4	4	4	FC	PP00060	
	12	12	12	18	18	18	24	24	24	FC	PP01099	
	Fuses											
	1	1	1	1	1	1	2	2	2	FC	PP01094	
	2	2	2	2	2	2	4	4	4	FC	PP01095	
	Cooling Fans and Isolation Transformers											
	2	2	2	3	3	3	4	4	4	FC	VB00299	
	2	2	2	3	3	3	4	4	4	FC	PP01080 ${ }^{(4)}$	
	2	2	2				4	4	4	FC	PP01068	
	1	1	1	1	1	1	2	2	2	FC	PP01096	
	1	1	1				2	2	2	FC	FR10844	
	1	1	1	3	3	3	2	2	2	FC	FR10845	
	1	1	1				2	2	2	FC	FR10846	
	1	1	1	3	3	3	2	2	2	FC	FR10847	
	Fan Power Supply											
							1	1	1	FC	VB00299	
	Rectifying Boards											
	1	1	1	2	2	2	2	2	2	FC	VB00460	

(1) SPX9000 Drives only (FR10 and larger).
(2) Rectifying board not included.
(3) See Table 40-122 for details.
(4) PP00060 capacitor not included in main fan; please order separately.

Table 40-122. Power Module Catalog Number Matrix

Enclosed Drives

SVX9000 Enclosed Drives

Product Description

■ Standard Enclosed - covers a wide range of the most commonly ordered options. Pre-engineering eliminates the lead time normally associated with customer specific options.
■ Modified Standard Enclosed applies to specific customer requirements that vary from the Standard Enclosed offering, such as the need for an additional indicating light or minor modifications to drawings. Consult your Eaton representative for assistance in pricing and lead time.
■ Custom Engineered - for those applications with more unique or complex requirements, these are individually engineered to the customer's needs. Consult your Eaton representative for assistance in pricing and lead time.

Features

■ NEMA Type 1 or Type 12 enclosures
■ Input Voltage: 208V, 230V, 480V and 575V (Consult Factory)
■ Complete range of control, network and power options
■ Horsepower range:

- $208 \mathrm{~V}-3 / 4$ to $100 \mathrm{hp} \mathrm{I}_{\mathrm{H}}$; 1 to $100 \mathrm{hp} \mathrm{L}_{\mathrm{L}}$
- $230 \mathrm{~V}-3 / 4$ to $100 \mathrm{hp} \mathrm{I}_{\mathrm{H}}$; 1 to $100 \mathrm{hp} \mathrm{I}_{\mathrm{L}}$
- $480 \mathrm{~V}-1$ to $700 \mathrm{hp} \mathrm{I}_{\mathrm{H}}$; 1-1/2 to $800 \mathrm{hp} \mathrm{l}_{\mathrm{L}}$
■ HMCP padlockable

Standards and Certifications
■ UL Listed
■ cUL Listed

40

Figure 40-40. Power Diagram for Bypass Options RB and RA

Technical Data and Specifications

Table 40-123. Specifications

Feature Description	9000X Enclosed Products NEMA Type 1 or NEMA Type 12
Primary Design Features	
$45-66$ Hz Input Frequency	Standard
Output: AC Volts Maximum	Input Voltage Base
Output Frequency Range: Hz	0-320
Initial Output Current (l_{H})	250\% for 2 seconds
Overload: 1 Minute ($\mathrm{I}_{\mathrm{H}} / \mathrm{l}_{\mathrm{L}}$)	150\%/110\%
Enclosure Space Heater	Optional
Oversize Enclosure	Standard
Output Contactor	Optional
Bypass Motor Starter	Optional
Listings	UL, cUL
Protection Features	
Incoming Line Fuses	Optional
AC Input Circuit Disconnect	Optional
Line Reactors	Standard
Phase Rotation Insensitive	Standard
EMI Filter	Standard
Input Phase Loss Protection	Standard
Input Overvoltage Protection	Standard
Line Surge Protection	Standard
Output Short Circuit Protection	Standard
Output Ground Fault Protection	Standard
Output Phase Protection	Standard
Overtemperature Protection	Standard
DC Overvoltage Protection	Standard
Drive Overload Protection	Standard
Motor Overload Protection	Standard
Programmer Software	Optional
Local/Remote Keypad	Standard
Keypad Lockout	Standard
Fault Alarm Output	Standard
Built-In Diagnostics	Standard
Input/Output Interface Features	
Setup Adjustment Provisions: Remote Keypad/Display Personal Computer	Standard Standard
Operator Control Provisions: Drive Mounted Keypad/Display Remote Keypad/Display Conventional Control Elements Serial Communications 115V AC Control Circuit	Standard Standard Standard Optional Optional
Speed Setting Inputs: Keypad 0 - 10V DC Potentiometer/Noltage Signal 4-20 mA Isolated 4-20 mA Differential 3-15 psig	Standard Standard Configurable Configurable Optional
Analog Outputs: Speed/Frequency Torque/Load/Current Motor Voltage Kilowatts 0 - 10V DC Signals 4-20 mA DC Signals Isolated Signals	Standard Programmable Programmable Programmable Configurable w/Jumpers Standard Optional

Feature Description	9000X Enclosed Products NEMA Type 1 or NEMA Type 12
Input/Output Interface Features (Continued)	
Discrete Outputs: Fault Alarm Drive Running Drive at Set Speed Optional Parameters Dry Contacts Open Collector Outputs Additional Discrete Outputs	Standard Standard Programmable 14 1 (2 Relays Form C) 1 Optional
Communications: RS-232 RS-422/485 DeviceNet ${ }^{\text {TM }}$ Modbus RTU CanOpen (Slave) Profibus-DP Lonworks Johnson Controls Metasys ${ }^{\text {TM }}$ N2	Standard Optional
Performance Features	
Sensorless Vector Control	Standard
Volts/Hertz Control	Standard
IR and Slip Compensation	Standard
Electronic Reversing	Standard
Dynamic Braking	Optional ${ }^{(1)}$
DC Braking	Standard
PID Setpoint Controller	Programmable
Critical Speed Lockout	Standard
Current (Torque) Limit	Standard
Adjustable Acceleration/Deceleration	Standard
Linear or S Curve Accel/Decel	Standard
Jog at Preset Speed	Standard
Thread/Preset Speeds	7
Automatic Restart	Selectable
Coasting Motor Start	Standard
Coast or Ramp Stop Selection	Standard
Elapsed Time Meter	Optional
Carrier Frequency Adjustment	$1-16 \mathrm{kHz}$
Standard Conditions for Application and Service	
Operating Ambient Temperature	$0-40^{\circ} \mathrm{C}$
Storage Temperature	$-40-60^{\circ} \mathrm{C}$
Humidity (Maximum), Non-condensing	95\%
Altitude (Maximum without Derate)	3300 ft. (1000m)
Line Voltage Variation	+10/-15\%
Line Frequency Variation	$45-66 \mathrm{~Hz}$
Efficiency	>96\%
Power Factor (Displacement)	>.94

(1) Some horsepower units include dynamic braking chopper as standard - refer to individual drive sections.

Table 40-124. Standard I/O Specifications

Description	Specification
6 - Digital Input Programmable	$24 \mathrm{~V}:$ " 0 " $\leq 10 \mathrm{~V}, " 1 " \geq 18 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}>5 \mathrm{k} \Omega$
2 - Analog Input Configurable w/Jumpers	Voltage: $0- \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}>200 \mathrm{k} \Omega$ Current: $0(4)-20 \mathrm{~mA}, \mathrm{R}_{\mathrm{i}}=250 \mathrm{k} \Omega$
2 - Digital Output Programmable	Form C Relays 250 V AC 2 Amp or 30 V DC2 Amp resistive
1 - Digital Output Programmable	Open collector 48V DC 50 mA
1 - Analog Output Programmable Configurable w/Jumper	$0-20 \mathrm{~mA}$, impedance 500 ohms, resolution $106 \pm 3 \%$

Catalog Number Selection

Table 40-125. SVX9000 Enclosed NEMA Type 1/12 Drive Catalog Numbering System

[^12]
Control/Communication Option Descriptions

Table 40-126. Available Control/Communications Options

Option	Description	Option Type
K1	Door-Mounted Speed Potentiometer - Provides the SVX9000 with the ability to adjust the frequency reference using a doormounted potentiometer. This option uses the 10V DC reference to generate a $0-10 \mathrm{~V}$ signal at the analog voltage input signal terminal. When the HOA bypass option is added, the speed is controlled when the HOA switch is in the hand position. Without the HOA bypass option, a 2-position switch (labeled local/remote) is provided on the keypad to select speed reference from the Speed Potentiometer or a remote speed signal.	Control
K2	Door-Mounted Speed Potentiometer with HOA Selector Switch — Provides the SVX9000 with the ability to start/stop and adjust the speed reference from door-mounted control devices or remotely from customer supplied inputs. In HAND position, the drive will start and the speed is controlled by the door-mounted speed potentiometer. The drive will be disabled in the OFF position. When AUTO is selected, the drive run and speed control commands are via user-supplied dry contact and $4-20 \mathrm{~mA}$ signal.	Control
K3	3-15 psig Follower - Provides a pneumatic transducer which converts a 3-15 psig pneumatic signal to either 0-8V DC or a $1-9 V$ DC signal interface with the SVX9000. The circuit board is mounted on the inside of the front enclosure panel and connects to the user's pneumatic control system via 6 ft . (1.8 m) of flexible tubing and a $1 / 4$ inch (6.4 mm) brass tube union.	Control
K4	HAND/OFF/AUTO Switch for Non-bypass Configurations - Provides a three-position selector switch that allows the user to select either a Hand or Auto mode of operation. Hand mode is defaulted to keypad operation, and Auto mode is defaulted to control from an external terminal source. These modes of operation can be configured via programming to allow for alternate combinations of start and speed sources. Start and speed sources include Keypad, I/O and FieldBus.	Control
K5	MANUAL/AUTO Speed Reference Switch - Provides a door-mounted selector switch for Manual/Auto speed reference.	Control
K6	START/STOP Pushbuttons - Provides door-mounted START and STOP pushbuttons for either bypass or non-bypass configurations.	Control
KB	115V Control Transformer - 550 VA - Provides a fused control power transformer with additional 550 VA at 115V for customer use.	Control
KF	Bypass Test Switch for RB and RA - Allows the user to energize the AF drive for testing while operating the motor on the bypass controller. The Test Switch is mounted on the inside of the enclosure door.	Addl. Bypass
KO	Standard Elapsed Time Meter - Provides a door-mounted elapsed run time meter.	Control
L1	Power On and Fault Pilot Lights - Provides a white power on light that indicates power to the enclosed cabinet and a red fault light indicates a drive fault has occurred.	Light
L2	Bypass Pilot Lights for RB, RA Bypass Options - A green light indicates when the motor is running in inverter mode and an amber light indicates when the motor is running in bypass mode. The lights are mounted on the enclosure door, above the switches.	Addl. Bypass
LA	Green RUN Light (22 mm) - Provides a green run light that indicates the drive is running.	Light
LD	Green STOP Light (22 mm) - Provides a green stop light that indicates the drive is stopped.	Light
LE	Red Run Pilot Light ($\mathbf{2 2} \mathbf{~ m m}$) - Provides a red run pilot light that indicates the drive is running.	Light
LF	Red STOP Light (22 mm) - Provides a red stop light that indicates the drive is stopped.	Light
LJ	White Power On Light (22 mm) - The 22 mm white light that illuminates when the drive assembly is powered.	Light
LU	Misc. Light (22 mm) - Provides a misc. "user defined" pilot light. User to define light function and color.	Light
P1	Input Disconnect Assembly Rated to $\mathbf{1 0 0}$ kAIC - High Interrupting Motor Circuit Protector (HMCP) that provides a means of short circuit protection for the power cables between it and the SVX9000, and protection from high-level ground faults on the power cable. Allows a convenient means of disconnecting the SVX9000 from the line and the operating mechanism can be padlocked in the OFF position. This is factory mounted in the enclosure.	Input
P2	Disconnect Switch — Disconnect switch option is applicable only with NEMA Type 1 and NEMA Type 12 Freestanding drives. Allows a convenient means of disconnecting the SVX9000 from the line, and the operating mechanism can be padlocked in the OFF position. This is factory-mounted in the enclosure.	Input
P3	Input Line Fuses Rated to $\mathbf{2 0 0}$ kAIC - Provides high-level fault protection of the SVX9000 input power circuit from the load side of the fuses to the input side of the power transistors. This option consists of three 200 kA fuses, which are factory mounted in the enclosure.	Input
P7	MOV Surge Suppressor - Provides a Metal Oxide Varistor (MOV) connected to the line side terminals and is designed to clip line side transients.	Input
PE	Output Contactor - Provides a means for positive disconnection of the drive output from the motor terminals. The contactor coil is controlled by the drive's run or permissive logic. NC and NO auxiliary contacts rated at $10 \mathrm{~A}, 600 \mathrm{~V}$ AC are provided for customer use. Bypass Options RB and RA include an Output Contactor as standard. This option includes a low VA 115V AC fused Control Power Transformer and is factory mounted in the enclosure.	Output
PF	Output Filter - Used to reduce the transient voltage (DV/DT) at the motor terminals. The Output Filter is recommended for cable lengths exceeding 100 ft . 30 m) with a drive of 3 hp and above, for cable lengths of 33 ft . 10 m) with a drive of 2 hp and below, or for a drive rated at $525-690 \mathrm{~V}$. This option is mounted in the enclosure, and may be used in conjunction with a Brake Chopper Circuit.	Output
PG	MotoRx ($\mathbf{3 0 0} \mathbf{- 6 0 0}$ Ft.) $\mathbf{1 0 0 0}$ V/ $\boldsymbol{\mu}$ S DV/DT Filter - Used to reduce transient voltage (DV/DT) and peak voltages at the motor terminals. This option is comprised of a $.5 \%$ line reactor, followed by capacitive filtering and an energy recovery/clamping circuit. Unlike the Output Filter (See option PF), the MotoRx recovers most of the energy from the voltage peaks, resulting in a lower voltage drop to the motor, and therefore conserving power. This option is used when the distance between a single motor and the drive is $300-600$ feet ($91-183 \mathrm{~m}$). This option can not be used with the Brake Chopper Circuit. The Output Filter (option PF) should be investigated as an alternative.	Output
PH	Single Overload Relay - Uses a bimetallic overload relay to provide additional overload current protection to the motor on configurations without bypass options. It is included with the Bypass Configurations for overload current protection in the bypass mode. The Overload Relay is mounted within the enclosure, and is manually resettable. Heater pack included.	Output

Enclosed Drives

Table 40-126. Available Control/Communications Options (Continued)

Option	Description	Option Type
PI	Dual Overload Relays - This option is recommended when a single drive is operating 2 motors and overload current protection is needed for each of the motors. The standard configuration includes two bimetallic overload relays, each sized to protect a motor with 50% of the drive hp rating. For example, a 100 hp drive would include two overload relays sized to protect two 50 hp motors. The relays are mounted within the enclosure, and are manually resettable. Heater packs not included.	Output
PN	Dual Overloads for Bypass - This option is recommended when a single drive is operating 2 motors in the bypass mode and overload current protection is needed for each of the motors. The standard configuration includes two bimetallic overload relays, each sized to protect a motor with 50% of the drive hp rating. For example, a 100 hp drive would include two overload relays sized to protect two 50 hp motors. The relays are mounted within the enclosure, and are manually resettable.	Addl. Bypass
RA	Manual HOA Bypass Controller - The Manual HAND/OFF/AUTO (HOA) - 3-contactor - bypass option provides a means of bypassing the SVX9000, allowing the AC motor to be operated at full speed directly from the AC supply line. This option consists of an input disconnect, a fused control power transformer, and a full voltage bypass starter with a door mounted HOA selector switch and an INVERTER/BYPASS switch. The HOA switch provides the ability to start and stop the drive in the inverter mode. For applications up to 100 hp , a Freedom Series IEC input contactor, a Freedom Series IEC output contactor, and a Freedom Series IEC starter with a bimetallic overload relay is included. For applications above 100 hp , an Advantage input contactor, an Advantage output contactor and an Advantage starter with electronic overload protection is included. The contactors are mechanically and electrically interlocked (see power diagram on Page 40-85).	Bypass
RB	Manual IOB Bypass Controller - The Manual INVERTER/OFF/BYPASS (IOB) - 3-contactor - bypass option provides a means of bypassing the SVX9000, allowing the AC motor to be operated at full speed directly from the AC supply line. This option consists of an input disconnect, a fused control power transformer, and a full voltage bypass starter with a door mounted IOB selector switch. For applications up to 100 hp , a Freedom Series IEC input contactor, a Freedom Series IEC output contactor, and a Freedom Series IEC starter with a bimetallic overload relay is included. For applications above 100 hp , an Advantage input contactor, an Advantage output contactor and an Advantage starter with electronic overload protection is included. The contactors are mechanically and electrically interlocked (see power diagram on Page 40-85).	Bypass
RC	Auto Transfer HOA Bypass Controller - The Manual HAND/OFF/AUTO (HOA) - 3-contactor - bypass option provides a means of bypassing the SVX9000, allowing the AC motor to be operated at full speed directly from the AC supply line. The circuitry provides an automatic transfer of the load to "across the line" operation after a drive trip. This option consists of an input disconnect, a fused control power transformer, and a full voltage bypass starter with a door mounted HOA selector switch and an INVERTER/BYPASS switch. The HOA switch provides the ability to start and stop the drive in either mode. For applications up to 100 hp , a Freedom Series IEC input contactor, a Freedom Series IEC output contactor, and a Freedom Series IEC starter with a bimetallic overload relay is included. For applications above 100 hp , an Advantage input contactor, an Advantage output contactor and an Advantage starter with electronic overload protection is included. The contactors are mechanically and electrically interlocked (see power diagram on Page 40-85). Door-mounted pilot lights are provided which indicate bypass or inverter operation. A green light indicates when the motor is running in inverter mode and an amber light indicates when the motor is running in bypass mode. WARNING: The motor may restart when the overcurrent relay is reset when operating in bypass, unless the IOB selector switch is turned to the OFF position.	Bypass
RD	Auto Transfer IOB Bypass Controller - The Auto INVERTER/OFF/BYPASS (IOB) - 3-contactor - bypass option provides a means of bypassing the SVX9000, allowing the AC motor to be operated at full speed directly from the AC supply line. The circuitry provides an automatic transfer of the load to "across the line" operation after a drive trip. This option consists of an input disconnect, a fused control power transformer, and a full voltage bypass starter with a door mounted IOB selector switch. For applications up to 100 hp , a Freedom Series IEC input contactor, a Freedom Series IEC output contactor, and a Freedom Series IEC starter with a bimetallic overload relay is included. For applications above 100 hp , an Advantage input contactor, an Advantage output contactor and an Advantage starter with electronic overload protection is included. The contactors are mechanically and electrically interlocked (see power diagram on Page 40-85). Door-mounted pilot lights are provided which indicate bypass or inverter operation. A green light indicates when the motor is running in inverter mode and an amber light indicates when the motor is running in bypass mode. WARNING: The motor may restart when the overcurrent relay is reset when operating in bypass, unless the IOB selector switch is turned to the OFF position.	Bypass
S5	Floor Stand 22" - Converts a Size 1 or 2, normally wall mounted enclosure to a floor standing enclosure with a height of 22" (558.8 mm).	Enclosure
S6	Floor Stand 12" - Converts a Size 2, normally wall mounted enclosure to a floor standing enclosure with a height of 12" (304.8 mm).	Enclosure
S7	10" Expansion - In a Size 5 enclosure, the extension allows for bottom cable entry and additional space for customer mounted components. NOTE: Enclosure expansion rated NEMA Type 1 only.	Enclosure
S8	20" Expansion - In a Size 5 enclosure, the extension allows for bottom cable entry and additional space for customer mounted components. When the Output Filter (option PF) is selected for a drive using a Size 5 enclosure, this expansion box is required and included in the option pricing. NOTE: Enclosure expansion rated NEMA Type 1 only.	Enclosure
S9	Space Heater - Prevents condensation from forming in the enclosure when the drive is inactive or in storage. Includes a thermostat for variable temperature control. A 200W heater is installed in enclosures 0 and 1, and a 400W heater is installed in enclosures $2-5$. Requires a customer supplied 115 V remote supply source.	Enclosure

Note: For availability, see Product Selection for base drive voltage required.

9000X Series Option Board Kits

The 9000X Series drives can accommodate a wide selection of expander and adapter option boards to customize the drive for your application needs. The drive's control unit is designed to accept a total of five option boards (see Figure 40-41).

The 9000X Series factory installed standard board configuration includes an A9 I/O board and an A2 relay output board, which are installed in slots A
 and B.

Figure 40-41. 9000X Series Option Boards
Table 40-127. Option Board Kits

Option Kit Description	Allowed Slot Locations	Field Installed		Factory Installed		SVX Ready Programs						
		Catalog Number	Price U.S. \$	Option Designator	Adder U.S. S	Basic	Local/ Remote	Standard	MSS	PID	Multi-P.	PFC

2 RO (NC/NO)	B	OPTA2	-	X	X	X	X	X	X	X
$\begin{aligned} & 6 \mathrm{DI}, 1 \mathrm{DO}, 2 \mathrm{Al}, 1 \mathrm{AO}, 1+10 \mathrm{~V} \text { DC ref, } \\ & 2 \mathrm{ext}+24 \mathrm{~V} \text { DC/EXT + } 24 \mathrm{~V} \text { DC } \end{aligned}$	A	OPTA9	-	X	X	X	X	X	X	X

2 RO, Therm - SPX Only	B	OPTA3	A3	-	X	X	X	X	X	X
$\begin{aligned} & \text { Encoder low volt }+5 \mathrm{~V} / 15 \mathrm{~V} / 24 \mathrm{~V}- \\ & \text { SPX Only } \end{aligned}$	C	OPTA4	A4	-	X	X	X	X	X	X
Encoder high volt $+15 \mathrm{~V} / 24 \mathrm{~V}-$ SPX Only	C	OPTA5	A5	-	X	X	X	X	X	X
Double encoder - SPX Only	C	OPTA7	A7	X	X	X	X	X	X	X
6 DI, 1 DO, 2 AI, 1 AO - SPX Only	A	OPTA8	A8	-	X	X	X	X	X	X
3 DI (Encoder $10-24 \mathrm{~V}$), Out $+15 \mathrm{~V} /+24 \mathrm{~V}$, 2 DO (pulse+direction) - SPX Only	C	OPTAE	AE	X	X	X	X	X	X	X
$\begin{aligned} & \hline 6 \mathrm{DI}, 1 \text { ext } \\ & +24 \mathrm{~V} \text { DC/EXT }+24 \mathrm{~V} \text { DC } \\ & \hline \end{aligned}$	B, C, D, E	OPTB1	B1	-	-	-	-	-	X	X
1 RO (NC/NO), 1 RO (NO), 1 Therm	B, C, D, E	OPTB2	B2	-	-	-	-	-	X	X
$\begin{aligned} & 1 \mathrm{Al} \text { (mA isolated), } 2 \mathrm{AO} \text { (mA isolated), } \\ & 1 \mathrm{ext}+24 \mathrm{~V} \mathrm{DC} / \mathrm{EXT}+24 \mathrm{~V} \mathrm{DC} \end{aligned}$	B, C, D, E	OPTB4	B4	X	X	X	X	X	X	X
3 RO (NO)	B, C, D, E	OPTB5	B5	-	-	-	-	-	X	X
1 ext +24V DC/EXT +24V DC, 3 Pt100	B, C, D, E	OPTB8	B8	-	-	-	-	-	-	-
1 RO (NO), 5 DI 42-240V AC Input	B,C, D, E	OPTB9	B9	-	-	-	-	-	X	X

Communication Cards ${ }^{(3)}$

Modbus	D, E	OPTC2	C2	X	X	X	X	X	X	X
Modbus TCP	D, E	OPTCI	CI	X	X	X	X	X	X	X
BACnet	D, E	OPTCJ	CJ	X	X	X	X	X	X	X
Ethernet IP	D, E	OPTCK	CK	X	X	X	X	X	X	X
Johnson Controls N2	D, E	OPTC2	CA	-	-	-	-	-	-	-
Profibus DP	D, E	OPTC3	C3	X	X	X	X	X	X	X
LonWorks	D, E	OPTC4	C4	X	X	X	X	X	X	X
Profibus DP (D9 Connector)	D, E	OPTC5	C5	X	X	X	X	X	X	X
CanOpen (Slave)	D, E	OPTC6	C6	X	X	X	X	X	X	X
DeviceNet	D, E	OPTC7	C7	X	X	X	X	X	X	X
Modbus (D9 Type Connector)	D, E	OPTC8	C8	X	X	X	X	X	X	X
Adapter - SPX Only	D, E	OPTD1	D1	X	X	X	X	X	X	X
Adapter - SPX Only	D, E	OPTD2	D2	X	X	X	X	X	X	X
RS-232 with D9 Connection	D, E	OPTD3	D3	X	X	X	X	X	X	X

Keypad

9000X Series Local Remote Keypad	-	KEYPADLOC/ REM	-	-	-	-	-	-	-	-
9000X Series Remote Mount Keypad Kit (Keypad not included)	-	$\begin{aligned} & \hline \text { OPTRMT } \\ & \text {-KIT- } \\ & 9000 X \end{aligned}$	-	-	-	-	-	-	-	-
9000X Series RS-232 Cable, 13 ft .	-	PP00104	-	-	-	-	-	-	-	-

(1) Option card must be installed in one of the slots listed for that card. Slot indicated in Bold is the preferred location.
(2) $\mathrm{AI}=$ Analog Input; $\mathrm{AO}=$ Analog Output, DI = Digital Input, DO = Digital Output, RO = Relay Output
(3) OPTC2 is a multi-protocol option card.

Enclosed Drives

Modbus RTU Network Communications

The Modbus Network Card OPTC2 is used for connecting the 9000X Drive as a slave on a Modbus network. The interface is connected by a 9 -pin DSUB connector (female) and the baud rate ranges from 300 to 19200 baud. Other communication parameters include an address range from 1 to 247; a parity of None, Odd or Even; and the stop bit is 1 .

Profibus Network Communications

The Profibus Network Card OPTC3 is used for connecting the 9000X Drive as a slave on a Profibus-DP network. The interface is connected by a 9-pin DSUB connector (female). The baud rates range from 9.6 K baud to 12 M baud, and the addresses range from 1 to 127.

LonWorks Network Communications

The LonWorks Network Card OPTC4 is used for connecting the 9000X Drive on a LonWorks network. This interface uses Standard Network Variable Types (SNVT) as data types. The channel connection is achieved using a FTT-10A Free Topology transceiver via a single twisted transfer cable. The communication speed with LonWorks is $78 \mathrm{kBits} / \mathrm{s}$.

CanOpen (Slave) Communications

The CanOpen (Slave) Network Card OPTC6 is used for connecting the 9000X Drive to a host system. According to ISO11898 standard cables to be chosen for CAN bus should have a nominal impedance of 120Ω, and specific line delay of nominal $5 \mathrm{nS} / \mathrm{m}$. 120Ω line termination resistors required for installation.

DeviceNet Network Communications

The DeviceNet Network Card OPTC7 is used for connecting the 9000X Drive on a DeviceNet Network. It includes a 5.08 mm pluggable connector. Transfer method is via CAN using a 2 -wire twisted shielded cable with 2 -wire bus power cable and drain. The baud rates used for communication include 125 K baud, 250 K baud and 500 K baud.

Johnson Controls Metasys ${ }^{\text {TM }}$ N2 Network Communications

The OPTC2 fieldbus board provides communication between the 9000X Drive and a Johnson Controls Metasys ${ }^{\text {TM }}$ N2 network. With this connection, the drive can be controlled, monitored and programmed from the Metasys system. The N2 fieldbus is available as a factory installed option and as a field installable kit.

Modbus/TCP Network Communications

The Modbus/TCP Network Card OPTCI is used for connecting the 9000X Drive to Ethernet networks utilizing Modbus
protocol. It includes an RJ-45 pluggable connector. This interface provides a selection of standard and custom register values to communicate drive parameters. The board supports 10 Mbps and 100 Mbps communication speeds. The IP address of the board is configurable over Ethernet using a supplied software tool.

BACnet Network Communications

The BACnet Network Card OPTCJ is used for connecting the 9000X Drive to BACnet networks. It includes a 5.08 mm pluggable connector. Data transfer is Master-Slave/Token Passing (MS/TP) RS-485. This interface uses a collection of 30 Binary Value Objects (BVOs) and 35 Analog Value Objects (AVOs) to communicate drive
parameters. The card supports 9.6, 19.2 and 38.4 Kbaud communication speeds and supports network addresses 1 - 127 .

Ethernet/IP Network Communications

The Ethernet/IP Network Card OPTCK is used for connecting the 9000X Drive to Ethernet/Industrial Protocol networks. It includes an RJ-45 pluggable connector. The interface uses CIP objects to communicate drive parameters (CIP is "Common Industrial Protocol", the same protocol used by DeviceNet). The board supports 10 Mbps and 100 Mbps communication speeds. The IP address of the board is configurable by Static, BOOTP and DHCP methods.

Table 40-128. I/O Specifications for the Control/Communication Options

Description	Specifications
Analog voltage, input	$0- \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{i}} \geq 200 \mathrm{k} \Omega$
Analog current, input	0 (4) - $20 \mathrm{~mA}, \mathrm{R}_{\mathrm{i}}=250 \Omega$
Digital Input	24 V : "0" $\leq 10 \mathrm{~V}$, " 1 " $\geq 18 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}>5 \mathrm{k} \Omega$
Aux. voltage	$24 \mathrm{~V}(\pm 20 \%)$, max. 50 mA
Reference voltage	$10 \mathrm{~V} \pm 3 \%$, max. 10 mA
Analog current, output Analog voltage, output	0 (4) - $20 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=500 \mathrm{k} \Omega$, resolution 10 bit, accuracy $\leq \pm 2 \%$ $0(2)-10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 1 \mathrm{k} \Omega$, resolution 10 bit, accuracy $\leq \pm 2 \%$
Relay output Max. switching voltage Max. switching load Max. continuous load	300 V DC, 250 V AC 8A/24V DC, .4A/300V DC, $2 \mathrm{kVA} / 250 \mathrm{~V}$ AC 2A rms
Thermistor input	Rtrip $=4.7 \mathrm{k} \Omega$
Encoder input	$\begin{aligned} & 24 \mathrm{~V}: " 0 " \leq 10 \mathrm{~V}, " 1 " \geq 18 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}=2.2 \mathrm{k} \Omega \\ & 5 \mathrm{~V}: " 0 " \leq 2 \mathrm{~V}, " 1 " \geq 3 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}=330 \Omega \end{aligned}$

SVX Conversion Kit

Table 40-129. SVX Conversion Kit Frame 4-7

Frame Size	Enclosure Size	Catalog Number	Delivery Code	Price U.S. $\mathbf{\$}$
FR4	0	OPTCON-SVXFR4-SZ00	FB10	
FR4	1	OPTCON-SVXFR4-SZ01	FB10	
FR5	0	OPTCON-SVXFR5-SZ00	FB10	
FR5	1	OPTCON-SVXFR5-SZ01	FB10	
FR6	1	OPTCON-SVXFR6-SZ01	FB10	
FR6	2	OPTCON-SVXFR6-SZ02	FB10	
FR7	2	OPTCON-SVXFR7-SZ02	FB10	

Note: The kit consists of a flange kit, adapter plate(s), hardware, remote keypad kit and SVX9000 decal.

Table 40-130. Conformal (Varnished) Coating
Adder-208-240V, 380-500V (1)

Frame	Delivery Code	Adder U.S. \$
FR4	FP	
FR5	FP	
FR6	FP	
FR7	FP	
FR8	FP	
FR9	FP	
FR10	FP	
FR11	FP	
FR12	FP	
FR13	FP	
FR14	FP	

(1) See catalog number description to order.

Product Selection

When Ordering

- Select a Base Catalog Number that meets the application requirements - nominal horsepower, voltage and enclosure rating (the enclosed drive's continuous output amp rating should be equal to or greater than the motor's full load amp rating). The base enclosed package includes a standard drive, door mounted Local/Remote Keypad and enclosure.
- If Dynamic Brake Chopper or Control/Communication option is desired, change the appropriate code in the Base Catalog Number.
- Select Enclosed Options. Add the codes as suffixes to the Base Catalog Number in alphabetical and numeric order.
■ Read all Footnotes.

208V Drives

Table 40-131. 208V AC Input Base Drive

EnclosureSize ${ }^{1}$	hp	Current (A)	NEMA Type 1			NEMA Type 12		
			Frame Size	Base Catalog Number ${ }^{(2)}$	Price U.S. \$ (2)	Frame Size	Base Catalog Number (2)	Price U.S. \$ ${ }^{2}$
208V High Overload Drive and Enclosure								
0	3/4	3.7	4	SVXF0711EA		4	SVXF0721EA	
0	1	4.8	4	SVX00111EA		4	SVX00121EA	
0	1-1/2	6.6	4	SVXF1511EA		4	SVXF1521EA	
0	2	7.8	4	SVX00211EA		4	SVX00221EA	
0	3	11	4	SVX00311EA		4	SVX00321EA	
0	5	17.5	5	SVX00511EA		5	SVX00521EA	
0	7-1/2	25	5	SVX00711EA		5	SVX00721EA	
1	10	31	6	SVX01011EA		6	SVX01021EA	
1	15	48	6	SVX01511EA		6	SVX01521EA	
2	20	61	7	SVX02011DA		7	SVX02021DA	
2	25	75	7	SVX02511DA		7	SVX02521DA	
2	30	88	7	SVX03011DA		7	SVX03021DA	
3	40	114	8	SVX04011DA		8	SVX04021DA	
4	50	143	8	SVX05011DA		8	SVX05021DA	
5	60	170	8	SVX06011DA		8	SVX06021DA	
5	75	211	9	SVX07511DA		9	SVX07521DA	
5	100	273	9	SVX10011DA		9	SVX10021DA	

208V Low Overload Drive and Enclosure

0	1	4.8	4	SVX00111BA		4	SVX00121BA	
0	$1-1 / 2$	6.6	4	SVXF1511BA		4	SVXF1521BA	
0	2	7.8	4	SVX00211BA		4	SVX00221BA	
0	3	11	4	SVX00311BA		4	SVX00321BA	
0	5	17.5	5	SVX00511BA		5	SVX00521BA	
0	$7-1 / 2$	25	5	SVX00711BA		5	SVX00721BA	
0	10	31	5	SVX01011BA		5	SVX01021BA	
1	15	48	6	SVX01511BA		6	SVX01521BA	
1	20	61	6	SVX02011BA		6	SVX02021BA	
2	25	75	7	SVX02511AA		7	SVX02521AA	
2	30	88	7	SVX03011AA		7	SVX03021AA	
2	40	114	7	SVX04011AA		7	SVX04021AA	
3	50	-	8	SVX05011AA		8	SVX05021AA	
4	60	170	8	SVX06011AA		8	SVX06021AA	
5	3	2053^{3}	8	SVX07511AA		8	SVX07521AA	
5	3	2613^{3}	9	SVX10011AA		9	SVX10021AA	

(1) Enclosure dimensions listed on Pages 40-101-40-108.
(2) Includes drive, Local/Remote Keypad and enclosure.
(3) These units are current rated ($75 \mathrm{I}_{\mathrm{L}} \mathrm{hp} 205 \mathrm{Amps}, 100 \mathrm{I}_{\mathrm{L}} \mathrm{hp} 261 \mathrm{Amps}$). They are not hp rated.

Table 40-132. 208V Brake Chopper Adder (4)

$\mathrm{I}_{\mathrm{H}} \mathrm{hp}$	Adder U.S. \$	$l_{L} \mathrm{hp}$	Adder U.S. \$
	NEMA Type 1/12		NEMA Type 1/12
3/4		-	
1			
1-1/2		1-1/2	
2		2	
3		3	
5		5	
7-1/2		7-1/2	
10		10	
15		15	
20		20	
25		25	
30		30	
40		40	
50		50	
60		60	
75		75	
100		100	

[^13]Table 40-133. 208V Control Options

Catalog Number	Door-Mounted Speed Potentiometer	Door-Mounted Speed Potentiometer with HOA Selector Switch	$3-15 \mathrm{psig}$ Follower	HAND/OFF/ AUTO Switch (22 mm)	MANUAL/AUTO Ref Switch (22 mm)	START/STOP Pushbuttons (22 mm)	115 Volt Control Transformer 550 VA	Standard Elapsed Time Meter
Suffix ${ }^{\text {IIC }}$	K1	K2	K3	K4	K5	K6	KB	KO
hp	Adder U.S. S	Adder U.S. \$	Adder U.S. \$	Adder U.S. S	Adder U.S. \$	Adder U.S. S	Adder U.S. S	Adder U.S. S
3/4-100								

Table 40-134. 208V Light Options

Catalog Number	Power On/Fault Pilot Lights (22 mm)	Green RUN Light (22 mm)	Green STOP Light ($\mathbf{2 2} \mathbf{~ m m}$)	Red RUN Light (22 mm)	Red STOP Light (22 mm)	Power On Light (22 mm)	Misc Light (22 mm)
Suffix ${ }^{\text {III }}$	L1	LA	LD	LE	LF	LJ	LU
hp	Adder U.S. S	Adder U.S. \$	Adder U.S. \$	Adder U.S. \$	Adder U.S. \$	Adder U.S. \$	Adder U.S. \$
3/4-100							

Table 40-135. 208V Bypass Options

Catalog Number	Bypass Test Switch for RA, RB	Bypass Pilot Lights for RA, RB Options	Dual Overloads for Bypass	$\begin{array}{\|l} \hline \text { Manual HOA } \\ \text { Bypass } \\ \text { Controller } \\ \hline \end{array}$	Manual IOB Bypass Controller	Auto Transfer HOA Bypass Controller	Auto Transfer IOB Bypass Controller
Suffix ${ }^{\text {III }}$,	KF	L2	PN	RA	RB	RC	RD
hp	Adder U.S. S	Adder U.S. \$					
3/4-7-1/2							
$\begin{aligned} & 10 \\ & 15 \\ & 20 \end{aligned}$							
$\begin{aligned} & 25 \\ & 30 \\ & 40 \end{aligned}$							
$\begin{array}{\|r\|} \hline 50 \\ 60 \\ 75 \\ 100 \end{array}$							

Adjustable Frequency Drives SVX9000

Table 40-136. 208V Enclosure Options

Catalog Number	Floor Stand 22" (558.8 mm)	$\begin{aligned} & \text { Floor Stand } \\ & 12^{\prime \prime}(304.8 \mathrm{~mm}) \end{aligned}$	10" (254 mm) Expansion	20" (508 mm) Expansion	Space Heater ${ }^{(1)}$
Suffix ${ }^{\text {IIM }}$	S5	S6	S7	S8	S9
Enclosure Size	Adder U.S. \$				
0 1 2					
3 4 5					

(1) Requires customer supplied 115 V AC supply.

Table 40-137. 208V Power Options

Catalog Number Suffix IIIC	Input			Output				
	Input Disconnect (HMCP) 100 kAIC	Input Line Fuses 200 kAIC	Input Power Surge Protection	Output Contactor	Output Filter ${ }^{2}$	$\begin{aligned} & \text { MotoRx (300 - } \\ & 600 \mathrm{Ft} \text {.) } \\ & 1000 \mathrm{~V} / \mathrm{\mu S} \\ & \text { DV/DT Filter (2) } \end{aligned}$	Single Overload Relay	Dual Overload Relays
	P1	P3	P7	PE	PF	PG	PH	PI
hp	Adder U.S. \$	Adder U.S. \$	$\begin{array}{\|l\|} \hline \text { Adder } \\ \text { U.S. \$ } \end{array}$	Adder U.S. \$	Adder U.S. S	Adder U.S. \$	$\begin{array}{\|l\|} \hline \text { Adder } \\ \text { U.S. \$ } \end{array}$	Adder U.S. \$
3/4-5								
$\begin{aligned} & \hline 7-1 / 2 \\ & 10 \\ & 15 \\ & 20 \\ & \hline \end{aligned}$								
$\begin{aligned} & 25 \\ & 30 \\ & 40 \end{aligned}$								
$\begin{array}{\|r\|} \hline 50 \\ 60 \\ 75 \\ 100 \end{array}$								

[^14]
230V Drives

Table 40-138. 230V AC Input Base Drive

Enclosure Size ${ }^{(1)}$	hp	Current (A)	NEMA Type 1			NEMA Type 12		
			Frame Size	Base Catalog Number ${ }^{(2)}$	$\begin{array}{\|l\|} \hline \text { Price } \\ \text { U.S. \$ 2 } \end{array}$	Frame Size	Base Catalog Number (2)	$\begin{aligned} & \hline \text { Price } \\ & \text { U.S. \$ }{ }^{(2)} \end{aligned}$
230V High Overload Drive and Enclosure								
0	3/4	3.7	4	SVXF0712EA		4	SVXF0722EA	
0	1	4.8	4	SVX00112EA		4	SVX00122EA	
0	1-1/2	6.6	4	SVXF1512EA		4	SVXF1522EA	
0	2	7.8	4	SVX00212EA		4	SVX00222EA	
0	3	11	4	SVX00312EA		4	SVX00322EA	
0	5	17.5	5	SVX00512EA		5	SVX00522EA	
0	7-1/2	25	5	SVX00712EA		5	SVX00722EA	
1	10	31	6	SVX01012EA		6	SVX01022EA	
1	15	48	6	SVX01512EA		6	SVX01522EA	
2	20	61	7	SVX02012DA		7	SVX02022DA	
2	25	75	7	SVX02512DA		7	SVX02522DA	
2	30	88	7	SVX03012DA		7	SVX03022DA	
3	40	114	8	SVX04012DA		8	SVX04022DA	
4	50	140	8	SVX05012DA		8	SVX05022DA	
5	60	170	8	SVX06012DA		8	SVX06022DA	
5	75	205	9	SVX07512DA		9	SVX07522DA	
5	100	261	9	SVX10012DA		9	SVX10022DA	

230V Low Overload Drive and Enclosure

0	1	4.8	4	SVX00112BA		4	SVX00122BA	
0	$1-1 / 2$	6.6	4	SVXF1512BA		4	SVXF1522BA	
0	2	7.8	4	SVX00212BA		4	SVX00222BA	
0	3	11	4	SVX00312BA		4	SVX00322BA	
0	5	17.5	5	SVX00512BA		5	SVX00522BA	
0	$7-1 / 2$	25	5	SVX00712BA		5	SVX00722BA	
0	10	31	5	SVX01012BA		5	SVX01022BA	
1	15	48	6	SVX01512BA		6	SVX01522BA	
1	20	61	6	SVX02012BA		6	SVX02022BA	
2	25	75	7	SVX02512AA		7	SVX02522AA	
2	30	88	7	SVX03012AA		7	SVX03022AA	
2	40	114	7	SVX04012AA		7	SVX04022AA	
3	50	140	8	SVX05012AA		8	SVX05022AA	
4	60	170	8	SVX06012AA		8	SVX06022AA	
5	75	205	8	SVX07512AA		8	SVX07522AA	
5	3	$261{ }^{3}$	9	SVX10012AA		9	SVX10022AA	

(1) Enclosure dimensions listed on Pages 40-101-40-108.
(2) Includes drive, Local/Remote Keypad and enclosure.
(3) This unit is current rated ($100 \mathrm{I}_{\mathrm{L}} \mathrm{hp} 261 \mathrm{Amps}$). It is not hp rated.

Table 40-139. 230V Brake Chopper Adder (4)

$\mathrm{I}_{\mathrm{H}} \mathrm{hp}$	Adder U.S. \$	$\mathrm{I}_{\mathrm{L}} \mathrm{hp}$	Adder U.S. \$
	NEMA Type 1/12		NEMA Type $1 / 12$
$\begin{aligned} & 13 / 4 \\ & 1 \\ & 1-1 / 2 \\ & 2^{2} \\ & \hline \end{aligned}$		$\begin{array}{\|l\|} \hline-1 \\ 1-1 / 2 \\ 2 \\ \hline \end{array}$	
$\begin{aligned} & \hline 3 \\ & 5 \\ & 7-1 / 2 \\ & 10 \end{aligned}$		$\begin{aligned} & \hline 3 \\ & 5 \\ & 7-1 / 2 \\ & 10 \end{aligned}$	
$\begin{aligned} & 15 \\ & 20 \\ & 25 \\ & 30 \\ & 40 \end{aligned}$		$\begin{aligned} & 15 \\ & 20 \\ & 25 \\ & 30 \\ & 40 \end{aligned}$	
$\begin{array}{\|r} \hline 50 \\ 60 \\ 75 \\ 100 \\ \hline \end{array}$		$\begin{array}{\|r\|} \hline 50 \\ 60 \\ 75 \\ 100 \\ \hline \end{array}$	

[^15] included. Consult factory.

Adjustable Frequency Drives SVX9000

Table 40-140. 230V Control Options

Catalog	Door-Mounted Speed Potentiometer	Door-Mounted Speed Potentiometer with HOA Selector Switch	$3-15 \mathrm{psig}$ Follower	HAND/OFF/ AUTO Switch (22 mm)	MANUAL/AUTO Ref Switch (22 mm)	START/STOP Pushbuttons (22 mm)	115 Volt Control Transformer 550 VA	Standard Elapsed Time Meter
Suffix ${ }^{\text {III }}$,	K1	K2	K3	K4	K5	K6	KB	KO
hp	Adder U.S. \$	Adder U.S. \$	Adder U.S. \$	Adder U.S. \$	Adder U.S. \$	Adder U.S. \$	Adder U.S. \$	Adder U.S. \$
3/4-100								

Table 40-141. 230V Light Options

Catalog Number Suffix IIC	Power On/Fault Pilot Lights (22 mm)	Green RUN Light (22 mm)	Green STOP Light ($\mathbf{2 2} \mathbf{~ m m}$)	Red RUN Light ($\mathbf{2 2} \mathbf{~ m m}$)	Red STOP Light (22 mm)	Power On Light ($\mathbf{2 2} \mathrm{mm}$)	Misc Light (22 mm)
	L1	LA	LD	LE	LF	LJ	LU
hp	Adder U.S. \$	Adder U.S. \$	Adder U.S. \$	$\begin{aligned} & \text { Adder } \\ & \text { U.S. \$ } \end{aligned}$	Adder U.S. \$	Adder U.S. \$	Adder U.S. \$
3/4-100							

Table 40-142. 230V Bypass Options (${ }^{1}$

Catalog	Bypass Test Switch for RA, RB, RC, RD	Bypass Pilot Lights for RA, RB Options	Dual Overloads for Bypass	Manual HOA Bypass Controller	Manual IOB Bypass Controller	Auto Transfer HOA Bypass Controller	Auto Transfer IOB Bypass Controller
Suffix ${ }^{\text {III }}$,	KF	L2	PN	RA	RB	RC	RD
hp	Adder U.S. \$	Adder U.S. \$	Adder U.S. \$	Adder U.S. S	Adder U.S. S	Adder U.S. \$	Adder U.S. S
3/4-10							
$\begin{aligned} & 15 \\ & 20 \end{aligned}$							
$\begin{aligned} & 25 \\ & 30 \\ & 40 \end{aligned}$							
$\begin{array}{r} 50 \\ 60 \\ 75 \\ 100 \end{array}$							

[^16]Adjustable Frequency Drives SVX9000

Table 40-143. 230V Enclosure Options

Catalog Number	Floor Stand 22" (558.8 mm)	$\begin{aligned} & \hline \text { Floor Stand } \\ & 12^{\prime \prime}(304.8 \mathrm{~mm}) \end{aligned}$	10" (254 mm) Expansion	20" (508 mm) Expansion	Space Heater ${ }^{1}$
Suffix ${ }^{\prime \prime} \mathrm{C}$	S5	S6	S7	S8	S9
Enclosure Size	Adder U.S. \$	Adder U.S. \$	Adder U.S. S	Adder U.S. \$	Adder U.S. \$
$\begin{aligned} & \hline 0 \\ & 1 \\ & 2 \end{aligned}$					
3 4 5					

Table 40-144. 230V Power Options

Catalog Number Suffix ${ }^{\prime \prime \prime} \Rightarrow$	Input			Output				
	Input Disconnect (HMCP) 100 kAIC	Input Line Fuses 200 kAIC	Input Power Surge Protection	Output Contactor	Output Filter (2)	$\begin{aligned} & \hline \text { MotoRx (300 - } \\ & 600 \mathrm{Ft} \text {-) } \\ & 1000 \mathrm{~V} / \mathrm{\mu S} \\ & \text { DV/DT Filter } \end{aligned}$	Single Overload Relay	Dual Overload Relays
	P1	P3	P7	PE	PF	PG	PH	PI
hp	Adder U.S. \$	Adder U.S. \$	Adder U.S. S	Adder U.S. S	Adder U.S. \$	Adder U.S. \$	Adder U.S. \$	Adder U.S. S

| $3 / 4-5$ | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $7-1 / 2$ | | | | | | |
| 10 | | | | | | |
| 15 | | | | | | |
| 20 | | | | | | |
| 25 | | | | | | |
| 30 | | | | | | |
| 40 | | | | | | |
| 50 | | | | | | |
| 60 | | | | | | |
| 75 | | | | | | |

(2) Not required for 230 V applications.

480V Drives

Table 40-145. 480V AC Input Base Drive

Enclosure Size ${ }^{1}$	hp	Current (A)	NEMA Type 1			NEMA Type 12		
			Frame Size	Base Catalog Number ${ }^{2}$	Price U.S. $\${ }^{2}$	Frame Size	Base Catalog Number (2)	$\begin{aligned} & \hline \text { Price } \\ & \text { U.S. \$ (2) } \end{aligned}$

High Overload Drive and Enclosure

Low Overload Drive and Enclosure

Enclosure dimensions listed on Pages 40-101 - 40-111.
Includes drive, Local/Remote keypad and enclosure.
${ }^{3}$ Consult Eaton.
(4) The smaller Enclosure Size 6 accommodates only power options, Input Disconnect (P1) and Input Line Fuses (P3). Bypass and other options require Size 8. Adding any standard control option will not require the larger enclosure.
(5) The smaller Enclosure Size 8 accommodates only power options, Input Disconnect (P1) and Input Line Fuses (P3). Bypass and other options require Size 9. Adding any standard control option will not require the larger enclosure.
(6) For other options, consult factory.

Table 40-146. 480V Brake Chopper Adder (8)

$\mathrm{I}_{\mathrm{H}} \mathrm{hp}$	Adder U.S. \$	$\mathrm{l}_{\mathrm{L}} \mathrm{hp}$	Adder U.S. \$
	NEMA Type 1/12		NEMA Type 1/12
,		-	
1-1/2		1-1/2	
2			
3		3	
5		5	
7-1/2		7-1/2	
10		10	
15		15	
20		20	
25		25	
30		30	
40		40	
50		50	
60		60	
75		75	
100		100	
125		125	
150		150	
200		200	
250		250	
300		300	
350		350	
400		400	
500		500	
550		550	
600		600	
650		650	
700		700	
		800	

(7) External dynamic braking resistors not included. Consult factory.

Table 40-147. 480V Light Options

Catalog Number Suffix IIC	Power On/Fault Pilot Lights (22 mm)	Green RUN Light (22 mm)	Green STOP Light ($\mathbf{2 2} \mathbf{~ m m}$)	Red RUN Light (22 mm)	Red STOP Light (22 mm)	Power On Light ($\mathbf{2 2} \mathbf{~ m m}$)	Misc Light (22 mm)
	L1	LA	LD	LE	LF	LJ	LU
hp	Adder U.S. \$	Adder U.S. \$	Adder U.S. S	Adder U.S. S	Adder U.S. \$	Adder U.S. \$	Adder U.S. S
1-800							

Table 40-148. 480V Control Options

Catalog Number	$\begin{array}{\|l\|} \hline \text { Door-Mounted } \\ \text { Speed } \\ \text { Potentiometer } \end{array}$	Door-Mounted Speed Potentiometer with HOA Selector Switch	3-15 psig Follower	HAND/OFF/ AUTO Switch (22 mm)	MANUAL/AUTO Ref Switch (22 mm)	START/STOP Pushbuttons (22 mm)	115 Volt Control Transformer 550 VA	Standard Elapsed Time Meter
Suffix ${ }^{\prime \prime \prime}$ ¢	K1	K2	K3	K4	K5	K6	KB	KO
hp	Adder U.S. \$	Adder U.S. \$	Adder U.S. \$	Adder U.S. \$	Adder U.S. S	Adder U.S. \$	Adder U.S. \$	Adder U.S. \$
1-800								

Table 40-149. 480V Bypass Options (${ }^{1}$

Catalog Number	Bypass Test Switch for RA, RB, RC, RD	Bypass Pilot Lights for RA, RB Options	Dual Overloads for Bypass	Manual HOA Bypass Controller	Manual IOB Bypass Controller	Auto Transfer HOA Bypass Controller	Auto Transfer IOB Bypass Controller
Suffix ${ }^{\text {III }}$,	KF	L2	PN	RA	RB	RC	RD
hp	Adder U.S. \$						
1-20							
25							
$\begin{aligned} & 30 \\ & 40 \\ & 50 \\ & 60 \\ & 75 \end{aligned}$							
$\begin{array}{\|l\|} \hline 100 \\ 125 \\ 150 \\ 200 \\ 250 \\ \hline \end{array}$							
$\begin{array}{\|l\|} \hline 300 \\ 350 \\ 400 \\ 500 \\ 550 \end{array}$							
$\begin{array}{\|l} \hline 600 \\ 650 \\ 700 \\ 800 \\ \hline \end{array}$							

(1) See Pages 40-88 and 40-89 for details.

Table 40-150. 480V Enclosure Options

Catalog Number	$\begin{aligned} & \text { Floor Stand } \\ & 22^{\prime \prime}(558.8 \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \hline \text { Floor Stand } \\ & 12^{\prime \prime}(304.8 \mathrm{~mm}) \end{aligned}$	10" (254 mm) Expansion	20" (508 mm) Expansion	Space Heater ${ }^{(2)}$
Suffix ${ }^{\text {IIM }}$,	S5	S6	S7	S8	S9
Enclosure Size	Adder	$\begin{array}{\|l\|} \hline \text { Adder } \\ \text { U.S. \$ } \end{array}$	Adder	Adder U.S. \$	Adder U.S. S
$\begin{array}{\|l\|} \hline 0 \\ 1 \\ 2 \\ 3 \end{array}$					
$\begin{aligned} & 4 \\ & 5 \end{aligned}$					
$\begin{aligned} & \hline 6 \\ & 8 \\ & 9 \end{aligned}$					
(2) Requires (3) See Encl (4) See Enclo	mer supplied 11 $5-1 \mathrm{P}$ on Page 40 5-2P on Page 40	ply. mensions. mensions.			

Table 40-151. 480V Power Options

Catalog Number Suffix 1 IIG	Input			Output				
	Input Disconnect (HMCP) 100 kAIC	Input Line Fuses 200 kAIC	Input Power Surge Protection	Output Contactor	Output Filter	MotoRx (300-600 Ft.) $1000 \mathrm{~V} / \mathrm{us}$ DV/DT Filter ${ }^{(1)}$	Single Overload Relay	Dual Overload Relays (2)
	P1	P3	P7	PE	PF	PG	PH	PI
hp	Adder U.S. \$	$\begin{array}{\|l\|} \hline \text { Adder } \\ \text { U.S. \$ } \end{array}$	$\begin{aligned} & \hline \text { Adder } \\ & \text { U.S. \$ } \end{aligned}$	Adder U.S. \$	$\begin{array}{\|l\|} \hline \text { Adder } \\ \text { U.S. \$ } \end{array}$	Adder U.S. \$	$\begin{array}{\|l} \hline \text { Adder } \\ \text { U.S. } \$ \end{array}$	$\begin{array}{\|l} \hline \text { Adder } \\ \text { U.S. } \$ \end{array}$

(1) Output filter may be required whenever the distance from the drive to the motor exceeds 100 feet (30 m). Refer to Application Notes for further details.
(2) Heater packs not included.

Table 40-152. Input Options

Catalog Number Suffix ${ }^{\text {III }} \boldsymbol{l}$	Load Switch
hp	P2 33

U.S. \$\end{array}\right|\)
(3) Applicable with FR10 and FR11 Freestanding designs only.

Adjustable Frequency Drives

Dimensions

Enclosure Size 0

Table 40-153. Approximate Dimensions and Shipping Weight - Enclosed Products

Enclosure Size	Dimensions in Inches (mm)												
	WideA	HighB	DeepC	Mounting							H	Min. Air Space	
				D	D1	E	E1	F	G	G1		J	K
0	$\begin{array}{\|l\|} \hline 19.9 \\ (504) \end{array}$	$\begin{aligned} & \hline 29.0 \\ & (737) \end{aligned}$	$\begin{aligned} & 16.4 \\ & (416) \end{aligned}$	$\begin{aligned} & \hline 18.3 \\ & (465) \end{aligned}$	-	-	-	$\begin{aligned} & \hline 27.4 \\ & (695) \end{aligned}$	-	-	$\begin{aligned} & \hline 25.4 \\ & (644) \end{aligned}$	$\begin{array}{\|l\|} \hline 4.0 \\ (102) \end{array}$	$\begin{aligned} & \hline 3.0 \\ & (76) \end{aligned}$

Table 40-153. Approximate Dimensions and Shipping Weight — Enclosed Products (Continued)

Enclosure Size	Dimensions in Inches (mm)										Max. Approx. Ship. Wt. lbs. (kg)
	Cable Entry					Door Clearance S	T	U	V	W	
	L	M	N	P	R						
0	$\begin{aligned} & \hline 5.0 \\ & (127) \end{aligned}$	-	-	$\begin{array}{\|l\|} \hline 6.0 \\ (152) \end{array}$	$\begin{aligned} & \hline 9.6 \\ & (245) \end{aligned}$	$\begin{aligned} & \hline 26.4 \\ & (669) \end{aligned}$	$\begin{array}{\|l\|} \hline 1.5 \\ (38) \end{array}$	$\begin{aligned} & \hline 6.3 \\ & (160) \end{aligned}$	$\begin{aligned} & \hline 4.3 \\ & (108) \end{aligned}$	$\begin{array}{\|l\|} \hline 5.3 \\ (134) \end{array}$	200 (91)

Figure 40-42. Approximate Dimensions

Enclosure Size 1

Table 40-154. Approximate Dimensions and Shipping Weight — Enclosed Products

Enclosure Size	Dimensions in Inches (mm)												
	$\begin{aligned} & \hline \text { Wide } \\ & \text { A } \end{aligned}$	HighB	$\begin{array}{\|l} \hline \text { Deep } \\ \text { C } \end{array}$	Mounting							H	Min. Air Space	
				D	D1	E	E1	F	G	G1		J	K
1	$\begin{aligned} & \hline 26.4 \\ & (669) \end{aligned}$	$\begin{array}{\|l\|} \hline 36 \\ (914) \end{array}$	$\begin{aligned} & 16.3 \\ & (414) \end{aligned}$	$\begin{aligned} & 24.8 \\ & (630) \end{aligned}$	-	-	-	$\begin{aligned} & 34.0 \\ & (864) \end{aligned}$	-	-	$\begin{aligned} & 32.4 \\ & (822) \end{aligned}$	$\begin{aligned} & \hline 4.0 \\ & (102) \end{aligned}$	$\begin{array}{\|l\|} \hline 3.0 \\ (76) \end{array}$

Table 40-154. Approximate Dimensions and Shipping Weight - Enclosed Products (Continued)

Enclosure Size	Dimensions in Inches (mm)															
	Cable Entry					Door Clearance S	T	U	V	W	Floor Stand					
	L	M	N	P	R						X	Y	Z	AA	BB	CC
1	$\begin{aligned} & \hline 11.0 \\ & (279) \end{aligned}$	$\begin{aligned} & \hline 6.0 \\ & (152) \end{aligned}$	$\begin{aligned} & \hline 9.0 \\ & (229) \end{aligned}$	$\begin{aligned} & 10.0 \\ & (254) \end{aligned}$	$\begin{aligned} & \hline 6.5 \\ & (165) \end{aligned}$	$\begin{aligned} & \hline 26.4 \\ & (669) \end{aligned}$	$\begin{array}{\|l\|} \hline 1.5 \\ \text { (38) } \end{array}$	$\begin{aligned} & \hline 4.3 \\ & (108) \end{aligned}$	-	-	$\begin{aligned} & 56.0 \\ & (1422) \end{aligned}$	$\begin{aligned} & \hline 4.3 \\ & (108) \end{aligned}$	$\begin{aligned} & \hline 11.1 \\ & (281) \end{aligned}$	$\begin{aligned} & \hline 1.8 \\ & (46) \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & (19) \end{aligned}$	$\begin{aligned} & \hline 55.2 \\ & (1402) \end{aligned}$

Table 40-154. Approximate Dimensions and Shipping Weight - Enclosed Products (Continued)

Enclosure Size	Dimensions in Inches (mm)																Max. Approx. Ship. Wt. lbs. (kg)
	Floor Stand											RR	SS	TT	UU	VV	
	DD	EE	FF	GG	HH	JJ	KK	LL	MM	NN	PP						
1	$\begin{aligned} & \hline 26.0 \\ & (660) \end{aligned}$	$\begin{array}{\|l\|} \hline 3.5 \\ (90) \end{array}$	$\begin{array}{\|l\|} \hline 5.5 \\ (141) \end{array}$	$\begin{array}{\|l\|} \hline 3.0 \\ (76) \end{array}$	$\begin{aligned} & \hline 6.0 \\ & (152) \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & (51) \end{aligned}$	$\begin{aligned} & \hline 5.4 \\ & (136) \end{aligned}$	$\begin{aligned} & \hline 1.1 \\ & (28) \end{aligned}$	$\begin{array}{\|l\|} \hline 8.8 \\ (224) \end{array}$	$\begin{aligned} & \hline 5.4 \\ & (137) \end{aligned}$	-	-	-	-	-	-	230 (104)

Figure 40-43. Approximate Dimensions

Enclosure Size 2

Table 40-155. Approximate Dimensions and Shipping Weight — Enclosed Products

Enclosure Size	Dimensions in Inches (mm)												
	Wide A	HighB	$\begin{aligned} & \text { Deep } \\ & \text { C } \end{aligned}$	Mounting							H	Min. Air Space	
				D	D1	E	E1	F	G	G1		J	K
2	$\begin{array}{\|l} \hline 26.4 \\ (669) \end{array}$	$\begin{array}{\|l\|} \hline 59.0 \\ (1499) \end{array}$	$\begin{array}{\|l\|} \hline 19.4 \\ (492) \end{array}$	$\begin{aligned} & 24.8 \\ & (630) \end{aligned}$	-	-	-	$\begin{aligned} & \hline 57.0 \\ & (1448) \end{aligned}$	-	-	$\begin{aligned} & 55.4 \\ & (1406) \end{aligned}$	$\begin{aligned} & \hline 4.0 \\ & (102) \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & (76) \end{aligned}$

Table 40-155. Approximate Dimensions and Shipping Weight — Enclosed Products (Continued)

Enclosure Size	Dimensions in Inches (mm)															
	Cable Entry					Door Clearance S	T	U	V	W	Floor Stand					
	L	M	N	P	R						X	Y	Z	AA	BB	CC
2	$\begin{aligned} & \hline 5.9 \\ & (149) \end{aligned}$	-	-	$\begin{aligned} & \hline 12.4 \\ & (315) \end{aligned}$	$\begin{aligned} & 9.5 \\ & (241) \end{aligned}$	$\begin{aligned} & \hline 26.4 \\ & (669) \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & (38) \end{aligned}$	$\begin{aligned} & \hline 4.8 \\ & (121) \end{aligned}$	$\begin{aligned} & \hline 5.9 \\ & (151) \end{aligned}$	-	$\begin{aligned} & \hline 69.0 \\ & (1753) \end{aligned}$	$\begin{aligned} & \hline 4.8 \\ & (121) \end{aligned}$	$\begin{aligned} & \hline 13.6 \\ & (344) \end{aligned}$	$\begin{aligned} & 1.8 \\ & (46) \end{aligned}$	$\begin{array}{\|l\|} \hline .8 \\ (19) \end{array}$	$\begin{aligned} & \hline 68.2 \\ & (1732) \end{aligned}$

Table 40-155. Approximate Dimensions and Shipping Weight — Enclosed Products (Continued)

Enclosure Size	Dimensions in Inches (mm)																Max. Approx. Ship. Wt. lbs. (kg)
	Floor Stand											RR	SS	TT	UU	VV	
	DD	EE	FF	GG	HH	JJ	KK	LL	MM	NN	PP						
2	$\begin{aligned} & \hline 26.0 \\ & (660) \end{aligned}$	$\begin{aligned} & \hline 4.8 \\ & (121) \end{aligned}$	$\begin{array}{\|l\|} \hline 6.8 \\ (172) \end{array}$	$\begin{array}{\|l\|} \hline 3.0 \\ (76) \end{array}$	$\begin{array}{\|l\|} \hline 6.0 \\ (152) \end{array}$	$\begin{aligned} & \hline 2.0 \\ & (51) \end{aligned}$	$\begin{aligned} & \hline 5.0 \\ & (127) \end{aligned}$	$\begin{array}{\|l\|} \hline 1.1 \\ (28) \end{array}$	$\begin{aligned} & \hline 11.3 \\ & (288) \end{aligned}$	$\begin{aligned} & \hline 79.0 \\ & (2007) \end{aligned}$	$\begin{aligned} & \hline 78.2 \\ & (1986) \end{aligned}$	-	-	-	-	-	380 (173)

Figure 40-44. Approximate Dimensions

Enclosure Size 3

Table 40-156. Approximate Dimensions and Shipping Weight - Enclosed Products

Enclosure Size	Dimensions in Inches (mm)												
	WideA	High B	DeepC	Mounting							H	Min. Air Space	
				D	D1	E	E1	F	G	G1		J	K
3	$\begin{array}{\|l\|} \hline 26.4 \\ (671) \end{array}$	$\begin{aligned} & 77.0 \\ & \text { (1956) } \end{aligned}$	$\begin{aligned} & 19.4 \\ & (493) \end{aligned}$	$\begin{aligned} & 19.5 \\ & (495) \end{aligned}$	$\begin{array}{\|l\|} \hline 3.3 \\ \text { (83) } \end{array}$	$\begin{aligned} & 23.0 \\ & (584) \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & (38) \end{aligned}$	$\begin{aligned} & \hline 11.7 \\ & (298) \end{aligned}$	$\begin{aligned} & 5.5 \\ & (140 .) \end{aligned}$	$\begin{aligned} & .9 \\ & (24) \\ & \hline \end{aligned}$	$\begin{aligned} & 76.4 \\ & \text { (1939) } \end{aligned}$	$\begin{aligned} & \hline 4.0 \\ & (102) \end{aligned}$	$\begin{array}{\|l\|} \hline 3.0 \\ (76) \end{array}$

Table 40-156. Approximate Dimensions and Shipping Weight - Enclosed Products (Continued)

Enclosure Size	Dimensions in Inches (mm)															Max. Approx. Ship. Wt. lbs. (kg)
	Cable Entry					Door Clearance S	T	U	V	W	RR	SS	TT	UU	VV	
	L	M	N	P	R											
3	$\begin{aligned} & \hline 5.3 \\ & (133) \end{aligned}$	$\begin{aligned} & \hline 23.4 \\ & (594) \end{aligned}$	$\begin{aligned} & \hline 10.0 \\ & (254) \end{aligned}$	$\begin{aligned} & \hline 1.3 \\ & (32) \end{aligned}$	$\begin{aligned} & \hline 12.9 \\ & (328) \end{aligned}$	$\begin{aligned} & \hline 26.4 \\ & (669) \end{aligned}$	$\begin{array}{\|l\|} \hline 1.5 \\ (38) \\ \hline \end{array}$	$\begin{aligned} & \hline 8.0 \\ & (203) \end{aligned}$	$\begin{aligned} & \hline 4.8 \\ & (121) \end{aligned}$	$\begin{aligned} & \hline 6.8 \\ & (173) \end{aligned}$	$\begin{array}{\|l} \hline 79.5 \\ (2018) \end{array}$	$\begin{array}{\|l\|} \hline 13.4 \\ (340) \end{array}$	$\begin{array}{\|l\|} \hline .8 \\ \hline(19) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 1.3 \\ (32) \end{array}$	$\begin{aligned} & \hline 26.0 \\ & (660) \end{aligned}$	690 (313)

NEMA Type 1, NEMA Type 12 NEMA Type 12 Includes Cover Plates Over Louvers

Top View

Bottom View

For Reference Only, Dimensions Subject to Change.

Figure 40-45. Approximate Dimensions

Enclosure Size 4

Table 40-157. Approximate Dimensions and Shipping Weight — Enclosed Products

Enclosure Size	Dimensions in Inches (mm)												
	$\begin{array}{\|l} \hline \text { Wide } \\ \text { A } \end{array}$	High B	$\begin{array}{\|l} \text { Deep } \\ \text { C } \end{array}$	Mounting							H	Min. Air Space	
				D	D1	E	E1	F	G	G1		J	K
4	$\begin{aligned} & 26.4 \\ & (671) \end{aligned}$	$\begin{aligned} & \hline 90.0 \\ & (2286) \end{aligned}$	$\begin{aligned} & 19.4 \\ & (493) \end{aligned}$	$\begin{aligned} & \hline 19.5 \\ & (495) \end{aligned}$	$\begin{array}{\|l\|} \hline 3.3 \\ \text { (83) } \end{array}$	$\begin{aligned} & 23.0 \\ & (584) \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & \text { (38) } \end{aligned}$	$\begin{aligned} & 11.7 \\ & (298) \end{aligned}$	$\begin{aligned} & 5.5 \\ & (140) \end{aligned}$	$\begin{aligned} & .9 \\ & (24) \end{aligned}$	$\begin{aligned} & 89.4 \\ & (2270) \end{aligned}$	$\begin{array}{\|l\|} \hline 4.0 \\ (102) \end{array}$	$\begin{array}{\|l\|} \hline 3.0 \\ (76) \end{array}$

Table 40-157. Approximate Dimensions and Shipping Weight — Enclosed Products (Continued)

Enclosure Size	Dimensions in Inches (mm)															Max. Approx. Ship. Wt. lbs. (kg)
	Cable Entry					Door Clearance S	T	U	V	W	RR	SS	TT	UU	VV	
	L	M	N	P	R											
4	$\begin{aligned} & \hline 5.3 \\ & (133) \end{aligned}$	$\begin{aligned} & \hline 23.4 \\ & (594) \end{aligned}$	$\begin{aligned} & \hline 13.8 \\ & (351) \end{aligned}$	$\begin{aligned} & \hline 1.0 \\ & \text { (25) } \end{aligned}$	$\begin{aligned} & \hline 11.2 \\ & (286) \end{aligned}$	$\begin{aligned} & \hline 26.4 \\ & (669) \end{aligned}$	$\begin{aligned} & 1.5 \\ & (38) \end{aligned}$	$\begin{array}{\|l\|} \hline 8.0 \\ (204) \end{array}$	$\begin{aligned} & \hline 4.8 \\ & (121) \end{aligned}$	-	$\begin{aligned} & \hline 92.5 \\ & (2349) \end{aligned}$	$\begin{array}{\|l\|} \hline .8 \\ (19) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 1.3 \\ (32) \end{array}$	-	-	825 (375)

NEMA Type 1, NEMA Type 12
NEMA Type 12 Includes Cover Plates Over Louvers

Bottom View

For Reference Only, Dimensions Subject to Change.

Figure 40-46. Approximate Dimensions

Enclosure Size 5

Table 40-158. Approximate Dimensions and Shipping Weight — Enclosed Products

Enclosure Size	Dimensions in Inches (mm)												
	Wide A	$\begin{array}{\|l} \hline \text { High } \\ \text { B } \end{array}$	$\begin{aligned} & \text { Deep } \\ & \text { C } \end{aligned}$	Mounting							H	Min. Air Space	
				D	D1	E	E1	F	G	G1		J	K
5	$\begin{aligned} & \hline 40.0 \\ & (1016) \end{aligned}$	$\begin{aligned} & 90.0 \\ & (2286) \end{aligned}$	$\begin{aligned} & 21.3 \\ & (541) \end{aligned}$	$\begin{aligned} & 36.0 \\ & (914) \end{aligned}$	$\begin{aligned} & 2.0 \\ & (51) \end{aligned}$	-	-	$\begin{array}{\|l\|} \hline 8.0 \\ (203) \end{array}$	$\begin{array}{\|l\|} \hline 10.8 \\ (273) \end{array}$	-	$\begin{aligned} & 84.4 \\ & (2143) \end{aligned}$	$\begin{array}{\|l\|} \hline 4.0 \\ (102) \end{array}$	-

Table 40-158. Approximate Dimensions and Shipping Weight - Enclosed Products (Continued)

Enclosure Size	Dimensions in Inches (mm)															Max. Approx. Ship. Wt. lbs. (kg)
	Cable Entry					Door Clearance S	T	U	V	W	RR	SS	TT	UU	VV	
	L	M	N	P	R											
5	$\begin{aligned} & 15.0 \\ & (381) \end{aligned}$	$\begin{aligned} & \hline 10.0 \\ & (254) \end{aligned}$	$\begin{aligned} & \hline 4.8 \\ & (122) \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & \text { (51) } \end{aligned}$	-	$\begin{aligned} & \hline 36.3 \\ & (921) \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 20.0 \\ (508) \end{array}$	-	-	-	$\begin{aligned} & \hline 94.0 \\ & (2387) \end{aligned}$	$\begin{aligned} & \hline 15.5 \\ & (394) \end{aligned}$	-	-	-	1275 (579)

Figure 40-47. Approximate Dimensions

Enclosure Size 5-1P

Table 40-159. Approximate Dimensions and Shipping Weight — Enclosed Products

Enclosure Size	Dimensions in Inches (mm)												
	WideA	High B	$\begin{aligned} & \text { Deep } \\ & \text { C } \end{aligned}$	Mounting							H	Min. Air Space	
				D	D1	E	E1	F	G	G1		J	K
5-1P	$\begin{array}{\|l\|} \hline 50.0 \\ (1270) \end{array}$	$\begin{array}{\|l\|} \hline 90.0 \\ (2286) \end{array}$	$\begin{aligned} & 21.3 \\ & (541) \end{aligned}$	$\begin{aligned} & 36.0 \\ & (914) \end{aligned}$	$\begin{array}{\|l\|} \hline 2.0 \\ \text { (51) } \\ \hline \end{array}$	-	-	$\begin{aligned} & \hline 8.0 \\ & (203) \end{aligned}$	$\begin{aligned} & \hline 10.8 \\ & (273) \end{aligned}$	-	$\begin{aligned} & \hline 84.4 \\ & (2143) \end{aligned}$	$\begin{aligned} & \hline 4.0 \\ & (102) \end{aligned}$	-

Table 40-159. Approximate Dimensions and Shipping Weight — Enclosed Products (Continued)

Enclosure Size	Dimensions in Inches (mm)															Max. Approx. Ship. Wt. lbs. (kg)
	Cable Entry					Door Clearance S	T	U	V	W	RR	SS	TT	UU	VV	
	L	M	N	P	R											
5-1P	$\begin{aligned} & \hline 17.1 \\ & (435) \end{aligned}$	$\begin{aligned} & \hline 8.0 \\ & (203) \end{aligned}$	$\begin{array}{\|l\|} \hline 1.3 \\ (33) \end{array}$	$\begin{array}{\|l\|} \hline 1.0 \\ (25) \end{array}$	-	$\begin{aligned} & \hline 36.3 \\ & (921) \end{aligned}$	$\begin{aligned} & \hline 20.0 \\ & (508) \end{aligned}$	$\begin{aligned} & 18.4 \\ & (466) \end{aligned}$	$\begin{array}{\|l\|} \hline 1.3 \\ (32) \\ \hline \end{array}$	-	$\begin{aligned} & 94.0 \\ & (2387) \end{aligned}$	$\begin{aligned} & \hline 15.5 \\ & (394) \end{aligned}$	-	-	-	1375 (624)

Figure 40-48. Approximate Dimensions

Enclosure Size 5-2P

Table 40-160. Approximate Dimensions and Shipping Weight — Enclosed Products

Enclosure Size	Dimensions in Inches (mm)												
	Wide A	$\begin{array}{\|l} \hline \text { High } \\ \text { B } \end{array}$	$\begin{aligned} & \text { Deep } \\ & \text { C } \end{aligned}$	Mounting							H	Min. Air Space	
				D	D1	E	E1	F	G	G1		J	K
5-2P	$\begin{aligned} & \hline 60.0 \\ & (1524) \end{aligned}$	$\begin{aligned} & 90.0 \\ & (2286) \end{aligned}$	$\begin{aligned} & 21.3 \\ & (541) \end{aligned}$	$\begin{aligned} & 36.0 \\ & \text { (914) } \end{aligned}$	$\begin{aligned} & 2.0 \\ & \text { (51) } \end{aligned}$	-	-	$\begin{aligned} & \hline 8.0 \\ & (203) \end{aligned}$	$\begin{array}{\|l\|} \hline 10.8 \\ (273) \end{array}$	-	$\begin{aligned} & 84.4 \\ & (2143) \end{aligned}$	$\begin{array}{\|l\|} \hline 4.0 \\ (102) \end{array}$	-

Table 40-160. Approximate Dimensions and Shipping Weight — Enclosed Products (Continued)

Enclosure Size	Dimensions in Inches (mm)															Max. Approx. Ship. Wt. lbs. (kg)
	Cable Entry					Door Clearance S	T	U	V	W	RR	SS	TT	UU	VV	
	L	M	N	P	R											
5-2P	$\begin{aligned} & \hline 17.0 \\ & (432) \end{aligned}$	$\begin{aligned} & \hline 18.0 \\ & (457) \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & \text { (38) } \end{aligned}$	$\begin{aligned} & \hline 1.0 \\ & \text { (25) } \end{aligned}$	$\begin{aligned} & \hline .9 \\ & (23) \end{aligned}$	$\begin{aligned} & \hline 36.3 \\ & (921) \end{aligned}$	$\begin{aligned} & \hline 20.0 \\ & (508) \end{aligned}$	$\begin{aligned} & \hline 18.4 \\ & (466) \end{aligned}$	$\begin{array}{\|l\|} \hline 1.3 \\ (32) \\ \hline \end{array}$	-	$\begin{aligned} & \hline 94.0 \\ & (2387) \end{aligned}$	$\begin{array}{\|l\|} \hline 15.5 \\ (394) \end{array}$	-	-	-	1585 (720)

Figure 40-49. Approximate Dimensions

Enclosure Size 6

Table 40-161. Approximate Dimensions and Shipping Weight — Enclosed Products

Enclosure Size	Dimensions in Inches (mm)												
	$\begin{aligned} & \text { Wide } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { High } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { Deep } \\ & \text { C } \end{aligned}$	Mounting							H	Min. Air Space	
				D	D1	D2	E	F	G	G1		J	K
6	$\begin{aligned} & \hline 30.0 \\ & (762) \end{aligned}$	$\begin{aligned} & \hline 90.0 \\ & (2286) \end{aligned}$	$\begin{aligned} & \hline 26.0 \\ & (660) \end{aligned}$	$\begin{array}{\|l} \hline 26.5 \\ (673) \\ \hline \end{array}$	$\begin{aligned} & \hline \hline 1.8 \\ & (46) \end{aligned}$	-	-	$\begin{aligned} & \hline 17.3 \\ & (438) \end{aligned}$	$\begin{aligned} & \hline 5.5 \\ & (140) \end{aligned}$	-	$\begin{aligned} & \hline \hline 84.4 \\ & (2143) \end{aligned}$	$\begin{aligned} & \hline 4.0 \\ & (102) \end{aligned}$	-

Table 40-161. Approximate Dimensions and Shipping Weight — Enclosed Products (Continued)

Enclosure Size	Dimensions in Inches (mm)															Max. Approx. Ship. Wt. lbs. (kg)
	Cable Entry					Door ClearanceS	T	U	V	W	RR	SS	TT	UU	VV	
	L	M	N	P	R											
6	$\begin{aligned} & \hline \hline 23.5 \\ & (597) \end{aligned}$	$\begin{aligned} & \hline 3.3 \\ & (84) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \hline 4.5 \\ & (114) \end{aligned}$	$\begin{aligned} & \hline \hline 19.3 \\ & (490) \end{aligned}$	-	$\begin{aligned} & \hline \hline 26.2 \\ & (667) \end{aligned}$	$\begin{aligned} & \hline 24.8 \\ & (629) \\ & \hline \end{aligned}$	-	-	-	$\begin{aligned} & \hline 93.9 \\ & (2386) \end{aligned}$	-	-	-	-	1500 (681)

Note: See Page 40-98
notes 4 and 5 for enclosure and option selection.

Figure 40-50. Approximate Dimensions

Enclosure Size 8

Table 40-162. Approximate Dimensions and Shipping Weight - Enclosed Products

Enclosure Size	Dimensions in Inches (mm)												
	WideA	$\begin{array}{\|l} \hline \text { High } \\ \text { B } \end{array}$	$\begin{aligned} & \text { Deep } \\ & \text { C } \end{aligned}$	Mounting							H	Min. Air Space	
				D	D1	D2	E	F	G	G1		J	K
8	$\begin{aligned} & \hline \hline 48.0 \\ & (1219) \end{aligned}$	$\begin{aligned} & \hline \hline 90.0 \\ & (2286) \end{aligned}$	$\begin{aligned} & \hline 24.0 \\ & (610) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \hline 42.2 \\ & (1072) \end{aligned}$	$\begin{aligned} & \hline \hline 3.0 \\ & (77) \end{aligned}$	-	-	-	$\begin{aligned} & \hline \hline 5.5 \\ & (139) \end{aligned}$	-	$\begin{aligned} & \hline \hline 84.4 \\ & (2143) \end{aligned}$	$\begin{aligned} & \hline \hline 4.0 \\ & (102) \\ & \hline \end{aligned}$	-

Table 40-162. Approximate Dimensions and Shipping Weight - Enclosed Products (Continued)

Enclosure Size	Dimensions in Inches (mm)															Max. Approx. Ship. Wt. lbs. (kg)
	Cable Entry							U	V	W	RR	SS	TT	UU	VV	
	L	M	N	P	R	S	T									
8	$\begin{aligned} & \hline \hline 9.5 \\ & (241) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 37.5 \\ \text { (952) } \\ \hline \end{array}$	$\begin{aligned} & \hline \hline 12.5 \\ & (318) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \hline 7.7 \\ & (196) \end{aligned}$	$\begin{array}{\|l\|} \hline 8.3 \\ (210) \\ \hline \end{array}$	$\begin{aligned} & \hline \hline 1.3 \\ & (32) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 31.0 \\ & (787) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 21.5 \\ & (545) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 21.3 \\ & (541) \\ & \hline \end{aligned}$	-	$\begin{aligned} & \hline \hline 93.5 \\ & (2375) \end{aligned}$	-	-	-	-	2000 (908)

Note: See Page 40-98
notes 4 and 5 for enclosure and option selection.

Figure 40-51. Approximate Dimensions

Enclosed Drives

Enclosure Size 9

Table 40-163. Approximate Dimensions and Shipping Weight — Enclosed Products

Enclosure Size	Dimensions in Inches (mm)												
	WideA	$\begin{array}{\|l} \hline \text { High } \\ \text { B } \end{array}$	$\begin{aligned} & \text { Deep } \\ & \text { C } \end{aligned}$	Mounting							H	Min. Air Space	
				D	D1	D2	E	F	G	G1		J	K
9	$\begin{aligned} & \hline \hline 60.0 \\ & (1524) \end{aligned}$	$\begin{aligned} & \hline \hline 90.0 \\ & (2286) \end{aligned}$	$\begin{aligned} & \hline 26.1 \\ & (664) \end{aligned}$	$\begin{aligned} & \hline 22.9 \\ & (582) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \hline 2.0 \\ & (51) \end{aligned}$	$\begin{aligned} & \hline 30.0 \\ & (762) \end{aligned}$	$\begin{aligned} & \hline \hline 44.3 \\ & (1125) \end{aligned}$	$\begin{array}{\|l\|} \hline \hline 10.6 \\ (270) \end{array}$	$\begin{aligned} & \hline \hline 10.6 \\ & (270) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \hline 8.2 \\ & (208) \end{aligned}$	-	$\begin{array}{\|l} \hline \hline 4.0 \\ (102) \end{array}$	-

Table 40-163. Approximate Dimensions and Shipping Weight — Enclosed Products (Continued)

Enclosure Size	Dimensions in Inches (mm)															Max. Approx. Ship. Wt. lbs. (kg)
	Cable Entry									W	RR	SS	TT	UU	VV	
	L	M	N	P	R	S	T	U	V							
9	$\begin{aligned} & \hline 8.5 \\ & (216) \end{aligned}$	$\begin{aligned} & \hline 32.7 \\ & (831) \end{aligned}$	$\begin{aligned} & \hline \hline 12.0 \\ & (305) \end{aligned}$	$\begin{aligned} & \hline \hline 11.9 \\ & (303) \end{aligned}$	$\begin{aligned} & \hline 9.8 \\ & (249) \end{aligned}$	$\begin{aligned} & \hline \hline 1.5 \\ & (38) \end{aligned}$	$\begin{aligned} & \hline \hline 43.5 \\ & (1105) \end{aligned}$	$\begin{aligned} & \hline \hline 15.0 \\ & (381) \end{aligned}$	$\begin{aligned} & \hline \hline 7.5 \\ & (191) \end{aligned}$	$\begin{aligned} & \hline \hline 25.0 \\ & (635) \end{aligned}$	$\begin{aligned} & \hline 93.5 \\ & (2375) \end{aligned}$	$\begin{aligned} & \hline \hline 27.4 \\ & (696) \end{aligned}$	$\begin{aligned} & \hline 29.1 \\ & (738) \end{aligned}$	$\begin{aligned} & \hline 27.1 \\ & (687) \end{aligned}$	-	2500 (1135)

Figure 40-52. Approximate Dimensions

SVX9000 Pump Application

NEMA 3R Enclosed 9000X Series Drive

Product Description

■ Standard Enclosed - covers a wide range of the most commonly ordered options. Pre-engineering eliminates the lead time normally associated with customer specific options.
■ Modified Standard Enclosed applies to specific customer requirements that vary from the Standard Enclosed offering, such as the need for an additional indicating light or minor modifications to drawings. Consult your Eaton representative for assistance in pricing and lead time.

- Custom Engineered - for those applications with more unique or complex requirements, these are individually engineered to the customer's needs. Consult your Eaton representative for assistance in pricing and lead time.

Features

■ NEMA Type 12 or Type 3R enclosures

- Input Voltage: 208V, $230 \mathrm{~V}, 480 \mathrm{~V}$ and 575V (Consult Factory)
■ Complete range of control, network and power options
■ Horsepower range:
- $208 \mathrm{~V}-3 / 4$ to $100 \mathrm{hp} \mathrm{I}_{\mathrm{H}}$; 1 to $100 \mathrm{hp} \mathrm{I}_{\mathrm{L}}$
- $230 \mathrm{~V}-3 / 4$ to $100 \mathrm{hp} \mathrm{I}_{\mathrm{H}}$; 1 to $100 \mathrm{hp} \mathrm{I}_{\mathrm{L}}$
- $480 \mathrm{~V}-1$ to $350 \mathrm{hp} \mathrm{I} \mathrm{I}_{\mathrm{H}}$ $1-1 / 2$ to $400 \mathrm{hp} \mathrm{L}_{\mathrm{L}}$
■ HMCP padlockable
- Single Phase input available Consult factory

Standards and Certifications

- UL Listed

■ cUL Listed

Figure 40-53. Power Diagram for Bypass Option RA

VFD Pump Panels

Technical Data and Specifications

Table 40-164. Specifications

Feature Description	9000X Enclosed Products NEMA Type 12 or NEMA Type 3R
Primary Design Features	
$45-66 \mathrm{~Hz}$ Input Frequency	Standard
Output: AC Volts Maximum	Input Voltage Base
Output Frequency Range: Hz	0-320
Initial Output Current (${ }^{\mathrm{H}}$)	250\% for 2 seconds
Overload: 1 Minute ($\mathrm{l}_{\mathrm{H}} / \mathrm{l}_{\mathrm{L}}$)	150\%/110\%
Enclosure Space Heater	Optional
Oversize Enclosure	Standard
Output Contactor	Optional
Bypass Motor Starter	Optional
Listings	UL, cUL
Protection Features	
Incoming Line Fuses	Optional
AC Input Circuit Disconnect	Optional
Line Reactors	Standard
Phase Rotation Insensitive	Standard
EMI Filter	Standard - Thru Frame 9
Input Phase Loss Protection	Standard
Input Overvoltage Protection	Standard
Line Surge Protection	Standard
Output Short Circuit Protection	Standard
Output Ground Fault Protection	Standard
Output Phase Protection	Standard
Overtemperature Protection	Standard
DC Overvoltage Protection	Standard
Drive Overload Protection	Standard
Motor Overload Protection	Standard
Programmer Software	Optional
Local/Remote Keypad	Standard
Keypad Lockout	Standard
Fault Alarm Output	Standard
Built-In Diagnostics	Standard
Input/Output Interface Features	
Setup Adjustment Provisions: Remote Keypad/Display Personal Computer	Standard Standard
Operator Control Provisions: Drive Mounted Keypad/Display Remote Keypad/Display Conventional Control Elements Serial Communications 115V AC Control Circuit	Standard Standard Standard Optional Optional
Speed Setting Inputs: Keypad 0 - 10V DC Potentiometer/ Voltage Signal 4-20 mA Isolated 4-20 mA Differential	Standard Standard Configurable Configurable
Analog Outputs: Speed/Frequency Torque/Load/Current Motor Voltage Kilowatts $0-10 \mathrm{~V}$ DC Signals 4-20 mA DC Signals Isolated Signals	Standard Programmable Programmable Programmable Configurable w/Jumpers Standard Optional

Feature Description	9000X Enclosed Products - NEMA Type 12 or NEMA Type 3R
Input/Output Interface Features (Continued) Discrete Outputs: Standard Fault Alarm Standard Drive Running Programmable Drive at Set Speed 14 Optional Parameters 1 (2 Relays Form C) Dry Contacts 1 Open Collector Outputs Optional Additional Discrete Outputs Communications: Standard RS-232 Optional RS-422/485 Optional DeviceNet ${ }^{\text {TM }}$ Optional Modbus RTU Optional CanOpen (Slave) Optional Profibus-DP Optional Lonworks Johnson Controls Metasys ${ }^{\text {TM }}$ N2	Optional

Performance Features

Sensorless Vector Control	Standard
Volts/Hertz Control	Standard
IR and Slip Compensation	Standard
Electronic Reversing	Standard
Dynamic Braking	Optional ${ }^{1}$
DC Braking	Standard
PID Setpoint Controller	Programmable
Critical Speed Lockout	Standard
Current (Torque) Limit	Standard
Adjustable Acceleration/Deceleration	Standard
Linear or S Curve Accel/Decel	Standard
Jog at Preset Speed	Standard
Thread/Preset Speeds	7
Automatic Restart	Selectable
Coasting Motor Start	Standard
Coast or Ramp Stop Selection	Standard
Elapsed Time Meter	Optional
Carrier Frequency Adjustment	$1-16$ kHz

Standard Conditions for Application and Service
Operating Ambient Temperature $0-40^{\circ} \mathrm{C}$ Storage Temperature $-40-60^{\circ} \mathrm{C}$ Humidity (Maximum), Non-condensing 95% Altitude (Maximum without Derate) $3300 \mathrm{ft} .(1000 \mathrm{~m})$ Line Voltage Variation $+10 /-15 \%$ Line Frequency Variation $45-66 \mathrm{~Hz}$ Efficiency $>96 \%$ Power Factor (Displacement) .96 l

(1) Some horsepower units include dynamic braking chopper as standard - refer to individual drive sections.

Table 40-165. Standard I/O Specifications

Description	Specification
6 - Digital Input Programmable	$24 \mathrm{~V}:{ }^{\prime \prime} 0^{\prime \prime} \leq 10 \mathrm{~V}, " 1 " \geq 18 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}>5 \mathrm{k} \Omega$
2 - Analog Input Configurable w/Jumpers	Voltage: $0- \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}>200 \mathrm{k} \Omega$ Current: $0(4)-20 \mathrm{~mA}, \mathrm{R}_{\mathrm{i}}=250 \mathrm{k} \Omega$
2 - Digital Output Programmable	Form C Relays 250 V AC 2 Amp or 30 V DC2 Amp resistive
1 - Digital Output Programmable	Open collector 48V DC 50 mA
1 - Analog Output Programmable Configurable w/Jumper	$0-20 \mathrm{~mA}$, impedance 500 ohms, resolution $106 \pm 3 \%$

VFD Pump Panels

Catalog Number Selection

Table 40-166. SVX9000 Enclosed NEMA Type 12/3R Drive Catalog Numbering System

(1) Consult factory.
(2) Local/Remote keypad is included as the standard Control Panel.
(3) Brake Chopper is a factory installed option only, see drive option tables on Pages 40-118-40-123. Note: External dynamic braking resistors not included. Consult factory.
(4) Includes local/remote speed reference switch.
(5) Some options are voltage and/or horsepower specific. Consult your Eaton representative for details.
(6) See Page 40-115 for descriptions.
(7) See Pages 40-116 and 40-117 for complete descriptions.
(8) Bypass options applicable only in the Pump Panel three-phase design.

VFD Pump Panels

Control/Communication Option Descriptions

Table 40-167. Available Control/Communications Options

Option	Description	Option Type
K1	Door-Mounted Speed Potentiometer - Provides the SVX9000 with the ability to adjust the frequency reference using a doormounted potentiometer. This option uses the 10 V DC reference to generate a $0-10 \mathrm{~V}$ signal at the analog voltage input signal terminal. When the HOA bypass option is added, the speed is controlled when the HOA switch is in the hand position. Without the HOA bypass option, a 2-position switch (labeled local/remote) is provided on the keypad to select speed reference from the Speed Potentiometer or a remote speed signal.	Control
K2	Door-Mounted Speed Potentiometer with HOA Selector Switch — Provides the SVX9000 with the ability to start/stop and adjust the speed reference from door-mounted control devices or remotely from customer supplied inputs. In HAND position, the drive will start and the speed is controlled by the door-mounted speed potentiometer. The drive will be disabled in the OFF position. When AUTO is selected, the drive run and speed control commands are via user-supplied dry contact and $4-20 \mathrm{~mA}$ signal.	Control
K5	Manual/Auto Speed Reference Switch - Provides a door-mounted selector switch for Manual/Auto speed reference.	Control
K6	Start \& Stop Pushbuttons (22 mm) — Start (green) and Stop (red). Provides door-mounted Start and Stop pushbuttons for either bypass or non-bypass configurations.	Control
K9	(2) Factory Installed Auxiliary Contacts - Provides two NO/NC auxiliary contacts.	Power
L1	Power On and Fault Pilot Lights - Provides a white power on light that indicates power to the enclosed cabinet and a red fault light indicates a drive fault has occurred.	Light
L2	Bypass Pilot Lights for RB, RA Bypass Options - A green light indicates when the motor is running in inverter mode and an amber light indicates when the motor is running in bypass mode. The lights are mounted on the enclosure door, above the switches.	Addl. Bypass
LD	Green Stop Light (22 mm) - Provides a green light that indicates the drive is stopped.	Light
LE	Run Pilot Light (22 mm) - Provides a red run light that indicates the drive is running.	Light
LU	Misc. Light (22 mm) - Provides misc. "user defined" pilot light. User to define light function and color.	Light
LW	PTT (Push-To-Test) Light (22 mm) - Provides misc. "user defined" PTT pilot light. User to define light function and color.	Light
LY	Adder for LED Each - Changes light packages from standard incandescent bulb to LED style bulb.	Light
P1	Input Disconnect Assembly Rated to $\mathbf{1 0 0}$ kAIC - High Interrupting Motor Circuit Protector (HMCP) that provides a means of short circuit protection for the power cables between it and the SVX9000, and protection from high-level ground faults on the power cable. Allows a convenient means of disconnecting the SVX9000 from the line and the operating mechanism can be padlocked in the OFF position. This is factory mounted in the enclosure.	Input
P3	Input Line Fuses Rated to $\mathbf{2 0 0}$ kAIC - Provides high-level fault protection of the SVX9000 input power circuit from the load side of the fuses to the input side of the power transistors. This option consists of three 200 kA fuses, which are factory mounted in the enclosure.	Input
P7	MOV Surge Suppressor — Provides a Metal Oxide Varistor (MOV) connected to the line side terminals and is designed to clip line side transients.	Input
P8	TVSS Transient Voltage Surge Suppressor — Provides transient voltage surge suppression of the unit. Consult factory for ratings.	Input
PE	Output Contactor - Provides a means for positive disconnection of the drive output from the motor terminals. The contactor coil is controlled by the drive's run or permissive logic. NC and NO auxiliary contacts rated at 10A, 600V AC are provided for customer use. Bypass Option RA includes an Output Contactor as standard. This option includes a low VA 115V AC fused Control Power Transformer and is factory mounted in the enclosure.	Output
RA	Manual HOA Bypass Controller - The Manual HAND/OFF/AUTO (HOA) - 3-contactor - bypass option provides a means of bypassing the SVX9000, allowing the AC motor to be operated at full speed directly from the AC supply line. This option consists of an input disconnect, a fused control power transformer, and a full voltage bypass starter with a door mounted HOA selector switch and an INVERTER/BYPASS switch. The HOA switch provides the ability to start and stop the drive in the inverter mode. For applications up to 100 hp , a Freedom Series IEC input contactor, a Freedom Series IEC output contactor, and a Freedom Series IEC starter with a bimetallic overload relay is included. For applications above 100 hp , an Advantage input contactor, an Advantage output contactor and an Advantage starter with electronic overload protection is included. The contactors are mechanically and electrically interlocked (see power diagram on Page 40-112).	Bypass
S5	Floor Stand 22" - Converts a Size A or B, normally wall mounted enclosure to a floor standing enclosure with a height of 22" (558.8 mm).	Enclosure
S9	Space Heater without CPT - Prevents condensation from forming in the enclosure when the drive is inactive or in storage. Includes a thermostat for variable temperature control. A 200W heater is installed in enclosures A and B, and 400W heater is installed in enclosures C - D. Requires a customer supplied 115 V remote supply source.	Enclosure
SA	Space Heater with CPT- Prevents condensation from forming in the enclosure when the drive is inactive or in storage. Includes a thermostat for variable temperature control. A 200W heater is installed in enclosures A and B, and 400W heater is installed in enclosures C - D. Provided with CPT connected to load side of input disconnect.	Enclosure
SB	Ice Cube Style Control Relay - Provides misc. "user defined" 4PDT control relay. Requires user to define functionality.	Enclosure
SE	On-Delay Timer (Delay on Make) - Provides misc. "user defined" time delay relay. Requires user to define functionality and time setting requirement.	Enclosure
SF	Off-Delay Timer (Delay on Break) — Provides misc. "user defined" time delay relay. Requires user to define functionality and time setting requirement.	Enclosure

Note: For availability, see Product Selection for base drive voltage required.

9000X Series Option Board Kits

The 9000X Series drives can accommodate a wide selection of expander and adapter option boards to customize the drive for your application needs. The drive's control unit is designed to accept a total of five option boards (see Figure 40-54).

The 9000X Series factory installed standard board configuration includes an A9 I/O board and an A2 relay output board, which are installed in slots A and B.

Figure 40-54. 9000X Series Option Boards

Table 40-168. Option Board Kits

Option Kit Description (2)	Allowed Slot Locations (1)	Field Installed		Factory Installed		SVX Ready Programs						
		Catalog Number	$\begin{array}{\|l} \hline \text { Price } \\ \text { U.S. \$ } \end{array}$	Option Designator	Adder U.S. \$	Basic	Local/ Remote	Standard	MSS	PID	Multi-P.	PFC
Standard I/0 Cards (See Figure 40-54)												
2 RO (NC/NO)	B	OPTA2		-		X	X	X	X	X	X	X
$\begin{array}{\|l} \hline 6 \mathrm{DI}, 1 \mathrm{DO}, 2 \mathrm{Al}, 1 \mathrm{AO}, 1+10 \mathrm{~V} \mathrm{DC} \text { ref, } \\ 2 \text { ext +24V DC/EXT +24V DC } \\ \hline \end{array}$	A	OPTA9		-		X	X	X	X	X	X	X

Extended I/O Card Options

$\begin{aligned} & 6 \mathrm{DI}, 1 \mathrm{ext} \\ & \text { +24V DC/EXT +24V DC } \end{aligned}$	B, C, D, E	OPTB1	B1	-	-	-	-	-	X	X
1 RO (NC/NO), 1 RO (NO), 1 Therm	B, C, D, E	OPTB2	B2	-	-	-	-	-	X	X
1 Al (mA isolated), 2 AO (mA isolated), 1 ext +24V DC/EXT +24V DC	B, C, D, E	OPTB4	B4	X	X	X	X	X	X	X
3 RO (NO)	B, C, D, E	OPTB5	B5	-	-	-	-	-	X	X
1 ext +24V DC/EXT +24V DC, 3 Pt100	B, C, D, E	OPTB8	B8	-	-	-	-	-	-	-
$\begin{array}{\|l\|} \hline 1 \text { RO (NO), } 5 \text { DI } \\ 42-240 \mathrm{~V} \text { AC Input } \\ \hline \end{array}$	B, C, D, E	OPTB9	B9	-	-	-	-	-	X	X

Communication Cards ${ }^{3}$

Modbus	D, E	OPTC2	C2	X	X	X	X	X	X	X
Modbus TCP	D, E	OPTCI	Cl	X	X	X	X	X	X	X
BACnet	D, E	OPTCJ	CJ	X	X	X	X	X	X	X
Ethernet IP	D, E	OPTCK	CK	X	X	X	X	X	X	X
Johnson Controls N2	D, E	OPTC2	CA	-	-	-	-	-	-	-
Profibus DP	D, E	OPTC3	C3	X	X	X	X	X	X	X
LonWorks	D, E	OPTC4	C4	X	X	X	X	X	X	X
Profibus DP (D9 Connector)	D, E	OPTC5	C5	X	X	X	X	X	X	X
CanOpen (Slave)	D, E	OPTC6	C6	X	X	X	X	X	X	X
DeviceNet	D, E	OPTC7	C7	X	X	X	X	X	X	X
Modbus (D9 Type Connector)	D, E	OPTC8	C8	X	X	X	X	X	X	X
$\begin{aligned} & \text { RS-232 with } \\ & \text { D9 Connection } \end{aligned}$	D, E	OPTD3	D3	X	X	X	X	X	X	X
Keypad										
9000X Series Local Remote Keypad	-	$\begin{aligned} & \text { KEYPAD- } \\ & \text { LOC/ } \\ & \text { REM } \\ & \hline \end{aligned}$	-	-	-	-	-	-	-	-
9000X Series Remote Mount Keypad Kit (Keypad not included)	-	$\begin{aligned} & \hline \text { OPTRMT } \\ & \text {-KIT- } \\ & \text { 9000X } \\ & \hline \end{aligned}$	-	-	-	-	-	-	-	-
9000X Series RS-232 Cable, 13 ft .	-	PP00104	-	-	-	-	-	-	-	-

[^17]
VFD Pump Panels

Modbus RTU Network Communications

The Modbus Network Card OPTC2 is used for connecting the 9000X Drive as a slave on a Modbus network. The interface is connected by a 9-pin DSUB connector (female) and the baud rate ranges from 300 to 19200 baud. Other communication parameters include an address range from 1 to 247; a parity of None, Odd or Even; and the stop bit is 1 .

Profibus Network Communications

The Profibus Network Card OPTC3 is used for connecting the 9000X Drive as a slave on a Profibus-DP network. The interface is connected by a 9-pin DSUB connector (female). The baud rates range from 9.6 K baud to 12 M baud, and the addresses range from 1 to 127.

LonWorks Network Communications

The LonWorks Network Card OPTC4 is used for connecting the 9000X Drive on a LonWorks network. This interface uses Standard Network Variable Types (SNVT) as data types. The channel connection is achieved using a FTT-10A Free Topology transceiver via a single twisted transfer cable. The communication speed with LonWorks is $78 \mathrm{kBits} / \mathrm{s}$.

CanOpen (Slave) Communications

The CanOpen (Slave) Network Card OPTC6 is used for connecting the 9000X Drive to a host system. According to ISO11898 standard cables to be chosen for CAN bus should have a nominal impedance of 120Ω, and specific line delay of nominal $5 \mathrm{nS} / \mathrm{m}$. 120Ω line termination resistors required for installation.

DeviceNet Network Communications

The DeviceNet Network Card OPTC7 is used for connecting the 9000X Drive on a DeviceNet Network. It includes a 5.08 mm pluggable connector. Transfer method is via CAN using a 2 -wire twisted shielded cable with 2 -wire bus power cable and drain. The baud rates used for communication include 125 K baud, 250 K baud and 500 K baud.

Johnson Controls Metasys ${ }^{\text {TM }}$ N2 Network

 CommunicationsThe OPTC2 fieldbus board provides communication between the 9000X Drive and a Johnson Controls Metasys ${ }^{\text {TM }} \mathrm{N} 2$ network. With this connection, the drive can be controlled, monitored and programmed from the Metasys system. The N2 fieldbus is available as a factory installed option and as a field installable kit.

Modbus/TCP Network Communications

The Modbus/TCP Network Card OPTCI is used for connecting the 9000X Drive to Ethernet networks utilizing Modbus protocol. It includes an RJ-45 pluggable connector. This interface provides a selection of standard and custom register values to communicate drive parameters. The board supports 10 Mbps and 100 Mbps communication speeds. The IP address of the board is configurable over Ethernet using a supplied software tool.

BACnet Network Communications

The BACnet Network Card OPTCJ is used for connecting the 9000X Drive to BACnet networks. It includes a 5.08 mm pluggable connector. Data transfer is Master-Slave/Token Passing (MS/TP) RS-485. This interface uses a collection of 30 Binary Value

Objects (BVOs) and 35 Analog Value Objects (AVOs) to communicate drive parameters. The card supports 9.6, 19.2 and 38.4 Kbaud communication speeds and supports network addresses 1-127.

Ethernet/IP Network Communications

The Ethernet/IP Network Card OPTCK is used for connecting the 9000X Drive to Ethernet/Industrial Protocol networks. It includes an RJ-45 pluggable connector. The interface uses CIP objects to communicate drive parameters (CIP is "Common Industrial Protocol", the same protocol used by DeviceNet). The board supports 10 Mbps and 100 Mbps communication speeds. The IP address of the board is configurable by Static, BOOTP and DHCP methods.

Table 40-169. I/O Specifications for the Control/Communication Options

Description	Specifications
Analog voltage, input	$0- \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{i}} \geq 200 \mathrm{k} \Omega$
Analog current, input	0 (4) - $20 \mathrm{~mA}, \mathrm{R}_{\mathrm{i}}=250 \Omega$
Digital Input	24 V : "0" $\leq 10 \mathrm{~V}$, " 1 " $\geq 18 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}>5 \mathrm{k} \Omega$
Aux. voltage	$24 \mathrm{~V}(\pm 20 \%)$, max. 50 mA
Reference voltage	$10 \mathrm{~V} \pm 3 \%$, max. 10 mA
Analog current, output Analog voltage, output	0 (4) - $20 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=500 \mathrm{k} \Omega$, resolution 10 bit, accuracy $\leq \pm 2 \%$ 0 (2) - $10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 1 \mathrm{k} \Omega$, resolution 10 bit, accuracy $\leq \pm 2 \%$
Relay output Max. switching voltage Max. switching load Max. continuous load	$\begin{aligned} & 300 \mathrm{~V} \text { DC, } 250 \mathrm{~V} \mathrm{AC} \\ & 8 \mathrm{~A} / 24 \mathrm{~V} \text { DC, } .4 \mathrm{~A} / 300 \mathrm{~V} \text { DC, } 2 \mathrm{kVA} / 250 \mathrm{~V} \mathrm{AC} \\ & 2 \mathrm{~A} \mathrm{rms} \end{aligned}$
Thermistor input	Rtrip $=4.7 \mathrm{k} \Omega$

Product Selection

When Ordering

- Select a Base Catalog Number that meets the application requirements - nominal horsepower, voltage and enclosure rating (the enclosed drive's continuous output amp rating should be equal to or greater than the motor's full load amp rating). The base enclosed package includes a standard drive, door mounted Local/Remote Keypad and enclosure.
- If Dynamic Brake Chopper or Control/Communication option is desired, change the appropriate code in the Base Catalog Number.
- Select Enclosed Options. Add the codes as suffixes to the Base Catalog Number in alphabetical and numeric order.
- Read all Footnotes.

208V Drives

Table 40-170. 208V Pump Panel Style (Three-Phase)

| Enclosure
 Size ${ }^{(1)}$ | hp | NEMA Type 12 | | | NEMA Type 3R | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | Base
 Catalog
 Number (2) | Price
 U.S. \$ (2) | Frame
 Size | Base
 Catalog
 Number (2) | Price
 U.S. \$ (2) |

208V High Overload Drive and Enclosure
$\left.\begin{array}{|l|l|l|l|l|l|l|l|}\hline A & 3 / 4 & 4 & \begin{array}{l}\text { SVXF0721EP } \\ \text { SVX00121EP } \\ \text { S }\end{array} & 1 & & 4 & \begin{array}{l}\text { SVXF0731EP } \\ \text { SVX00131EP } \\ \text { SVXF1521EP }\end{array} \\ \text { A } & 1-1 / 2 & & & & \\ \hline \text { SVXF1531EP } \\ \text { SVX00221EP } & & & \\ \text { A } & 3 & 5 & \begin{array}{l}\text { SVX00321EP } \\ \text { SVX00521EP }\end{array} & & 5 & \begin{array}{l}\text { SVX00331EP } \\ \text { SVX00531EP }\end{array} & \\ A & 5 & & 7-1 / 2 & & \text { SVX00721EP } & & \\ \text { SVX00731EP }\end{array}\right]$

$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1-1 / 2 \\ & 2 \\ & 3 \end{aligned}$	4	SVX00121BP SVXF1521BP SVX00221BP SVX00321BP	4	SVX00131BP SVXF1531BP SVX00231BP SVX00331BP	
$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 5 \\ & 7-1 / 2 \\ & 10 \end{aligned}$	5	SVX00521BP SVX00721BP SVX01021BP	5	SVX00531BP SVX00731BP SVX01031BP	
$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	6	$\begin{array}{\|l\|} \hline \text { SVX01521BP } \\ \text { SVX02021BP } \end{array}$	6	$\begin{aligned} & \text { SVX01531BP } \\ & \text { SVX02031BP } \end{aligned}$	
$\begin{aligned} & \hline \mathrm{B} \\ & \mathrm{~B} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 25 \\ & 30 \\ & 40 \end{aligned}$	7	$\begin{aligned} & \hline \text { SVX02521AP } \\ & \text { SVX03021AP } \\ & \text { SVX04021AP } \end{aligned}$	7	SVX02531AP SVX03031AP SVX04031AP	
$\begin{aligned} & \hline \text { C } \\ & \text { C } \\ & \text { D } \end{aligned}$	$\begin{aligned} & 50 \\ & 60 \\ & 75 \end{aligned}$	8	$\begin{aligned} & \hline \text { SVX05021AP } \\ & \text { SVX06021AP } \\ & \text { SVX07521AP } \end{aligned}$	8	$\begin{aligned} & \hline \text { SVX05031AP } \\ & \text { SVX06031AP } \\ & \text { SVX07531AP } \end{aligned}$	
D	100	9	SVX10021AP	9	SVX10031AP	

[^18]Table 40-171. 208V Brake Chopper Adder (3)

$\mathrm{I}_{\mathrm{H}} \mathrm{hp}$	Adder U.S. S	$I_{L} \mathrm{hp}$	Adder U.S. $\$$
	$\begin{array}{\|l\|} \hline \text { NEMA } \\ \text { Type 12/3R } \end{array}$		NEMA Type 12/3R
3/4		-	
1			
1-1/2		1-1/2	
2			
3		3	
5		5	
7-1/2		7-1/2	
10		10	
15		15	
20		20	
25		25	
30		30	
40		40	
50		50	
60		60	
75		75	
100		100	

(3) External dynamic braking resistors not included. Consult factory.

Table 40-172. 208V Control Options

Catalog Number Suffix ${ }^{\text {III }} \rightarrow$	Door-Mounted Speed Potentiometer	Door-Mounted Speed Potentiometer with HOA Selector Switch	Manual/Auto Reference Switch $(22 \mathrm{~mm})$	Start \& Stop Pushbuttons $(22 \mathrm{~mm})$
	Adder U.S. \$	K2	K5	K6
		Adder U.S. \$	Adder U.S. \$	Adder U.S. \$

Table 40-173. 208V Light Options

Catalog Number Suffix $\mathrm{IIG} \rightarrow$	Power On/ Fault Pilot Lights (22 $\mathbf{~ m m})$	Green Stop Light $(22 \mathrm{~mm})$	Red Run Light $(22 \mathrm{~mm})$	Misc. Light $(22 \mathrm{~mm})$	PTT Light $(22 \mathrm{~mm})$	Adder for LED Each
	LD	LE	LU	LW	LY	
	Adder U.S. \$					

Table 40-174. 208V Enclosure Options

Catalog Number Suffix ${ }^{\prime \prime \prime} \rightarrow$	Floor Stand 22" 558.8 mm$)$	Space Heater w/out CPT	Space Heater w/CPT	Socket Type Control Relay	On-Delay Timer	Off-Delay Timer
	Adder U.S. \$	S9	Sdder U.S. \$	Adder U.S. \$	Adder U.S. \$	Adder U.S. \$
				Adder U.S. \$		
B						
C						
D						

Table 40-175. 208V Power Options

Catalog Number Suffix "II \rightarrow	Input					Output Output Contactor
	Two Auxiliary Contacts Installed	Input Disconnect (HMCP) 100 kAIC	Input Line Fuses 200 kAIC	Input Power Surge Protection	TVSS Transient Voltage Surge Suppressor	
	K9	P1	P3	P7	P8	PE
hp	Adder U.S. \$					
3/4-5						
$\begin{aligned} & \hline 7-1 / 2 \\ & 10 \\ & 15 \\ & 20 \end{aligned}$						
25-30						
40						
50-60						
$\begin{array}{r} 75 \\ 100 \end{array}$						

230V Drives

Table 40-177. 230V Pump Panel Style (Three-Phase)

Enclosure Size ${ }^{1}$	hp	NEMA Type 12			NEMA Type 3R		
		Frame Size	Base Catalog Number (2)	Price U.S. \$ ²	Frame Size	Base Catalog Number (2)	Price U.S. \$ ²
230V High Overload Drive and Enclosure							
$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$$	4	SVXF0722EP SVX00122EP SVXF1522EP SVX00222EP		4	SVXF0732EP SVX00132EP SVXF1532EP SVX00232EP	
$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 3 \\ & 5 \\ & 7-1 / 2 \end{aligned}$	5	$\begin{aligned} & \hline \text { SVX00322EP } \\ & \text { SVX00522EP } \\ & \text { SVX00722EP } \end{aligned}$		5	$\begin{aligned} & \hline \text { SVX00332EP } \\ & \text { SVX00532EP } \\ & \text { SVX00732EP } \end{aligned}$	
$\begin{aligned} & \hline \text { A } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 10 \\ & 15 \end{aligned}$	6	$\begin{aligned} & \text { SVX01022EP } \\ & \text { SVX01522EP } \end{aligned}$		6	$\begin{aligned} & \hline \text { SVX01032EP } \\ & \text { SVX01532EP } \end{aligned}$	
$\begin{aligned} & \hline \text { B } \\ & \text { B } \\ & \text { C } \end{aligned}$	$\begin{aligned} & 20 \\ & 25 \\ & 30 \end{aligned}$	7	$\begin{array}{\|l\|} \hline \text { SVX02022DP } \\ \text { SVX02522DP } \\ \text { SVX03022DP } \end{array}$		7	$\begin{aligned} & \hline \text { SVX02032DP } \\ & \text { SVX02532DP } \\ & \text { SVX03032DP } \end{aligned}$	
$\begin{aligned} & \hline \text { C } \\ & \text { C } \\ & \text { D } \end{aligned}$	$\begin{aligned} & 40 \\ & 50 \\ & 60 \end{aligned}$	8	$\begin{array}{\|l\|} \hline \text { SVX04022DP } \\ \text { SVX05022DP } \\ \text { SVX06022DP } \end{array}$		8	$\begin{aligned} & \hline \text { SVX04032DP } \\ & \text { SVX05032DP } \\ & \text { SVX06032DP } \end{aligned}$	
$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{D} \end{aligned}$	$\begin{array}{\|r\|} \hline 75 \\ 100 \end{array}$	9	$\begin{aligned} & \hline \text { SVX07522DP } \\ & \text { SVX10022DP } \end{aligned}$		9	$\begin{aligned} & \hline \text { SVX07532DP } \\ & \text { SVX10032DP } \end{aligned}$	

$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1-1 / 2 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	4	SVX00122BP SVXF1522BP SVX00222BP SVX00322BP	4	SVX00132BP SVXF1532BP SVX00232BP SVX00332BP	
$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 5 \\ & 7-1 / 2 \\ & 10 \end{aligned}$	5	SVX00522BP SVX00722BP SVX01022BP	5	$\begin{aligned} & \hline \text { SVX00532BP } \\ & \text { SVX00732BP } \\ & \text { SVX01032BP } \end{aligned}$	
$\begin{aligned} & \hline \text { A } \\ & \text { B } \end{aligned}$	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	6	$\begin{aligned} & \hline \text { SVX01522BP } \\ & \text { SVX02022BP } \end{aligned}$	6	$\begin{aligned} & \hline \text { SVX01532BP } \\ & \text { SVX02032BP } \end{aligned}$	
$\begin{aligned} & \hline \mathrm{B} \\ & \mathrm{~B} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 25 \\ & 30 \\ & 40 \end{aligned}$	7	SVX02522AP SVX03022AP SVX04022AP	7	$\begin{array}{\|l\|} \hline \text { SVX02532AP } \\ \text { SVX03032AP } \\ \text { SVX04032AP } \end{array}$	
$\begin{aligned} & \hline \text { C } \\ & \text { C } \\ & \text { D } \end{aligned}$	$\begin{aligned} & 50 \\ & 60 \\ & 75 \end{aligned}$	8	SVX05022AP SVX06022AP SVX07522AP	8	SVX05032AP SVX06032AP SVX07532AP	
D	100	9	SVX10022AP	9	SVX10032AP	

(1) Enclosure dimensions listed on Pages 40-124-40-129.
(2) Enclosure dimensions listed on Pages 40-124-40-129.
(2) Includes drive, Local/Remote Keypad and enclosure.

Table 40-178. 230V Pump Panel Style (Single-Phase)

Enclosure Size (3)	hp	NEMA Type 12			NEMA Type 3R		
		Frame Size	Base Catalog Number ${ }^{4}$	Price U.S. $\$$	Frame Size	Base Catalog Number (4)	$\begin{aligned} & \hline \text { Price } \\ & \text { U.S. \$ 4) } \end{aligned}$
230V Low Overload Drive and Enclosure							
$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$1^{3 / 4}$	4	$\begin{aligned} & \hline \text { SVXF072JBP } \\ & \text { SVX0012JBP } \end{aligned}$		4	SVXF073JBP SVX0013JBP	
$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \\ & 5 \end{aligned}$	5	$\begin{aligned} & \hline \text { SVX0022JBP } \\ & \text { SVX0032JBP } \\ & \text { SVX0052JBP } \end{aligned}$		5	$\begin{aligned} & \hline \text { SVX0023JBP } \\ & \text { SVX0033JBP } \\ & \text { SVX0053JBP } \end{aligned}$	
$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 7-1 / 2 \\ & 10 \end{aligned}$	6	$\begin{aligned} & \hline \text { SVX0072JBP } \\ & \text { SVX0102JBP } \end{aligned}$		6	$\begin{aligned} & \hline \text { SVX0073JBP } \\ & \text { SVX0103JBP } \end{aligned}$	
$\begin{aligned} & \hline B \\ & B \end{aligned}$	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	7	$\begin{aligned} & \hline \text { SVX0152JBP } \\ & \text { SVX0202JAP } \end{aligned}$		7	$\begin{aligned} & \hline \text { SVX0153JBP } \\ & \text { SVX0203JAP } \end{aligned}$	
$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 25 \\ & 30 \\ & 40 \end{aligned}$	8	$\begin{aligned} & \hline \text { SVX0252JAP } \\ & \text { SVX0302JAP } \\ & \text { SVX0402JAP } \end{aligned}$		8	$\begin{aligned} & \hline \text { SVX0253JAP } \\ & \text { SVX0303JAP } \\ & \text { SVX0403JAP } \end{aligned}$	

[^19]Table 40-179. 230V Brake Chopper Adder (5)

$\mathrm{I}_{\mathrm{H}} \mathrm{hp}$	Adder U.S. \$	$\mathrm{I}_{\mathrm{L}} \mathrm{hp}$	Adder U.S. \$
	NEMA Type 12/3R		NEMA Type 12/3R
$\begin{aligned} & 1^{3 / 4} \\ & 2^{1-1 / 2} \end{aligned}$		$\begin{aligned} & -1 \\ & 1 \\ & 1-1 / 2 \\ & 2 \end{aligned}$	
$\begin{aligned} & \hline 3 \\ & 5 \\ & 7-1 / 2 \\ & 10 \\ & \hline \end{aligned}$		$\begin{aligned} & 3 \\ & 5 \\ & 7-1 / 2 \\ & 10 \\ & \hline \end{aligned}$	
$\begin{aligned} & 15 \\ & 20 \\ & 25 \\ & 30 \\ & 40 \end{aligned}$		$\begin{aligned} & 15 \\ & 20 \\ & 25 \\ & 30 \\ & 40 \end{aligned}$	
$\begin{array}{r} 50 \\ 60 \\ 75 \\ 100 \\ \hline \end{array}$		$\begin{array}{r} 50 \\ 60 \\ 75 \\ 100 \\ \hline \end{array}$	

(5) External dynamic braking resistors not included. Consult factory.

Table 40-180. 230V Control Options

	Door-Mounted Speed Potentiometer Catalog Number Suffix ${ }^{\text {III }} \Rightarrow$	Door-Mounted Speed Potentiometer with HOA Selector Switch	Manual/Auto Reference Switch $(22 \mathrm{~mm})$	Start \& Stop Pushbuttons $(22 \mathrm{~mm})$
hp	Adder U.S. \$	K2	K5	K6
$3 / 4-100$		Adder U.S. \$	Adder U.S. \$	Adder U.S. \$

Table 40-181. 230V Light Options

Catalog Number Suffix $\mathrm{IIG} \rightarrow$	Power On/ Fault Pilot Lights (22 $\mathbf{~ m m})$	Green Stop Light $(22 \mathrm{~mm})$	Red Run Light $(22 \mathrm{~mm})$	Misc. Light $(22 \mathrm{~mm})$	PTT Light $(22 \mathrm{~mm})$	Adder for LED Each
	LD	LE	LU	LW	LY	
	Adder U.S. \$					

Table 40-182. 230V Enclosure Options

Catalog Number Suffix ${ }^{\prime \prime \prime} \rightarrow$	Floor Stand 22" 558.8 mm$)$	Space Heater w/out CPT	Space Heater w/CPT	Socket Type Control Relay	On-Delay Timer	Off-Delay Timer
	Adder U.S. \$	S9	Sdder U.S. \$	Adder U.S. \$	Adder U.S. \$	Adder U.S. \$
				Adder U.S. \$		
B						
C						
D						

Table 40-183. 230V Power Options

Catalog Number Suffix	Input					Output
	Two Auxiliary Contacts Installed	Input Disconnect (HMCP) 100 kAIC	Input Line Fuses 200 kAIC	Input Power Surge Protection	TVSS Transient Voltage Surge Suppressor	Output Contactor
	K9	P1	P3	P7	P8	PE
hp	Adder U.S. \$	Adder U.S. \$				
3/4-5						
7-1/2-10						
15						
20-25						
30-40						
50						
60-75						
100						

Table 40-184. 230V Bypass Options ${ }^{\text {(1) }}$

Catalog Number Suffix ${ }^{\text {III }} \Rightarrow$	Bypass Pilot Lights for RA Option	Manual HOA Bypass Controller
	RA ${ }^{2}$)	
	Adder U.S. \$	Adder U.S. \$
15		
$20-25$		
$30-40$		
50		
$60-75$		
100		

(1) See Page 40-115 for details.
(2) Bypass options applicable only in the Pump Panel three-phase design.

480V Drives

Table 40-185. 480V Pump Panel Style (Three-Phase)

Enclosure Size ${ }^{1}$	hp	NEMA Type 12			NEMA Type 3R		
		Frame Size	Base Catalog Number ${ }^{(2)}$	$\begin{aligned} & \text { Price } \\ & \text { U.S. \$ 2) } \end{aligned}$	Frame Size	Base Catalog Number ${ }^{(2)}$	Price U.S. \$ ²

$\begin{array}{\|l} \hline A \\ A \\ A \\ A \\ A \end{array}$	$\begin{aligned} & 1 \\ & 1-1 / 2 \\ & 2 \\ & 3 \\ & 5 \end{aligned}$	4	SVX00124EP SVXF1524EP SVX00224EP SVX00324EP SVX00524EP	4	SVX00134EP SVXF1534EP SVX00234EP SVX00334EP SVX00534EP		
$\begin{aligned} & \hline A \\ & A \\ & A \end{aligned}$	$\begin{aligned} & 7-1 / 2 \\ & 10 \\ & 15 \end{aligned}$	5	$\begin{aligned} & \text { SVX00724EP } \\ & \text { SVX01024EP } \\ & \text { SVX01524EP } \end{aligned}$	5	$\begin{aligned} & \text { SVX00734EP } \\ & \text { SVX01034EP } \\ & \text { SVX01534EP } \end{aligned}$		
$\begin{aligned} & \hline \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 20 \\ & 25 \\ & 30 \end{aligned}$	6	$\begin{aligned} & \hline \text { SVX02024EP } \\ & \text { SVX02524EP } \\ & \text { SVX03024EP } \end{aligned}$	6	$\begin{aligned} & \text { SVX02034EP } \\ & \text { SVX02534EP } \\ & \text { SVX03034EP } \end{aligned}$		
$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & 40 \\ & 50 \\ & 60 \end{aligned}$	7	SVX04024DP SVX05024DP SVX06024DP	7	SVX04034DP SVX05034DP SVX06034DP		
$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	$\begin{array}{r} 75 \\ 100 \\ 125 \end{array}$	8	SVX07524DP SVX10024DP SVX12524DP	8	$\begin{array}{\|l\|} \hline \text { SVX07534DP } \\ \text { SVX10034DP } \\ \text { SVX12534DP } \end{array}$		
$\begin{aligned} & \hline D \\ & D \\ & \hline \end{aligned}$	$\begin{aligned} & 150 \\ & 200 \end{aligned}$	9	$\begin{aligned} & \hline \text { SVX15024DP } \\ & \text { SVX20024DP } \end{aligned}$	9	$\begin{aligned} & \text { SVX15034DP } \\ & \text { SVX20034DP } \end{aligned}$		
$\begin{aligned} & \text { TBD } \\ & \text { TBD } \\ & \text { TBD } \end{aligned}$	$\begin{aligned} & 250 \\ & 300 \\ & 350 \end{aligned}$	10	SVX25024DP SVX35024DP	10	$\begin{aligned} & \text { SVX25034DP } \\ & \text { SVX30034DP } \\ & \text { SVX35034DP } \end{aligned}$		

$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & 1-1 / 2 \\ & 2 \\ & 3 \\ & 5 \\ & 7-1 / 2 \end{aligned}$	4	SVXF1524BP SVX00224BP SVX00324BP SVX00524BP SVX00724BP	4	SVXF1534BP SVX00234BP SVX00334BP SVX00534BP SVX00734BP		
$\begin{aligned} & \hline A \\ & A \\ & A \end{aligned}$	$\begin{aligned} & 10 \\ & 15 \\ & 20 \end{aligned}$	5	SVX01024BP SVX01524BP SVX02024BP	5	$\begin{aligned} & \text { SVX01034BP } \\ & \text { SVX01534BP } \\ & \text { SVX02034BP } \end{aligned}$		
$\begin{aligned} & \hline A \\ & A \\ & \text { B } \end{aligned}$	$\begin{aligned} & 25 \\ & 30 \\ & 40 \end{aligned}$	6	SVX02524BP SVX03024BP SVX04024BP	6	SVX02534BP SVX03034BP SVX04034BP SVX04034BP		
$\begin{aligned} & \hline B \\ & B \\ & B \end{aligned}$	$\begin{aligned} & 50 \\ & 60 \\ & 75 \end{aligned}$	7	SVX05024AP SVX06024AP SVX07524AP	7	SVX05034AP SVX06034AP SVX07534AP SVX07534AP		
$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 100 \\ & 125 \\ & 150 \end{aligned}$	8	SVX10024AP SVX12524AP SVX15024AP	8	SVX10034AP SVX12534AP SVX15034AP		
$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{D} \end{aligned}$	$\begin{aligned} & 200 \\ & 250 \end{aligned}$	9	$\begin{aligned} & \hline \text { SVX20024AP } \\ & \text { SVX25024AP } \end{aligned}$	9	$\begin{aligned} & \hline \text { SVX20034AP } \\ & \text { SVX25034AP } \end{aligned}$		
$\begin{aligned} & \text { TBD } \\ & \text { TBD } \end{aligned}$	$\begin{aligned} & 300 \\ & 400 \end{aligned}$	10	$\begin{aligned} & \hline \text { SVX30024AP } \\ & \text { SVX40024AP } \end{aligned}$	10	$\begin{array}{\|l\|} \hline \text { SVX30034AP } \\ \text { SVX40034AP } \end{array}$		

(1) Enclosure dimensions listed on Pages 40-124-40-129.
(2) Includes drive, Local/Remote keypad and enclosure.

Table 40-186. 480V Pump Panel Style (Single-Phase)

480V Low Overload Drive and Enclosure
$\left.\begin{array}{|l|l|l|l|l|l|l|l|}\hline A & 3 / 4 & 4 & \begin{array}{l}\text { SVXF072KBP } \\ \text { A } \\ \text { SVX0012KBP } \\ \text { A }\end{array} & 1 & & 4 & \begin{array}{l}\text { SVXF073KBP } \\ \text { SVX0013KBP } \\ \text { SVX0022KBP }\end{array} \\ \text { A } & 3 & & & & \\ \hline \text { SVX0023KBP } \\ \text { SVX0032KBP }\end{array}\right]$

[^20]Table 40-187. 480V Brake Chopper Adder (5)

$\mathrm{l}_{\mathrm{H}} \mathrm{hp}$	Adder U.S. S	$\mathrm{I}_{\mathrm{L}} \mathrm{hp}$	Adder U.S. \$
	NEMA Type 12/3R		NEMA Type 12/3R
1		-	
1-1/2		1-1/2	
2			
3		3	
5		5	
7-1/2		7-1/2	
10		10	
15		15	
20		20	
25		25	
30		30	
40		40	
50		50	
60		60	
75		75	
100		100	
125		125	
150		150	
200		200	
250		250	
300		300	
350		350	
400		400	

5) External dynamic braking resistors not included. Consult factory.

Table 40-188. 480V Control Options

	Door-Mounted Speed Potentiometer Catalog Number Suffix ${ }^{\text {III }} \Rightarrow$	Door-Mounted Speed Potentiometer with HOA Selector Switch	Manual/Auto Reference Switch $(22 \mathrm{~mm})$	Start \& Stop Pushbuttons $(22 \mathrm{~mm})$
hp	Adder U.S. \$	K2	K5	K6
$3 / 4-100$		Adder U.S. \$	Adder U.S. \$	Adder U.S. \$

Table 40-189. 480V Light Options

Catalog Number Suffix III	Power On/ Fault Pilot Lights (22 mm)	Green Stop Light (22 mm)	Red Run Light (22 mm)	Misc. Light (22 mm)	PTT Light (22 mm)	Adder for LED Each
	L1	LD	LE	LU	LW	LY
hp	Adder U.S. \$					
3/4-100						

Table 40-190. 480V Enclosure Options

Catalog Number Suffix ${ }^{\prime \prime \prime} \rightarrow$	Floor Stand 22" 558.8 mm$)$	Space Heater w/out CPT	Space Heater w/CPT	Socket Type Control Relay	On-Delay Timer	Off-Delay Timer
	Adder U.S. \$	S9	Sdder U.S. \$	Adder U.S. \$	Adder U.S. \$	Adder U.S. \$
				Adder U.S. \$		
B						
C						
D						

Table 40-191. 480V Power Options

Catalog Number Suffix	Input					Output Output Contactor
	Two Auxiliary Contacts Installed	Input Disconnect (HMCP) 100 kAIC	Input Line Fuses 200 kAIC	Input Power Surge Protection	TVSS Transient Voltage Surge Suppressor	
	K9	P1	P3	P7	P8	PE
hp	Adder U.S. \$					
1-10						
15-20						
25-30						
40-50						
60-75						
100						
125-150						
200						
250						
300-350						
400						

Table 40-192. 480V Bypass Options ${ }^{\text {(1) }}$

Catalog Number	Bypass Pilot Lights for RA Option	Manual HOA Bypass Controller
Suffix ${ }^{\text {III }}$,	L2 (2)	RA ${ }^{2}$
hp	Adder U.S. \$	Adder U.S. \$
1-20		
25		
30		
40-50		
60-75		
100		
125-150		
200		
250-350		
400		

(1) See Page 40-115 for details.
(2) Bypass options applicable only in the Pump Panel three-phase design.

Dimensions

Enclosure Box A NEMA Type 12

Figure 40-55. NEMA Type 12 SVX9000 Pump Application Drive Dimensions
Table 40-193. NEMA Type 12 SVX9000 Pump Application Drive Dimensions

Voltage AC	$l_{\left(l_{H}\right)}$	$\begin{aligned} & \mathrm{hp} \\ & \left(\mathrm{I}_{\mathrm{L}}\right) \end{aligned}$	Approximate Dimensions in Inches (mm)							Approx. Weight Lbs. (kg)	Approx. Ship Weight Lbs. (kg)
			H	H1	H2	W	W1	D	D1		
Three-Phase											
208V	3/4-10	1-15	$\begin{aligned} & 29.00 \\ & (736.6) \end{aligned}$	$\begin{array}{\|l\|} \hline 27.00 \\ (685.8) \end{array}$	$\begin{aligned} & \hline 25.35 \\ & (643.9) \end{aligned}$	$\begin{aligned} & \hline 16.92 \\ & (429.8) \end{aligned}$	$\begin{array}{\|l\|} \hline 15.30 \\ (388.6) \end{array}$	$\begin{array}{\|l\|} \hline 16.26 \\ (413.0) \end{array}$	$\begin{aligned} & 2.34 \\ & (59.4) \end{aligned}$	$\begin{aligned} & \hline 120 \\ & (54) \end{aligned}$	$\begin{aligned} & \hline 160 \\ & (73) \end{aligned}$
230 V	3/4-10	1-15									
480 V	1-25	1-30									
Single-Phase											
230 V	-	3/4-10	$\begin{aligned} & 29.00 \\ & (736.6) \end{aligned}$	$\begin{array}{\|l\|} \hline 27.00 \\ (685.8) \end{array}$	$\begin{aligned} & \hline 25.35 \\ & (643.9) \end{aligned}$	$\begin{array}{\|l\|} \hline 16.92 \\ (429.8) \end{array}$	$\begin{array}{\|l\|} \hline 15.30 \\ (388.6) \end{array}$	$\begin{array}{\|l\|} \hline 16.26 \\ (413.0) \end{array}$	$\begin{aligned} & 2.34 \\ & (59.4) \end{aligned}$	$\begin{aligned} & \hline 120 \\ & (54) \end{aligned}$	$\begin{aligned} & \hline 160 \\ & (73) \end{aligned}$
480 V	-	3/4-20									

Enclosure Box B NEMA Type 12

Figure 40-56. NEMA Type 12 SVX9000 Pump Application Drive Dimensions
Table 40-194. NEMA Type 12 SVX9000 Pump Application Drive Dimensions

Voltage AC	$\operatorname{lip}_{\left(l_{H}\right)}$	$\begin{aligned} & \mathrm{hp} \\ & \left(\mathrm{I}_{\mathrm{L}}\right) \end{aligned}$	Approximate Dimensions in Inches (mm)							Approx. Weight Lbs. (kg)	Approx. Ship Weight Lbs. (kg)
			H	H1	H2	W	W1	D	D1		
Three-Phase											
208V	15-25	20-30	$\begin{aligned} & \hline 40.00 \\ & (1016.0) \end{aligned}$	$\begin{array}{\|l\|} \hline 38.00 \\ (965.2) \end{array}$	$\begin{array}{\|l\|} \hline 36.35 \\ \text { (923.3) } \end{array}$	$\begin{aligned} & \hline 20.92 \\ & (531.4) \end{aligned}$	$\begin{aligned} & \hline 19.30 \\ & (490.2) \end{aligned}$	$\begin{aligned} & \hline 16.76 \\ & (425.7) \end{aligned}$	$\begin{aligned} & \hline 2.34 \\ & (59.4) \end{aligned}$	$\begin{aligned} & \hline 185 \\ & (84) \end{aligned}$	$\begin{aligned} & 229 \\ & (104) \end{aligned}$
230 V	15-25	20-30									
480 V	30-60	40-75									
Single-Phase											
230 V	-	15-20	$\begin{aligned} & \hline 40.00 \\ & (1016.0) \end{aligned}$	$\begin{array}{\|l\|} \hline 38.00 \\ (965.2) \end{array}$	$\begin{aligned} & \hline 36.35 \\ & (923.3) \end{aligned}$	$\begin{aligned} & \hline 20.92 \\ & (531.4) \end{aligned}$	$\begin{aligned} & 19.30 \\ & (490.2) \end{aligned}$	$\begin{aligned} & \hline 16.76 \\ & (425.7) \end{aligned}$	$\begin{aligned} & \hline 2.34 \\ & (59.4) \end{aligned}$	$\begin{aligned} & \hline 185 \\ & (84) \end{aligned}$	$\begin{aligned} & \hline 229 \\ & (104) \end{aligned}$
480 V	-	25-30									

VFD Pump Panels

Enclosure Box C NEMA Type 12

Figure 40-57. NEMA Type 12 SVX9000 Pump Application Drive Dimensions
Table 40-195. NEMA Type 12 SVX9000 Pump Application Drive Dimensions

Voltage AC	$\operatorname{li}_{\left(\mathrm{I}_{\mathrm{H}}\right)}$	$\begin{aligned} & \mathrm{hp} \\ & \left(\mathrm{I}_{\mathrm{L}}\right) \end{aligned}$	Approximate Dimensions in Inches (mm)									Approx. Ship Weight Lbs. (kg)
			H	H1	H2	H3	H4	W	W1	D	D1	
Three-Phase												
208V	30-50	40-60	$\begin{array}{\|l\|} \hline 52.00 \\ (1320.8) \end{array}$	$\begin{aligned} & \hline 50.00 \\ & (1270.0) \end{aligned}$	$\begin{array}{\|l\|} \hline 48.35 \\ (1228.1) \end{array}$	$\begin{array}{\|l\|} \hline 72.00 \\ (1828.8) \end{array}$	$\begin{aligned} & \hline 71.19 \\ & (1808.2) \end{aligned}$	$\begin{aligned} & 30.92 \\ & (785.4) \end{aligned}$	$\begin{aligned} & 29.30 \\ & (744.2) \end{aligned}$	$\begin{aligned} & \hline 16.78 \\ & (426.2) \end{aligned}$	$\begin{aligned} & \hline 2.34 \\ & (59.4) \end{aligned}$	(1)
230 V	30-50	40-60										
480 V	75-125	100-150										
Single-Phase												
230 V	-	25-40	$\begin{aligned} & 52.00 \\ & (1320.8) \end{aligned}$	$\begin{aligned} & 50.00 \\ & (1270.0) \end{aligned}$	$\begin{array}{\|l\|} \hline 48.35 \\ (1228.1) \end{array}$	$\begin{array}{\|l\|} \hline 72.00 \\ (1828.8) \end{array}$	$\begin{aligned} & \hline 71.19 \\ & (1808.2) \end{aligned}$	$\begin{aligned} & 30.92 \\ & (785.4) \end{aligned}$	$\begin{aligned} & 29.30 \\ & (744.2) \end{aligned}$	$\begin{array}{\|l\|} \hline 16.78 \\ (426.2) \end{array}$	$\begin{aligned} & 2.34 \\ & (59.4) \end{aligned}$	(1)
480 V	-	40-60										

[^21]
Enclosure Box A NEMA Type 3R

Figure 40-58. NEMA Type 3R SVX9000 Pump Application Drive Dimensions
Table 40-196. NEMA Type 3R SVX9000 Pump Application Drive Dimensions

Voltage AC	$\begin{aligned} & \mathrm{hp} \\ & \left(\mathrm{I}_{\mathrm{H}}\right) \end{aligned}$	$\begin{aligned} & \text { hp } \\ & \text { (li) } \end{aligned}$	Approximate Dimensions in Inches (mm)											Approx. Weight Lbs. (kg)	Approx. Ship Weight Lbs. (kg)
			H	H1	H2	H3	W	W1	W2	W3	D	D1	D2		
Three-Phase															
208V	3/4-10	1-15	$\begin{array}{\|l\|} \hline 33.00 \\ (838.2) \end{array}$	$\begin{aligned} & \hline 31.36 \\ & (796.5) \end{aligned}$	$\begin{array}{\|l\|} \hline 29.67 \\ (753.6) \end{array}$	$\begin{array}{\|l\|} \hline 25.35 \\ (643.9) \end{array}$	$\begin{aligned} & \hline 21.05 \\ & (534.7) \end{aligned}$	$\begin{array}{\|l\|} \hline 16.92 \\ (429.8) \end{array}$	$\begin{aligned} & 15.30 \\ & (388.6) \end{aligned}$	$\begin{aligned} & \hline 2.07 \\ & (52.6) \end{aligned}$	$\begin{aligned} & \hline 17.24 \\ & (437.9) \end{aligned}$	$\begin{aligned} & 16.26 \\ & (413.0) \end{aligned}$	$\begin{array}{\|l\|} \hline 3.31 \\ (84.1) \end{array}$	$\begin{array}{\|l\|} \hline 170 \\ \text { (77) } \end{array}$	$\begin{array}{\|l\|} \hline 215 \\ \text { (98) } \end{array}$
230 V	3/4-10	1-15													
480 V	1-25	1-30													
Single-Phase															
230 V	-	3/4-10	$\begin{aligned} & \hline 33.00 \\ & (838.2) \end{aligned}$	$\begin{aligned} & \hline 31.36 \\ & (796.5) \end{aligned}$	$\begin{array}{\|l\|} \hline 29.67 \\ (753.6) \end{array}$	$\begin{aligned} & \hline 25.35 \\ & (643.9) \end{aligned}$	$\begin{aligned} & \hline 21.05 \\ & (534.7) \end{aligned}$	$\begin{array}{\|l\|} \hline 16.92 \\ (429.8) \end{array}$	$\begin{aligned} & \hline 15.30 \\ & (388.6) \end{aligned}$	$\begin{aligned} & \hline 2.07 \\ & (52.6) \end{aligned}$	$\begin{aligned} & \hline 17.24 \\ & (437.9) \end{aligned}$	$\begin{aligned} & \hline 16.26 \\ & (413.0) \end{aligned}$	$\begin{array}{\|l\|} \hline 3.31 \\ (84.1) \end{array}$	$\begin{aligned} & 170 \\ & (77) \end{aligned}$	$\begin{array}{\|l} \hline 215 \\ \text { (98) } \end{array}$
480 V	-	3/4-20													

Enclosure Box B NEMA Type 3R

Figure 40-59. NEMA Type 3R SVX9000 Pump Application Drive Dimensions
Table 40-197. NEMA Type 3R SVX9000 Pump Application Drive Dimensions

Voltage AC	$\operatorname{lip}_{\left(I_{H}\right)}$	$\begin{aligned} & \mathbf{h p} \\ & (\mathrm{l}, ~ \end{aligned}$	Approximate Dimensions in Inches (mm)											Approx. Weight Lbs. (kg)	Approx. Ship Weight Lbs. (kg)
			H	H1	H2	H3	W	W1	W2	W3	D	D1	D2		

Three-Phase

208V	15-25	20-30	$\begin{aligned} & \hline 46.09 \\ & (1170.7) \end{aligned}$	$\begin{array}{\|l\|} \hline 44.45 \\ (1129.0) \end{array}$	$\begin{array}{\|l\|} \hline 42.77 \\ (1086.4) \end{array}$	$\begin{aligned} & \hline 36.35 \\ & (923.3) \end{aligned}$	$\begin{array}{\|l\|} \hline 26.31 \\ (668.3) \end{array}$	$\begin{aligned} & \hline 20.92 \\ & (531.4) \end{aligned}$	$\begin{array}{\|l\|} \hline 19.30 \\ (490.2) \end{array}$	$\begin{aligned} & \hline 2.69 \\ & (68.3) \end{aligned}$	$\begin{aligned} & 17.74 \\ & (450.6) \end{aligned}$	$\begin{array}{\|l\|} \hline 16.76 \\ (425.7) \end{array}$	$\begin{array}{\|l\|} \hline 3.31 \\ (84.1) \end{array}$	$\begin{aligned} & \hline 235 \\ & (107) \end{aligned}$	$\begin{array}{\|l\|} \hline 290 \\ (132) \end{array}$
230 V	15-25	20-30													
480 V	30-60	40-75													
Single-Phase															
230 V	-	15-20	$\begin{array}{\|l\|} \hline 46.09 \\ (1170.7) \end{array}$	$\begin{aligned} & \hline 44.45 \\ & (1129.0) \end{aligned}$	$\begin{aligned} & \hline 42.77 \\ & (1086.4) \end{aligned}$	$\begin{aligned} & \hline 36.35 \\ & (923.3) \end{aligned}$	$\begin{array}{\|l\|} \hline 26.31 \\ (668.3) \end{array}$	$\begin{aligned} & \hline 20.92 \\ & (531.4) \end{aligned}$	$\begin{array}{\|l\|} \hline 19.30 \\ (490.2) \end{array}$	$\begin{aligned} & \hline 2.69 \\ & (68.3) \end{aligned}$	$\begin{aligned} & \hline 17.74 \\ & (450.6) \end{aligned}$	$\begin{aligned} & \hline 16.76 \\ & (425.7) \end{aligned}$	$\begin{aligned} & 3.31 \\ & (84.1) \end{aligned}$	$\begin{aligned} & \hline 235 \\ & (107) \end{aligned}$	$\begin{aligned} & \hline 290 \\ & (132) \end{aligned}$
480 V	-	25-30													

Enclosure Type C NEMA Type 3R

Figure 40-60. NEMA Type 3R SVX9000 Pump Application Drive Dimensions
Table 40-198. NEMA Type 3R SVX9000 Pump Application Drive Dimensions

Voltage AC	$\begin{aligned} & \mathrm{hp} \\ & \left(\mathrm{I}_{\mathrm{H}}\right) \end{aligned}$	$\begin{aligned} & \mathrm{hp} \\ & \left(\mathrm{I}_{\mathrm{L}}\right) \end{aligned}$	Approximate Dimensions in Inches (mm)													Approx. Weight Lbs. (kg)
			H	H1	H2	H3	H4	H5	W	W1	W2	W3	D	D1	D2	
Three-Phase																
208	30-50	40-60	$\begin{array}{\|l\|} \hline 58.09 \\ (1475.5) \end{array}$	$\begin{aligned} & \hline 56.45 \\ & (1433.8) \end{aligned}$	$\begin{array}{\|l\|} \hline 54.77 \\ (1391.2) \end{array}$	$\begin{aligned} & \hline 48.35 \\ & (1228.1) \end{aligned}$	$\begin{aligned} & \hline 78.09 \\ & (1983.5) \end{aligned}$	$\begin{aligned} & \hline 77.64 \\ & (1972.1) \end{aligned}$	$\begin{aligned} & \hline 37.73 \\ & (958.3) \end{aligned}$	$\begin{array}{\|l\|} \hline 30.92 \\ (785.4) \end{array}$	$\begin{array}{\|l} \hline 29.30 \\ (744.2) \end{array}$	$\begin{aligned} & \hline 3.34 \\ & (84.8) \end{aligned}$	$\begin{aligned} & \hline 17.74 \\ & (450.6) \end{aligned}$	$\begin{array}{\|l\|} \hline 16.77 \\ (426.0) \end{array}$	$\begin{array}{\|l\|} \hline 3.31 \\ (84.1) \end{array}$	(1)
230	30-50	40-60														
480	75-125	100-150														

Single-Phase

230 V	-	25-40	$\begin{array}{\|l\|} \hline 58.09 \\ (1475.5) \end{array}$	$\begin{array}{\|l\|} \hline 56.45 \\ (1433.8) \end{array}$	$\begin{array}{\|l\|} \hline 54.77 \\ (1391.2) \end{array}$	$\begin{aligned} & 48.35 \\ & (1228.1) \end{aligned}$	$\begin{array}{\|l\|} \hline 78.09 \\ (1983.5) \end{array}$	$\begin{array}{\|l\|} \hline 77.64 \\ (1972.1) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 37.73 \\ \text { (958.3) } \end{array}$	$\begin{aligned} & 30.92 \\ & (785.4) \end{aligned}$	$\begin{aligned} & 29.30 \\ & (744.2) \end{aligned}$	$\begin{aligned} & 3.34 \\ & (84.8) \end{aligned}$	$\begin{aligned} & 17.74 \\ & (450.6) \end{aligned}$	$\begin{aligned} & 16.77 \\ & (426.0) \end{aligned}$	$\begin{aligned} & 3.31 \\ & (84.1) \end{aligned}$	(1)
480 V	-	40-60														

[^22]
Wiring Diagrams

Figure 40-61. A2 Board Control Wiring

Figure 40-62. A9 Board Control Wiring

VFD Pump Panels

Figure 40-64. SVX9000 Pump Panel Disconnect Power Wiring

Figure 40-63. SVX9000 Pump Panel Bypass Power Wiring

Contents
 Description SPX9000 Drives

Product Description. 40-132
Features and Benefits 40-132
Technical Data and Specifications 40-133
Catalog Number
Selection
40-134
Product Selection 40-135
Options 40-140
Accessories 40-142
Dimensions 40-144
Spare Units \&
Replacement Parts 40-161

SPX9000 Drives

Product Description

The Cutler-Hammer ${ }^{\circledR}$ SPX9000 Series Adjustable Frequency Drives from Eaton's electrical business are specifically designed for high performance applications. Equipped with high processing power, the SPX9000 can use information from an encoder or a resolver in order to provide very precise motor control. Sensorless vector and simple frequency control are also supported. Typical applications requiring high performance are: master-slave drives, positioning applications, winder tension control and synchronization.

The core of the SPX9000 is a fast microprocessor, providing high dynamic performance for applications where good motor handling and reliability are required. It can be used both in open loop applications as well as in applications requiring encoder feedback.

The SPX9000 supports fast drive-todrive communication. It also offers an integrated data logger functionality for analysis of dynamic events without the need of additional hardware. Simultaneous fast monitoring of several drives can be done by using the 9000Xdrive tool and CAN communication. In applications where reliability and quality are essential for highperformance, the Cutler-Hammer SPX9000 is the logical choice.

The 9000X Family of Drives includes HVX9000, SVX9000, SLX9000 and SPX9000. 9000X Series drive ratings are rated for either high overload (I_{H}) or low overload (I_{L}). I_{L} indicates 110% overload capacity for 1 minute out of 10 minutes. I_{H} indicates 150% overload capacity for 1 minute out of 10 minutes.

Features and Benefits

■ Speed error $<0.01 \%$, depending on the encoder

- Incremental or absolute encoder support
■ Encoder voltages of 5V (RS-422), 15 V or 24 V , depending on the option card
- Full torque control at all speeds, including zero
■ Torque accuracy $<2 \%$; $<5 \%$ down to zero speed
- Starting torque $>200 \%$, depending on motor and drive sizing
■ Integrated datalogger for system analysis
- Fast multiple drive monitoring with PC
- Full capability for master/slave configurations
- High-speed bus (12 Mbit/s) for fast inter-drive communication
■ High-speed applications (up to 7200 Hz) possible
■ Robust design - proven 500,000 hours MTBF
- Integrated 3% line reactors standard on drives from FR4 through FR9
- Line reactor is included but is separated from chassis
- EMI/RFI Filters H standard up to $200 \mathrm{hp} \mathrm{I} \mathrm{H} 480 \mathrm{~V}, 100 \mathrm{hp} \mathrm{I}_{\mathrm{H}} 230 \mathrm{~V}$
- Simplified operating menu allows for typical programming changes, while programming mode provides control of everything
■ Quick Start Wizard built into the programming of the drive ensures a smooth start-up
- Keypad can display up to three monitored parameters simultaneously
- LOCAL/REMOTE operation from keypad
■ Copy/Paste function allows transfer of parameter settings from one drive to the next
- Standard NEMA Type 12 keypad on all drives
■ Hand-Held Auxiliary 240 Power Supply allows programming/monitoring of control module without applying full power to the drive
■ The SPX can be flexibly adapted to a variety of needs using our preinstalled "Seven in One" Precision application programs consisting of:
- Basic
- Standard
- Local/Remote
- Multi Step Speed Control
- PID Control
- Multi-Purpose Control
- Pump and Fan Control with Auto Change
- Additional I/O and communication cards provide plug and play functionality
- I/O connections with simple quick connection terminals
■ UL Listed
- Control logic can be powered from an external auxiliary control panel, internal drive functions and fieldbus if necessary
- Brake Chopper standard from: $1-30 \mathrm{hp} / 380-500 \mathrm{~V}$ 3/4-15 hp/208-230V
- NEMA Type 1 enclosures available Frame Sizes FR4 - FR11, NEMA Type 12 enclosures available Frame Sizes FR4 - FR10 (FR10 and FR11 Freestanding Drives)
- Open Chassis FR10 and greater
- Standard option board configuration includes an A9 I/O board and an A2 relay output board installed in slots A and B

Technical Data and Specifications

Table 40-199. SPX9000 Specifications

Description	Specification
Input Ratings	
Input Voltage ($\mathrm{V}_{\text {in }}$)	+10\% / -15\%
Input Frequency ($\mathrm{f}_{\text {in }}$)	$50 / 60 \mathrm{~Hz}$ (variation up to $45-66 \mathrm{~Hz}$)
Connection to Power	Once per minute or less (typical operation)
High Withstand Rating	100 kAIC
Output Ratings	
Output Voltage	0 to $\mathrm{V}_{\text {in }}$
Continuous Output Current	I_{H} rated 100% at $122^{\circ} \mathrm{F}\left(50^{\circ} \mathrm{C}\right)$, FR9 and below l_{L} rated 100% at $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$, FR9 and below $\mathrm{L}_{\mathrm{H}} / \mathrm{L}_{\mathrm{L}} 100 \%$ at $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right), \mathrm{FR} 10$ and above
Overload Current ($\mathrm{l}_{\mathrm{H}} / \mathrm{L}_{\mathrm{L}}$)	$150 \% \mathrm{I}_{\mathrm{H}}, 110 \% \mathrm{I}_{\mathrm{L}}$ for 1 min .
Output Frequency	0 to 320 Hz
Frequency Resolution	. 01 Hz
Initial Output Current (H_{H})	250\% for 2 seconds
Control Characteristics	
Control Method	Frequency Control (V/f) Open Loop Sensorless Vector Control Closed Loop Frequency Control Closed Loop Vector Control
Switching Frequency Frame 4-6 Frame 7-12	Adjustable with Parameter 2.6.9 1 to 16 kHz ; default 10 kHz 1 to 10 kHz ; default 3.6 kHz
Frequency Reference	Analog Input: Resolution .1\% (10-bit), accuracy $\pm 1 \% \mathrm{~V} / \mathrm{Hz}$ Panel Reference: Resolution .01 Hz
Field Weakening Point	30 to 320 Hz
Acceleration Time	0 to 3000 sec .
Deceleration Time	0 to 3000 sec.
Braking Torque	DC brake: $30 \% \times \mathrm{T}_{\mathrm{n}}$ (without brake option)
Ambient Conditions	
Ambient Operating Temperature	$14^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right)$, no frost to $122^{\circ} \mathrm{F}\left(+50^{\circ} \mathrm{C}\right) \mathrm{I}_{\mathrm{H}}$ (FR4 - FR9) $14^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right)$, no frost to $104^{\circ} \mathrm{F}\left(+40^{\circ} \mathrm{C}\right) \mathrm{I}$ (FR10 and up) $14^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right)$, no frost to $104^{\circ} \mathrm{F}\left(+40^{\circ} \mathrm{C}\right) \mathrm{I}_{\mathrm{L}}$ (All Frames)
Storage Temperature	$-40^{\circ} \mathrm{F}\left(-40^{\circ} \mathrm{C}\right)$ to $158^{\circ} \mathrm{F}\left(70^{\circ} \mathrm{C}\right)$
Relative Humidity	0 to $95 \% \mathrm{RH}$, noncondensing, non-corrosive, no dripping water
Air Quality	Chemical vapors: IEC 721-3-3, unit in operation, class 3C2; Mechanical particles: IEC 721-3-3, unit in operation, class 3S2
Altitude	100% load capacity (no derating) up to 3280 ft . (1000 m); 1\% derating for each 328 ft . (100m) above 3280 ft . (1000 m); max. 9842 ft . (3000 m)
Vibration	EN 50178, EN 60068-2-6; 5 to 50 Hz , Displacement amplitude 1 mm (peak) at 3 to 15.8 Hz , Max. acceleration amplitude 1G at 15.8 to 150 Hz
Shock	EN 50178, EN 60068-2-27 UPS Drop test (for applicable UPS weights) Storage and shipping: max. 15G, 11 ms (in package)
Enclosure Class	NEMA 1/IP21 or NEMA 12/IP54, Open Chassis/IP20

Description	Specification
Standards	
Product	IEC 61800-2
Safety	UL 508C
EMC (at default settings)	Immunity: Fulfills all EMC immunity requirements; Emissions: EN 61800-3, LEVEL H
Control Connections	
Analog Input Voltage	0 to $10 \mathrm{~V}, \mathrm{R}=200 \mathrm{k} \Omega$ (-10 to 10 V joystick control) Resolution . 1%; accuracy $\pm 1 \%$
Analog Input Current	0 (4) to 20 mA ; $\mathrm{R}_{\mathrm{i}}-250 \Omega$ differential
Digital Inputs (6)	Positive or negative logic; 18 to 30V DC
Auxiliary Voltage	$+24 \mathrm{~V} \pm 15 \%$, max. 250 mA
Output Reference Voltage	+10V +3\%, max. load 10 mA
Analog Output	0(4) to 20 mA ; R_{L} max. 500 ; Resolution 10 bit; Accuracy $\pm 2 \%$
Digital Outputs	Open collector output, $50 \mathrm{~mA} / 48 \mathrm{~V}$
Relay Outputs	2 programmable Form C relay outputs Switching capacity: 24V DC / 8A, 250V AC / 8A, 125V DC / .4A

Protections

Overcurrent Protection	Trip limit $4.0 \times \mathrm{I}_{\mathrm{H}}$ instantaneously
Overvoltage Protection	Yes
Undervoltage Protection	Yes
Earth Fault Protection	In case of earth fault in motor or motor cable, only the frequency converter is protected
Input Phase Supervision	Trips if any of the input phases are missing
Motor Phase Supervision	Trips if any of the output phases are missing
Overtemperature Protection	Yes
Motor Overload Protection	Yes
Motor Stall Protection	Yes
Motor Underload Protection	Yes
Short Circuit Protection	Yes (+24V and +10V Reference Voltages)

High Performance Features

Speed Error	$<0.01 \%$, depending on the encoder
Encoder Support	Incremental or absolute
Encoder Voltages	5V (RS-422), 15V or 24V, depending on the option card
Torque Control	Full torque control at all speeds, including zero
Torque Accuracy	$<2 \% ;<5 \%$ down to zero speed
Starting Torque	$>200 \%$, depending on motor and drive sizing
Master/Slave Configurations	Full capability
System Analysis	Integrated data logger
PC Communication	Fast multiple drive monitoring with PC
Inter-Drive Communication	High-speed bus (12 Mbits/s)
High-Speed Applications	Up to 7200 Hz

Catalog Number Selection

Table 40-200. Adjustable Frequency Drive Catalog Numbering System

[^23]
Product Selection

230V SPX9000 Drives

Table 40-201. 208-240V, NEMA Type 1 Drive

Frame Size	Delivery Code	$\mathrm{hp}\left(\mathrm{I}_{\mathrm{H}}\right)$	Current $\left(\mathbf{I}_{\mathrm{H}}\right)$	hp ($\mathrm{l}_{\text {L }}$)	Current (IL_{L})	Catalog Number	Price U.S. \$
FR4	FP	$$	$\begin{array}{r} 3.7 \\ 4.8 \\ 6.6 \\ 7.8 \\ 11 \end{array}$	$\begin{aligned} & 1 \\ & 1-1 / 2 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	$\begin{gathered} 4.8 \\ 6.6 \\ 7.8 \\ 11 \\ 12.5 \end{gathered}$	SPXF07A1-2A1B1 SPX001A1-2A1B1 SPXF15A1-2A1B1 SPX002A1-2A1B1 SPX003A1-2A1B1	
FR5	FP	$\begin{aligned} & \overline{5} \\ & 7-1 / 2 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 17.5 \\ & 25 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 7-1 / 2 \\ & 10 \end{aligned}$	$\begin{aligned} & 17.5 \\ & 25 \\ & 31 \end{aligned}$	SPX004A1-2A1B1 SPX005A1-2A1B1 SPX007A1-2A1B1	
FR6	FP	$\begin{aligned} & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 31 \\ & 48 \end{aligned}$	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & 48 \\ & 61 \end{aligned}$	SPX010A1-2A1B1 SPX015A1-2A1B1	
FR7	FP	$\begin{aligned} & 20 \\ & 25 \\ & 30 \end{aligned}$	$\begin{aligned} & 61 \\ & 75 \\ & 88 \end{aligned}$	$\begin{aligned} & 25 \\ & 30 \\ & 40 \end{aligned}$	$\begin{array}{\|r\|} \hline 75 \\ 88 \\ 114 \end{array}$	SPX020A1-2A1N1 SPX025A1-2A1N1 SPX030A1-2A1N1	
FR8	FP	$\begin{aligned} & 40 \\ & 50 \\ & 60 \end{aligned}$	$\begin{array}{\|l\|} \hline 114 \\ 140 \\ 170 \end{array}$	$\begin{aligned} & 50 \\ & 60 \\ & 75 \end{aligned}$	$\begin{array}{\|l\|} \hline 140 \\ 170 \\ 205 \end{array}$	SPX040A1-2A1N1 SPX050A1-2A1N1 SPX060A1-2A1N1	
FR9	FP	$\begin{array}{\|r} \hline 75 \\ 100 \\ \hline \end{array}$	$\begin{aligned} & 205 \\ & 261 \end{aligned}$	100	261	SPX075A1-2A1N1 SPX100A1-2A1N1	

Table 40-202. 208-240V, NEMA Type 12 Drive

Frame Size	Delivery Code	hp (${ }^{(} \mathrm{H}$)	Current $\left(\mathrm{I}_{\mathrm{H}}\right)$	hp (L_{L})	Current (IL)	Catalog Number	Price U.S. \$
FR4	FP	$\begin{aligned} & 3 / 4 \\ & 1 \\ & 1-1 / 2 \\ & 2 \\ & 3 \end{aligned}$	$\begin{array}{\|c\|} \hline 3.7 \\ 4.8 \\ 6.6 \\ 7.8 \\ 11 \end{array}$	$\begin{aligned} & 1 \\ & 1-1 / 2 \\ & 2 \\ & 3 \\ & - \end{aligned}$	$\begin{gathered} 4.8 \\ 6.6 \\ 7.8 \\ 11 \\ 12.5 \end{gathered}$	SPXF07A2-2A1B1 SPX001A2-2A1B1 SPXF15A2-2A1B1 SPX002A2-2A1B1 SPX003A2-2A1B1	
FR5	FP	$\begin{aligned} & \overline{5} \\ & 7-1 / 2 \end{aligned}$	$\begin{array}{\|l\|} \hline 12.5 \\ 17.5 \\ 25 \end{array}$	$\begin{array}{\|l\|} \hline 5 \\ 7-1 / 2 \\ 10 \end{array}$	$\begin{aligned} & 17.5 \\ & 25 \\ & 31 \end{aligned}$	$\begin{aligned} & \hline \text { SPX004A2-2A1B1 } \\ & \text { SPX005A2-2A1B1 } \\ & \text { SPX007A2-2A1B1 } \end{aligned}$	
FR6	FP	$\begin{array}{\|l\|} \hline 10 \\ 15 \end{array}$	$\begin{array}{\|l} \hline 31 \\ 48 \end{array}$	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & 48 \\ & 61 \end{aligned}$	SPX010A2-2A1B1 SPX015A2-2A1B1	
FR7	FP	$\begin{aligned} & 20 \\ & 25 \\ & 30 \end{aligned}$	$\begin{aligned} & 61 \\ & 75 \\ & 88 \end{aligned}$	$\begin{aligned} & 25 \\ & 30 \\ & 40 \end{aligned}$	$\begin{array}{\|r} \hline 75 \\ 88 \\ 114 \\ \hline \end{array}$	SPX020A2-2A1N1 SPX025A2-2A1N1 SPX030A2-2A1N1	
FR8	FP	$\begin{aligned} & 40 \\ & 50 \\ & 60 \end{aligned}$	$\begin{array}{\|l\|} \hline 114 \\ 140 \\ 170 \\ \hline \end{array}$	$\begin{aligned} & 50 \\ & 60 \\ & 75 \end{aligned}$	$\begin{array}{\|l\|} \hline 140 \\ 170 \\ 205 \\ \hline \end{array}$	$\begin{aligned} & \text { SPX040A2-2A1N1 } \\ & \text { SPX050A2-2A1N1 } \\ & \text { SPX060A2-2A1N1 } \end{aligned}$	
FR9	FP	$\begin{array}{\|r\|} \hline 75 \\ 100 \end{array}$	$\begin{array}{\|l\|} \hline 205 \\ 261 \end{array}$	100	261	$\begin{aligned} & \hline \text { SPX075A2-2A1N1 } \\ & \text { SPX100A2-2A1N1 } \end{aligned}$	

480V SPX9000 Drives

Table 40-203. 380-500V, NEMA Type 1 Drive

Frame Size	Delivery Code	hp (IH)	Current $\left(I_{H}\right)$	hp (IL)	Current $\left(I_{L}\right)$	Catalog Number	Price U.S. $\$$

FR4	W	1	2.2	$1-1 / 2$	3.3	SPX001A1-4A1B1	
	FP	$1-1 / 2$	3.3	2	4.3	SPXF15A1-4A1B1	
	FP	2	4.3	3	5.6	SPX002A1-4A1B1	
	W	3	5.6	5	7.6	SPX003A1-4A1B1	
	W	5	7.6	-	9	SPX005A1-4A1B1	
	FP	-	9	$7-1 / 2$	12	SPX006A1-4A1B1	
FR5	W	$7-1 / 2$	12	10	16	SPX007A1-4A1B1	
		10	16	15	23	SPX010A1-4A1B1	
FR6	W	15	23	20	31	SPX015A1-4A1B1	
		20	31	25	38	SPX020A1-4A1B1	
		25	38	30	46	SPX025A1-4A1B1	
FR7	FP	40	46	40	61	SPX030A1-4A1B1	
	W	50	61	50	72	SPX040A1-4A1N1	
	W	60	72	60	87	SPX050A1-4A1N1	
FR8	FP	75	87	75	105	SPX060A1-4A1N1	
	W	100	140	100	140	SPX075A1-4A1N1	
FR9	W	125	170	125	170	SPX100A1-4A1N1	
		150	205	200	261	SPX150A1-4A1N1	

Table 40-204. 380-500V, NEMA Type 1 Freestanding Drive

| Frame
 Size | Delivery
 Code | hp (I \mathbf{H}) | Current
 $\left(\mathbf{I}_{\mathbf{H}}\right)$ | hp (I) | Current
 $\left(\mathbf{I}_{\mathbf{L}}\right)$ | Catalog
 Number | Price
 U.S. \mathbf{S} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| FR10 | W | 250 | 330 | 300 | 385 |
| | SPX250A1-4A4N1 | | | | |
| | FP | 300 | 385 | 350 | 460 |
| SPX300A1-4A4N1 | | | | | |
| FR11 | FP | 350 | 460 | 400 | 520 |

Note: Integrated fuses as standard. Limited option selection available; 115V Transformer (KB), Light Kit (L1), HOA (K4), Speed Potentiometer w/HOA (K2), Disconnect Switch (P2). See Freestanding Option selection on Page 40-143.

Table 40-205. 380 - 500V, NEMA Type 12 Drive

Frame Size	Delivery Code	$\mathrm{hp}\left(\mathrm{I}_{\mathrm{H}}\right)$	Current $\left(1 \mathrm{I}_{\mathrm{H}}\right)$	hp (lL)	Current (ll)	Catalog Number	$\begin{array}{\|l} \hline \text { Price } \\ \text { U.S. \$ } \end{array}$
FR4	W FP FP W W FP	$\begin{aligned} & \hline 1 \\ & 1-1 / 2 \\ & 2 \\ & 3 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.2 \\ & 3.3 \\ & 4.3 \\ & 5.6 \\ & 7.6 \\ & 9 \end{aligned}$	$\begin{aligned} & \hline 1-1 / 2 \\ & 2 \\ & 3 \\ & 5 \\ & \hline-1-1 / 2 \end{aligned}$	$\begin{gathered} \hline 3.3 \\ 4.3 \\ 5.6 \\ 7.6 \\ 9 \\ 12 \end{gathered}$	SPX001A2-4A1B1 SPXF15A2-4A1B1 SPX002A2-4A1B1 SPX003A2-4A1B1 SPX005A2-4A1B1 SPX006A2-4A1B1	
FR5	W	$\begin{aligned} & \hline 7-1 / 2 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 12 \\ & 16 \\ & 23 \end{aligned}$	$\begin{aligned} & 10 \\ & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & 16 \\ & 23 \\ & 31 \end{aligned}$	SPX007A2-4A1B1 SPX010A2-4A1B1 SPX015A2-4A1B1	
FR6	W	$\begin{aligned} & 20 \\ & 25 \\ & 30 \end{aligned}$	$\begin{aligned} & 31 \\ & 38 \\ & 46 \end{aligned}$	$\begin{aligned} & 25 \\ & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & 38 \\ & 46 \\ & 61 \end{aligned}$	SPX020A2-4A1B1 SPX025A2-4A1B1 SPX030A2-4A1B1	
FR7	FP	$\begin{aligned} & 40 \\ & 50 \\ & 60 \end{aligned}$	$\begin{aligned} & 61 \\ & 72 \\ & 87 \end{aligned}$	$\begin{aligned} & 50 \\ & 60 \\ & 75 \end{aligned}$	$\begin{array}{\|r\|} \hline 72 \\ 87 \\ 105 \end{array}$	SPX040A2-4A1N1 SPX050A2-4A1N1 SPX060A2-4A1N1	
FR8	FP	$\begin{array}{\|r\|} \hline 75 \\ 100 \\ 125 \end{array}$	$\begin{aligned} & 105 \\ & 140 \\ & 170 \end{aligned}$	$\begin{array}{\|l\|} \hline 100 \\ 125 \\ 150 \end{array}$	$\begin{array}{\|l\|} \hline 140 \\ 170 \\ 205 \end{array}$	SPX075A2-4A2N1 SPX100A2-4A1N1 SPX125A2-4A1N1	
FR9	FP	$\begin{aligned} & \hline 150 \\ & 200 \end{aligned}$	$\begin{aligned} & 205 \\ & 245 \end{aligned}$	$\begin{array}{\|l\|} \hline 200 \\ 250 \end{array}$	$\begin{aligned} & 261 \\ & 300 \end{aligned}$	SPX150A2-4A1N1 SPX200A2-4A1N1	

June 2008

Table 40-206. 380-500V, NEMA Type 12 Freestanding Drive

Frame Size	Delivery Code	hp (IH)	Current $\left(\mathbf{I}_{\mathbf{H}}\right)$	hp (IL)	Current $\left(\mathbf{I}_{\mathrm{L}}\right)$	Catalog Number	Price U.S. $\$$
 FR10 FP 250 330 300 385 SPX250A2-4A4N1 FP 300 385 350 460 SPX300A2-4A4N1							
	FP	350	460	400	520	SPX350A2-4A4N1	

Note: Integrated fuses as standard. Limited option selection available; 115V Transformer (KB), Light Kit (L1), HOA (K4), Speed Potentiometer w/HOA (K2), Disconnect Switch (P2). See Freestanding Option selection on Page 40-143.

Table 40-207. 480V 380 - 500, Open Chassis Drive

Frame Size	Delivery Code	hp (H_{H})	$\begin{array}{\|l\|} \hline \text { Current } \\ \left(1_{\mathrm{H}}\right) \end{array}$	hp (l_{L})	Current $\left(I_{L}\right)$	Catalog Number	Price U.S. \$
FR10	W	$\begin{aligned} & 250 \\ & 300 \\ & 350 \end{aligned}$	$\begin{aligned} & 330 \\ & 385 \\ & 460 \end{aligned}$	$\begin{array}{\|c} \hline-300 \\ -400 \end{array}$	$\begin{aligned} & \hline 385 \\ & 460 \\ & 520 \end{aligned}$	SPX250A0-4A2N1 SPX300A0-4A2N1 SPX350A0-4A2N1	
FR11	FP	$\begin{array}{\|l\|l} \hline 400 \\ 500 \end{array}$	$\begin{aligned} & 520 \\ & 590 \\ & 650 \end{aligned}$	$\begin{array}{\|r\|} \hline 500 \\ -600 \end{array}$	$\begin{aligned} & 590 \\ & 650 \\ & 730 \end{aligned}$	$\begin{aligned} & \text { SPX400A0-4A2N1 } \\ & \text { SPX500A0-4A2N1 } \\ & \text { SPX550A0-4A2N1 } \end{aligned}$	
FR12	FP	$\begin{gathered} 600 \\ \hline 700 \end{gathered}$	$\begin{aligned} & 730 \\ & 820 \\ & 920 \end{aligned}$	$\begin{array}{\|l} \hline-700 \\ 800 \end{array}$	$\begin{array}{r} 820 \\ 920 \\ 1030 \end{array}$	$\begin{aligned} & \text { SPX600A0-4A2N1 } \\ & \text { SPX650A0-4A2N1 } \\ & \text { SPX700A0-4A2N1 } \end{aligned}$	
FR13	FP	$\begin{array}{\|r} \hline 800 \\ 900 \\ 1000 \end{array}$	$\begin{array}{\|l\|} \hline 1030 \\ 1150 \\ 1300 \end{array}$	$\begin{array}{r} 900 \\ 1000 \\ 1200 \end{array}$	$\begin{aligned} & \hline 1150 \\ & 1300 \\ & 1450 \end{aligned}$	SPX800A0-4A2N1 SPX900A0-4A2N1 SPXH10A0-4A2N1	
FR14	FP	$\begin{aligned} & 1200 \\ & 1600 \end{aligned}$	$\begin{aligned} & 1600 \\ & 1940 \end{aligned}$	$\begin{array}{\|l\|} \hline 1500 \\ 1800 \end{array}$	$\begin{aligned} & \hline 1770 \\ & 2150 \end{aligned}$	SPXH12A0-4A2N1 SPXH16A0-4A2N1	

(1) FR10-FR14 includes 3\% line reactor, but it is not integral to chassis.

575V SPX9000 Drives

Table 40-208. 525 - 690V, NEMA Type 1 Drive

Frame Size	Delivery Code	hp (l_{H})	Current $\left(\mathrm{I}_{\mathrm{H}}\right)$	hp ($\mathrm{IL}_{\text {L }}$)	Current $\left(I_{L}\right)$	Catalog Number	Price U.S. \$
FR6	W	2 3 - 5 $7-1 / 2$ 10 15 20 25	$\begin{aligned} & 3.33 \\ & 4.5 \\ & 5.5 \\ & 7.5 \\ & 10 \\ & 13.5 \\ & 18 \\ & 22 \\ & 27 \end{aligned}$	$\begin{array}{\|l} \hline 3 \\ - \\ 5 \\ 7-1 / 2 \\ 10 \\ 15 \\ 20 \\ 25 \\ 30 \end{array}$	$\begin{aligned} & 4.5 \\ & 5.5 \\ & 7.5 \\ & 10 \\ & 13.5 \\ & 18 \\ & 22 \\ & 27 \\ & 34 \end{aligned}$	SPX002A1-5A4N1 SPX003A1-5A4N1 SPX004A1-5A4N1 SPX005A1-5A4N1 SPX007A1-5A4N1 SPX010A1-5A4N1 SPX015A1-5A4N1 SPX020A1-5A4N1 SPX025A1-5A4N1	
FR7	W	$\begin{aligned} & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & \hline 34 \\ & 41 \end{aligned}$	$\begin{aligned} & 40 \\ & 50 \end{aligned}$	$\begin{aligned} & 41 \\ & 52 \end{aligned}$	$\begin{aligned} & \hline \text { SPX030A1-5A4N1 } \\ & \text { SPX040A1-5A4N1 } \end{aligned}$	
FR8	W	$\begin{aligned} & 50 \\ & 60 \\ & 75 \end{aligned}$	$\begin{aligned} & 52 \\ & 62 \\ & 80 \end{aligned}$	$\begin{array}{r} 60 \\ 75 \\ 100 \end{array}$	$\begin{array}{\|r} \hline 62 \\ 80 \\ 100 \end{array}$	SPX050A1-5A4N1 SPX060A1-5A4N1 SPX075A1-5A4N1	
FR9	W	$\begin{array}{\|l\|} \hline 100 \\ 125 \\ 150 \\ - \end{array}$	$\begin{array}{\|l\|} \hline 100 \\ 125 \\ 144 \\ 170 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 125 \\ 150 \\ \overline{200} \end{array}$	$\begin{aligned} & \hline 125 \\ & 144 \\ & 170 \\ & 208 \end{aligned}$	SPX100A1-5A4N1 SPX125A1-5A4N1 SPX150A1-5A4N1 SPX175A1-5A4N1	

Table 40-209. 525-690V, NEMA Type 1 Freestanding Drive

Frame Size	Delivery Code	hp (l_{H})	Current $\left(I_{H}\right)$	hp (L_{L})	Current $\left(I_{L}\right)$	Catalog Number	Price U.S. \$
FR10	FP	$\begin{aligned} & 200 \\ & 250 \\ & 300 \end{aligned}$	$\begin{aligned} & 208 \\ & 261 \\ & 325 \end{aligned}$	$\begin{array}{\|l\|} \hline 250 \\ 300 \\ 400 \end{array}$	$\begin{aligned} & 261 \\ & 325 \\ & 385 \end{aligned}$	SPX200A1-5A4N1 SPX250A1-5A4N1 SPX300A1-5A4N1	
FR11	FP	$\begin{aligned} & 400 \\ & 450 \\ & 500 \end{aligned}$	$\begin{aligned} & 385 \\ & 460 \\ & 502 \end{aligned}$	$\begin{array}{\|l} 450 \\ 500 \\ 550 \end{array}$	$\begin{aligned} & 460 \\ & 502 \\ & 590 \end{aligned}$	SPX400A1-5A4N1 SPX450A1-5A4N1 SPX500A1-5A4N1	

Note: Integrated fuses as standard. Limited option selection available; 115V Transformer (KB), Light Kit (L1), HOA (K4), Speed Potentiometer w/HOA (K2), Disconnect Switch (P2). See Freestanding Option selection on Page 40-143.

Table 40-210. 525-690V, NEMA Type 12 Drive

Frame Size	Delivery Code	hp (l_{H})	Current (H_{H})	hp ($\mathrm{l}_{\text {L }}$)	Current (L_{L})	Catalog Number	Price U.S. \$
FR6	F1	2 3 - 5 $7-1 / 2$ 10 15 20 25	$\begin{aligned} & \hline 3.33 \\ & 4.5 \\ & 5.5 \\ & 7.5 \\ & 10 \\ & 13.5 \\ & 18 \\ & 22 \\ & 27 \end{aligned}$	$\begin{array}{\|l} \hline 3 \\ - \\ 5 \\ 7-1 / 2 \\ 10 \\ 15 \\ 20 \\ 25 \\ 30 \end{array}$	$\begin{aligned} & \hline 4.5 \\ & 5.5 \\ & 7.5 \\ & 10 \\ & 13.5 \\ & 18 \\ & 22 \\ & 27 \\ & 34 \end{aligned}$	SPX002A2-5A4N1 SPX003A2-5A4N1 SPX004A2-5A4N1 SPX005A2-5A4N1 SPX007A2-5A4N1 SPX010A2-5A4N1 SPX015A2-5A4N1 SPX020A2-5A4N1 SPX025A2-5A4N1	
FR7	FP	$\begin{aligned} & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & 34 \\ & 41 \end{aligned}$	$\begin{aligned} & 40 \\ & 50 \end{aligned}$	$\begin{aligned} & \hline 41 \\ & 52 \end{aligned}$	SPX030A2-5A4N1 SPX040A2-5A4N1	
FR8	FP	$\begin{aligned} & 50 \\ & 60 \\ & 75 \end{aligned}$	$\begin{aligned} & 52 \\ & 62 \\ & 80 \end{aligned}$	$\begin{array}{r} 60 \\ 75 \\ 100 \end{array}$	$\begin{array}{\|r\|} \hline 62 \\ 80 \\ 100 \end{array}$	SPX050A2-5A4N1 SPX060A2-5A4N1 SPX075A2-5A4N1	
FR9	FP	$\begin{aligned} & 100 \\ & 125 \\ & 150 \end{aligned}$	$\begin{array}{\|l\|} \hline 100 \\ 125 \\ 144 \\ 170 \\ \hline \end{array}$	$\begin{aligned} & \hline 125 \\ & 150 \\ & \overline{200} \end{aligned}$	$\begin{array}{\|l\|} \hline 125 \\ 144 \\ 170 \\ 208 \end{array}$	SPX100A2-5A4N1 SPX125A2-5A4N1 SPX150A2-5A4N1 SPX175A2-5A4N1	

40 Table 40-211. 525-690V, NEMA Type 12 Freestanding Drive

Frame Size	Delivery Code	hp (H_{H})	$\begin{aligned} & \begin{array}{l} \text { Current } \\ \left(\mathbf{I H}_{\mathrm{H}}\right) \end{array} \end{aligned}$	hp (L)	Current (L_{L})	Catalog Number	$\begin{aligned} & \text { Price } \\ & \text { U.S. } \$ \end{aligned}$
FR10	FP	$\begin{array}{\|l\|} \hline 200 \\ 250 \\ 300 \end{array}$	$\begin{aligned} & 208 \\ & 261 \\ & 325 \end{aligned}$	$\begin{aligned} & 250 \\ & 300 \\ & 400 \end{aligned}$	$\begin{aligned} & 261 \\ & 325 \\ & 385 \end{aligned}$	SPX200A2-5A4N1 SPX250A2-5A4N1 SPX300A2-5A4N1	

Note: Integrated fuses as standard. Limited option selection available; 115 V Transformer (KB), Light Kit (L1), HOA (K4), Speed Potentiometer w/HOA (K2), Disconnect Switch (P2). See Freestanding Option selection on Page 40-143.

Table 40-212. 525-690V, Open Chassis Drive

Frame Size	Delivery Code	hp (l_{H})	Current $\left(\mathrm{I}_{\mathrm{H}}\right)$	hp (I_{L})	Current $\left(I_{L}\right)$	Catalog Number	$\begin{aligned} & \text { Price } \\ & \text { U.S. \$ } \end{aligned}$
FR10	FP	$\begin{aligned} & 200 \\ & 250 \\ & 300 \end{aligned}$	$\begin{aligned} & 208 \\ & 261 \\ & 325 \end{aligned}$	$\begin{aligned} & 250 \\ & 300 \\ & 400 \end{aligned}$	$\begin{aligned} & 261 \\ & 325 \\ & 385 \end{aligned}$	SPX200A0-5A2N1 SPX250A0-5A2N1 SPX300A0-5A2N1	
FR11	FP	$\begin{aligned} & 400 \\ & 450 \\ & 500 \end{aligned}$	$\begin{aligned} & 385 \\ & 460 \\ & 502 \end{aligned}$	$\begin{array}{r} 450 \\ 500 \\ -\quad \end{array}$	$\begin{aligned} & 460 \\ & 502 \\ & 590 \end{aligned}$	SPX400A0-5A2N1 SPX450A0-5A2N1 SPX500A0-5A2N1	
FR12	FP	$\begin{aligned} & -700 \\ & 700 \end{aligned}$	$\begin{aligned} & 590 \\ & 650 \\ & 750 \end{aligned}$	$\begin{aligned} & 600 \\ & 700 \\ & 800 \end{aligned}$	$\begin{aligned} & 650 \\ & 750 \\ & 820 \end{aligned}$	SPX550A0-5A2N1 SPX600A0-5A2N1 SPX700A0-5A2N1	
FR13	FP	$\begin{array}{\|r} \hline 800 \\ 900 \\ 1000 \end{array}$	$\begin{array}{\|r} \hline 820 \\ 920 \\ 1030 \\ \hline \end{array}$	$\begin{array}{\|r} \hline 900 \\ 1000 \\ 1250 \end{array}$	$\begin{array}{r} 920 \\ 1030 \\ 1180 \\ \hline \end{array}$	SPX800A0-5A2N1 SPX900A0-5A2N1 SPXH10A0-5A2N1	
FR14	FP	$\begin{array}{\|l\|} \hline 1350 \\ 1500 \\ 2000 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 1300 \\ 1500 \\ 1900 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 1500 \\ 2000 \\ 2300 \\ \hline \end{array}$	$\begin{aligned} & \hline 1500 \\ & 1900 \\ & 2250 \end{aligned}$	SPXH13A0-5A2N1 SPXH15A0-5A2N1 SPXH20A0-5A2N1	

(1) FR10-FR14 includes a 3% line reactor but it is not integral to chassis.

June 2008

Series Option Board Kits

The 9000X Series drives can accommodate a wide selection of expander and adapter option boards to customize the drive for your application needs. The drive's control unit is designed to accept a total of five option boards (see Figure 40-65).

The 9000X Series factory installed standard board configuration includes an A9 I/O board and an A2 relay output board, which are installed in slots A and B.

Figure 40-65. 9000X Series Option Boards

Table 40-213. Option Board Kits

Option Kit Description (2)	Allowed Slot Locations	Field Installed		Factory Installed		SVX Ready Programs						
		Catalog Number	$\begin{aligned} & \text { Price } \\ & \text { U.S. } \end{aligned}$	Option Designator	Adder U.S.S	Basic	Local/ Remote	Standard	MSS	PID	Multi-P.	PFC

Standard I/O Cards (See Figure 40-65)

2 RO (NC/NO)	B	OPTA2	-	X	X	X	X	X	X	X
$\begin{aligned} & 6 \mathrm{DI}, 1 \mathrm{DO}, 2 \mathrm{Al}, 1 \mathrm{AO}, 1+10 \mathrm{~V} \text { DC ref, } \\ & 2 \text { ext +24V DC/EXT +24V DC } \end{aligned}$	A	OPTA9	-	X	X	X	X	X	X	X

Extended I/O Card Options

2 RO, Therm	B	OPTA3	A3	-	X	X	X	X	X	X
Encoder low volt $+5 \mathrm{~V} / 15 \mathrm{~V} 24 \mathrm{~V}$	C	OPTA4	A4	-	X	X	X	X	X	X
Encoder high volt +15V/24V	C	OPTA5	A5	-	X	X	X	X	X	X
Double encoder - SPX Only	C	OPTA7	A7	X	X	X	X	X	X	X
6 DI, 1 DO, $2 \mathrm{Al}, 1 \mathrm{AO}$	A	OPTA8	A8	-	X	X	X	X	X	X
$\begin{aligned} & 3 \mathrm{DI} \text { (Encoder } 10-24 \mathrm{~V}) \text {, Out + 15V/+24V, } \\ & 2 \mathrm{DO} \text { (pulse+direction) - SPX Only } \end{aligned}$	C	OPTAE	AE	X	X	X	X	X	X	X
$6 \mathrm{DI}, 1$ ext +24V DC/EXT +24V DC	B, C, D, E	OPTB1	B1	-	-	-	-	-	X	X
1 RO (NC/NO), 1 RO (NO), 1 Therm	B, C, D, E	OPTB2	B2	-	-	-	-	-	X	X
1 Al (mA isolated), 2 AO (mA isolated), 1 ext +24V DC/EXT +24V DC	B, C, D, E	OPTB4	B4	-	X	X	X	X	X	X
3 RO (NO)	B, C, D, E	OPTB5	B5	-	-	-	-	-	X	X
1 ext +24V DC/EXT +24V DC, 3 Pt100	B, C, D, E	OPTB8	B8	-	-	-	-	-	-	-
1 RO (NO), 5 DI $42-240 \mathrm{~V}$ AC Input	B,C, D, E	OPTB9	B9	-	-	-	-	-	X	X
SPI, Absolute Encoder	C	OPTBB	BB	-	-	-	-	-	-	-

Communication Cards ${ }^{3}$

Modbus	D, E	OPTC2	C2	X	X	X	X	X	X	X
Johnson Controls N2	D, E	OPTC2	CA	-	-	-	-	-	-	-
Modbus TCP	D, E	OPTCI	Cl	X	X	X	X	X	X	X
BACnet	D, E	OPTCJ	CJ	X	X	X	X	X	X	X
Ethernet IP	D, E	OPTCK	CK	X	X	X	X	X	X	X
Profibus DP	D, E	OPTC3	C3	X	X	X	X	X	X	X
LonWorks	D, E	OPTC4	C4	X	X	X	X	X	X	X
Profibus DP (D9 Connector)	D, E	OPTC5	C5	X	X	X	X	X	X	X
CanOpen (Slave)	D, E	OPTC6	C6	X	X	X	X	X	X	X
DeviceNet	D, E	OPTC7	C7	X	X	X	X	X	X	X
Modbus (D9 Type Connector)	D, E	OPTC8	C8	X	X	X	X	X	X	X
Adapter - SPX Only	D, E	OPTD1	D1	X	X	X	X	X	X	X
Adapter - SPX Only	D, E	OPTD2	D2	X	X	X	X	X	X	X
RS-232 with D9 Connection	D, E	OPTD3	D3	X	X	X	X	X	X	X

Keypad

9000X Series Local/ Remote Keypad (Replacement Keypad)	-	KEYPADLOC/ REM	-	-	-	-	-	-	-	X
9000X Series Remote Mount Keypad Unit (Keypad not included, includes 10 ft . cable, keypad holder, mounting hardware)	-	OPTRMT-KIT9000X	-	-	-	-	-	-	-	-
9000X Series RS-232 Cable, 13 ft .	-	PP00104	-	-	-	-	-	-	-	-

[^24]
Johnson Controls Metasys ${ }^{\text {TM }}$ N2 Network Communications

The OPTC2 fieldbus board provides communication between the 9000X Drive and a Johnson Controls Metasys ${ }^{\text {TM }}$ N2 network. With this connection, the drive can be controlled, monitored and programmed from the Metasys system. The N2 fieldbus is available as a factory installed option and as a field installable kit.

Modbus/TCP Network Communications

The Modbus/TCP Network Card OPTCI is used for connecting the 9000X Drive to Ethernet networks utilizing Modbus protocol. It includes an RJ-45 pluggable connector. This interface provides a selection of standard and custom register values to communicate drive parameters. The board supports 10 Mbps and 100 Mbps communication speeds. The IP address of the board is configurable over Ethernet using a supplied software tool.

BACnet Network Communications

The BACnet Network Card OPTCJ is used for connecting the 9000X Drive to BACnet networks. It includes a 5.08 mm pluggable connector. Data transfer is Master-Slave/Token Passing (MS/TP) RS-485. This interface uses a collection of 30 Binary Value Objects (BVOs) and 35 Analog Value Objects (AVOs) to communicate drive parameters. The card supports 9.6,
19.2 and 38.4 Kbaud communication speeds and supports network addresses 1-127.

Ethernet/IP Network Communications

The Ethernet/IP Network Card OPTCK is used for connecting the 9000X Drive to Ethernet/Industrial Protocol networks. It includes an RJ-45 pluggable connector. The interface uses CIP objects to communicate drive parameters (CIP is "Common Industrial Protocol", the same protocol used by DeviceNet). The board supports 10 Mbps and 100 Mbps communication speeds. The IP address of the board is configurable by Static, BOOTP and DHCP methods.

Modbus RTU Network Communications

The Modbus Network Card OPTC2 is used for connecting the 9000X Drive as a slave on a Modbus network. The interface is connected by a 9-pin DSUB connector (female) and the baud rate ranges from 300 to 19200 baud. Other communication parameters include an address range from 1 to 247; a parity of None, Odd or Even; and the stop bit is 1 .

Profibus Network Communications

The Profibus Network Card OPTC3 is used for connecting the 9000X Drive as a slave on a Profibus-DP network. The interface is connected by a 9 -pin DSUB connector (female). The baud rates
range from 9.6 K baud to 12 M baud, and the addresses range from 1 to 127 .

LonWorks Network Communications

The LonWorks Network Card OPTC4 is used for connecting the 9000X Drive on a LonWorks network. This interface uses Standard Network Variable Types (SNVT) as data types. The channel connection is achieved using a FTT-10A Free Topology transceiver via a single twisted transfer cable. The communication speed with LonWorks is $78 \mathrm{kBits} / \mathrm{s}$.

CanOpen (Slave) Communications

The CanOpen (Slave) Network Card OPTC6 is used for connecting the 9000X Drive to a host system. According to ISO11898 standard cables to be chosen for CAN bus should have a nominal impedance of 120Ω, and specific line delay of nominal $5 \mathrm{nS} / \mathrm{m}$. 120Ω line termination resistors required for installation.

DeviceNet Network Communications

The DeviceNet Network Card OPTC7 is used for connecting the 9000X Drive on a DeviceNet Network. It includes a 5.08 mm pluggable connector. Transfer method is via CAN using a 2-wire twisted shielded cable with 2 -wire bus power cable and drain. The baud rates used for communication include 125 K baud, 250 K baud and 500 K baud.

Options

Control Panel Options

Table 40-214. Control Panel Factory Options

| Description | Factory Installed | Field Installed |
| :--- | :--- | :--- | :--- | :--- |
| | | NEMA Type 1 |

Local/Remote Keypad SVX9000 Control Panel — This option is standard on all drives and con- sists of an RS-232 connection, backlit alphanumeric LCD display with nine indicators for the RUN status and two indicators for the control source. The nine pushbuttons on the panel are used for panel programming and monitoring of all SPX9000 parameters. The panel is detachable and iso- lated from the input line potential. Include LOC/REM key to choose control location.	A		KEYPAD-LOC/REM
Keypad Remote Mounting Kit - This option is used to remote mount the SPX9000 keypad. The footprint is compatible to the SV9000 remote mount kit. Includes 10 ft. cable, keypad holder and mounting hardware.	-		OPTRMT-KIT-9000X
Keypad Blank -9000X Series select keypad for use with special and custom applications.	-		

Table 40-215. Miscellaneous Options

Description	Catalog Number	$\begin{array}{\|l} \hline \text { Price } \\ \text { U.S. \$ } \end{array}$
9000XDrive - A PC-based tool for controlling and monitoring of the SPX9000. Features include: loading parameters that can be saved to a file or printed, setting references, starting and stopping the motor, monitoring signals in graphical or text form, and real-time display. To avoid damage to the drive or computer, SVDrivecable must be used.	9000XDRIVE	
SVDrivecable - 6 ft . (1.8 m) RS-232 cable (22 gauge) with a 7-pin connector on each end. Should be used in conjunction with the 9000 X Drive option to avoid damage to the SPX9000 or computer. The same cable can be used for downloading specialized applications to the drive.	SVDRIVECABLE	
External Dynamic Braking Resistors — Used with the Dynamic Braking Chopper Circuit to absorb motor regenerative energy for stopping the load and to dissipate the energy flowing back into the drive. Resistors are separated into Standard Duty and Heavy-Duty. Standard Duty is defined as 20\% duty or less with 100\% braking torque, while Heavy-Duty is defined as 50\% duty or less with 150% braking torque. Consult factory.	(1)	

(1) Consult factory.

Brake Chopper Options

The Brake Chopper Circuit option is used for applications that require dynamic braking. Dynamic Braking resistors not included with drive purchase. Consult the factory for dynamic braking resistors which are supplied separately. Resistors not UL Listed.

Table 40-216. Brake Chopper Circuit Adder -
NEMA Type 1, NEMA Type 12, Chassis

(Ip (I $)$	Adder U.S. \$		
	$\mathbf{2 0 8 -}$ $\mathbf{2 4 0 V}$	$\mathbf{3 8 0}-$ $\mathbf{5 0 0 V}$	$\mathbf{5 2 5 -}$ $\mathbf{6 9 0}$
2			
3			
5 vt			
5 ct			
$7-1 / 2 \mathrm{vt}$			
$7-1 / 2 \mathrm{ct}$			
10			
15			
20			
25			
30			
40			
50			
60			
75			
100			
125			
150			
200 vt			
200 ct			
250			
300			
350			
400			

hp $\left(\mathbf{I}_{\mathbf{H}}\right)$	Adder U.S. S		
	$\mathbf{2 0 8}-$ $\mathbf{2 4 0 V}$	$\mathbf{3 8 0}-$ $\mathbf{5 0 0 V}$	$\mathbf{5 2 5 -}$ $\mathbf{6 9 0}$
450			
500			
550			
600 vt			
600 ct			
700 vt			
700 ct			
800			
900			
1000			
1200			
1350			
1500			
1600			
1900			
2000			

Note: Delivery code is FP.

Table 40-217. Conformal (Varnished) Coating
Adder-208-240V, 380-500V, 525-690V
(See Catalog Number Description to order.)

Frame	Delivery Code	Adder U.S. \$
FR4	FP	
FR5	FP	
FR6	FP	
FR7	FP	
FR8	FP	
FR9	FP	
FR10	FP	
FR11	FP	
FR12	FP	
FR13	FP	
FR14	FP	

Table 40-218. Conformal Coated Board Kits (1)

Field Installed		Factory Installed	
Catalog Number	Price U.S. \$	Option Designator	Adder U.S. \$
OPT_V ${ }^{(3)}$ (2)			
(1) See Option Catalog Numbers on Page 40-			

(1) See Option Catalog Numbers on Page 40139.
(2) Construct Catalog Numbers for factory installed per Table 40-200 on Page 40-134.
(3) Replace "__" with the correct Catalog Number from Page 40-139. Example: OPTC2V.

Accessories

Demo Drive and Power Supply

Table 40-219. Demo Drive and Power Supply

Description	Catalog Number	Price U.S. \$
9000X Drive Demo	9000XDEMO	
Hand Held 24V Auxiliary Power Supply — used to supply power to the control module in order to perform keypad programming before the drive is connected to line voltage	9000XAUX24V	

NEMA Type 12 Conversion Kit

The NEMA Type 12 kit option is used to convert a NEMA Type 1 to a NEMA Type 12 drive. The NEMA Type 12 Kit consists of a metal drive shroud, fan kit for some frames, adaptor plate and plugs.

Table 40-220. NEMA Type 12 Conversion Kit

Frame Size	Delivery Code	Approximate Dimensions in Inches (mm)			Approximate Weight in Lb. (kg)	Catalog Number	PriceU.S. S
		Length	Width	Height	Weight		
FR4	W	13 (330)	7 (178)	4 (102)	4 (1.8)	OPTN12FR4	
FR5	W	16 (406)	8 (203)	7 (178)	5 (2.3)	OPTN12FR5	
FR6	W	21 (533)	10 (254)	5 (127)	7 (3.2)	OPTN12FR6	

Flange Kits

Flange Kit Type 12

The flange kit is utilized when the power section is mounted through the back panel of an enclosure. Includes flange mount brackets and NEMA Type 12 fan components. Metal shroud not included.

Table 40-221. Flange Kit Type 12 Frames 4,5 and 6 (4)

Frame Size	Delivery Code	Catalog Number	Price U.S. \$
FR4	W	OPTTHRFR4	
FR5	W	OPTTHRFR5	
FR6	W	OPTTHRFR6	

(4) For installation of an SPX9000 NEMA Type 1 drive into a NEMA Type 12 oversized enclosure.

Flange Kit Type 1

Flange kits for NEMA 1 enclosure drive rating determined by rating of drive.
Table 40-222. Flange Kit Type 1 -
Frames 4-9 (5)

Frame Size	Delivery Code	Catalog Number	Price U.S. \$
FR4	FP	OPTTHR4	
FR5	FP	OPTTHR5	
FR6	FP	OPTTHR6	
FR7	FP	OPTTHR7	
FR8	FP	OPTTHR8	
FR9	FP	OPTTHR9	

(5) For installation of an SPX9000 NEMA Type 1 drive into a NEMA Type 1 oversized enclosure.

Flange Kit Type 12

Flange kits for NEMA 12 enclosure drive rating determined by rating of drive.
Table 40-223. Flange Kit Type 12 Frames 4-9 ©

Frame Size	Delivery Code	Catalog Number	Price U.S. \$
FR4	FP	OPTTHR4	
FR5	FP	OPTTHR5	
FR6	FP	OPTTHR6	
FR7	FP	OPTTHR7	
FR8	FP	OPTTHR8	
FR9	FP	OPTTHR9	

(6) For installation of an SPX9000 NEMA Type 12 drive into a NEMA Type 12 oversized enclosure.

Control/Communication Option Descriptions

Table 40-224. Available Control/Communications Options

Option	Description	Option Type
K2	Door-Mounted Speed Potentiometer with HOA Selector Switch — Provides the SPX9000 with the ability to start/stop and adjust the speed reference from door-mounted control devices or remotely from customer supplied inputs. In HAND position, the drive will start and the speed is controlled by the door-mounted speed potentiometer. The drive will be disabled in the OFF position. When AUTO is selected, the drive run and speed control commands are via user-supplied dry contact and 4-20 mA signal.	Control K4HAND/OFF/AUTO Switch for Non-bypass Configurations - Provides a three-position selector switch that allows the user to select either a Hand or Auto mode of operation. Hand mode is defaulted to keypad operation, and Auto mode is defaulted to control from an external terminal source. These modes of operation can be configured via programming to allow for alternate combinations of start and speed sources. Start and speed sources include Keypad, I/O and FieldBus.
KB	115V Control Transformer - 550 VA - Provides a fused control power transformer with additional 550 VA at 115V for customer use.	Control
L1	Power On and Fault Pilot Lights - Provides a white power on light that indicates power to the enclosed cabinet and a red fault light indicates a drive fault has occurred.	Light
P2	Disconnect Switch - Disconnect switch option is applicable only with NEMA Type 1 and NEMA Type 12 Freestanding drives. Allows a convenient means of disconnecting the SPX9000 from the line, and the operating mechanism can be padlocked in the OFF position. This is factory-mounted in the enclosure.	Input

SPX Freestanding Options

Table 40-225. 480V and 690V Control Options

Catalog Number Suffix II	Door-Mounted Speed Potentiometer with HOA Selector Switch	HAND/OFF/AUTO Switch (22 mm)	115 Volt Control Transformer 550 VA
	K2	K4	KB
	Adder U.S. \$	Adder U.S. \$	Adder U.S. \$

Table 40-226. 480V and 690V Light Options

Catalog Number Suffix II	Power On/ Fault Pilot Lights
	L1
	Adder U.S. \$
$200-550$	

Table 40-227. Input Options

Catalog Number Suffix III	Disconnect Switch
hp	P2 ©

(1) Applicable with FR10 and FR11 Freestanding designs only.

Dimensions

Figure 40-66. NEMA Type 1 and NEMA Type 12 SPX9000 Drive Dimensions, FR4, FR5 and FR6
Table 40-228. SPX9000 Drive Dimensions

Frame Size	Voltage	hp (l_{H})	Approximate Dimensions in Inches (mm)											Weight Lbs. (kg)	$\begin{aligned} & \hline \text { Knockouts @ Inches (mm) } \\ & \hline \text { N1 (O.D.) } \end{aligned}$
			H1	H2	H3	D1	D2	D3	W1	W2	W3	R1 dia.	R2 dia.		
FR4	230 V	3/4-3	$\begin{aligned} & \hline 12.9 \\ & (327) \end{aligned}$	$\begin{aligned} & \hline 12.3 \\ & (313) \end{aligned}$	$\begin{array}{\|l\|} \hline 11.5 \\ (292) \end{array}$	$\begin{aligned} & \hline 7.5 \\ & (190) \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & (77) \end{aligned}$	$\begin{aligned} & \hline 5.0 \\ & (126) \end{aligned}$	$\begin{aligned} & \hline 5.0 \\ & (128) \end{aligned}$	$\begin{aligned} & \hline 3.9 \\ & (100) \end{aligned}$	-	$\begin{aligned} & \hline .5 \\ & (13) \end{aligned}$	$\begin{aligned} & .3 \\ & (7) \end{aligned}$	$\begin{aligned} & 11.0 \\ & (5) \end{aligned}$	$\begin{aligned} & \hline 3 @ 1.1 \\ & (28) \end{aligned}$
	480 V	1-5													
FR5	230 V	5-7-1/2	$\begin{aligned} & \hline 16.5 \\ & (419) \end{aligned}$	$\begin{array}{\|l\|} \hline 16.0 \\ (406) \end{array}$	$\begin{array}{\|l} \hline 15.3 \\ (389) \end{array}$	$\begin{aligned} & \hline 8.4 \\ & (214) \end{aligned}$	$\begin{aligned} & \hline 3.9 \\ & (100) \end{aligned}$	$\begin{aligned} & \hline 5.8 \\ & (148) \end{aligned}$	$\begin{aligned} & \hline 5.7 \\ & (144) \end{aligned}$	$\begin{aligned} & \hline 3.9 \\ & (100) \end{aligned}$	-	$\begin{aligned} & \hline .5 \\ & (13) \end{aligned}$	$\begin{aligned} & \hline .3 \\ & \text { (7) } \end{aligned}$	$\begin{aligned} & 17.9 \\ & \text { (8) } \end{aligned}$	$\begin{aligned} & 2 \text { @ } 1.5 \\ & (37) \\ & 1 @ 1.1 \\ & (28) \\ & \hline \end{aligned}$
	480 V	7-1/2-15													
FR6	230 V	10-15	$\begin{array}{\|l\|} \hline 22.0 \\ \text { (558) } \end{array}$	$\begin{array}{\|l\|} \hline 21.3 \\ (541) \end{array}$	$\begin{aligned} & \hline 20.4 \\ & (519) \end{aligned}$	$\begin{array}{\|l\|} \hline 9.3 \\ (237) \end{array}$	$\begin{array}{\|l\|} \hline 4.2 \\ (105) \end{array}$	$\begin{aligned} & \hline 6.5 \\ & (165) \end{aligned}$	$\begin{array}{\|l\|} \hline 7.6 \\ (195) \end{array}$	$\begin{aligned} & \hline 5.8 \\ & (148) \end{aligned}$	-	$\begin{aligned} & \hline .6 \\ & (15.5) \end{aligned}$	$\begin{array}{\|l} \hline .4 \\ (9) \end{array}$	$\begin{array}{\|l} \hline 40.8 \\ (19) \end{array}$	$\begin{array}{\|l} \hline 3 @ 1.5 \\ \text { (37) } \end{array}$
	480 V	20-30													
	575 V	2-25													

Figure 40-67. SPX9000 Dimensions, NEMA Type 1 and NEMA Type 12 with Flange Kit, FR4, FR5 and FR6
Table 40-229. Dimensions for SPX9000, FR4, FR5 and FR6 with Flange Kit

Frame Size	Approximate Dimensions in Inches (mm)									
	W1	W2	H1	H2	H3	H4	H5	D1	D2	Dia. A
FR4	$\begin{aligned} & \hline 5.0 \\ & (128) \end{aligned}$	$\begin{aligned} & \hline 4.5 \\ & (113) \end{aligned}$	$\begin{array}{\|l\|} \hline 13.3 \\ (337) \end{array}$	$\begin{array}{\|l\|} \hline 12.8 \\ \text { (325) } \\ \hline \end{array}$	$\begin{aligned} & 12.9 \\ & (327) \end{aligned}$	$\begin{aligned} & \hline 1.2 \\ & (30) \end{aligned}$	$\begin{array}{\|l\|} \hline .9 \\ (22) \end{array}$	$\begin{aligned} & \hline 7.5 \\ & (190) \end{aligned}$	$\begin{array}{\|l\|} \hline 3.0 \\ \text { (77) } \end{array}$	$\begin{aligned} & \hline .3 \\ & \text { (7) } \\ & \hline \end{aligned}$
FR5	$\begin{aligned} & \hline 5.6 \\ & (143) \end{aligned}$	$\begin{aligned} & \hline 4.7 \\ & (120) \end{aligned}$	$\begin{array}{\|l\|} \hline 17.0 \\ (434) \end{array}$	$\begin{array}{\|l\|} \hline 16.5 \\ (420) \end{array}$	$\begin{aligned} & \hline 16.5 \\ & (419) \end{aligned}$	$\begin{aligned} & \hline 1.4 \\ & (36) \end{aligned}$	$\begin{array}{\|l\|} \hline .7 \\ (18) \end{array}$	$\begin{array}{\|l} \hline 8.4 \\ (214) \end{array}$	$\begin{array}{\|l\|} \hline 3.9 \\ (100) \end{array}$	$\begin{aligned} & \hline .3 \\ & \text { (7) } \end{aligned}$
FR6	$\begin{array}{\|l\|} \hline 7.7 \\ (195) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 6.7 \\ (170) \end{array}$	$\begin{array}{\|l} \hline 22.0 \\ (560) \end{array}$	$\begin{aligned} & \hline 21.6 \\ & (549) \end{aligned}$	$\begin{aligned} & \hline 22.0 \\ & \text { (558) } \end{aligned}$	$\begin{aligned} & \hline 1.2 \\ & (30) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline .8 \\ (20) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 9.3 \\ (237) \end{array}$	$\begin{array}{\|l\|} \hline 4.2 \\ (106) \end{array}$	$\begin{aligned} & .3 \\ & \text { (7) } \end{aligned}$

Table 40-230. Dimensions for the Flange Opening, FR4 to FR6

Frame Size	Approximate Dimensions in Inches (mm)							
	W3	W4	W5	H6	H7	H8	H9	Dia. B
FR4	$\begin{aligned} & \hline 4.8 \\ & (123) \end{aligned}$	$\begin{array}{\|l\|} \hline 4.5 \\ (113) \end{array}$	-	$\begin{aligned} & \hline 12.4 \\ & (315) \end{aligned}$	$\begin{array}{\|l} \hline 12.8 \\ (325) \end{array}$	-	$\begin{array}{\|l} \hline .2 \\ (5) \\ \hline \end{array}$	$\begin{array}{\|l} \hline .3 \\ \text { (7) } \\ \hline \end{array}$
FR5	$\begin{aligned} & \hline 5.3 \\ & (135) \end{aligned}$	$\begin{array}{\|l\|} \hline 4.7 \\ (120) \end{array}$	-	$\begin{aligned} & \hline 16.2 \\ & (410) \end{aligned}$	$\begin{array}{\|l} \hline 16.5 \\ (420) \end{array}$	-	$\begin{array}{\|l} \hline .2 \\ (5) \\ \hline \end{array}$	$\begin{array}{\|l} \hline .3 \\ (7) \end{array}$
FR6	$\begin{aligned} & \hline 7.3 \\ & (185) \end{aligned}$	$\begin{array}{\|l\|} \hline 6.7 \\ (170) \end{array}$	$\begin{array}{\|l\|} \hline 6.2 \\ (157) \end{array}$	$\begin{aligned} & \hline 21.2 \\ & (539) \end{aligned}$	$\begin{array}{\|l\|} \hline 21.6 \\ (549) \\ \hline \end{array}$	$\begin{array}{\|l} \hline .3 \\ (7) \end{array}$	$\begin{array}{\|l} \hline .2 \\ (5) \\ \hline \end{array}$	$\begin{array}{\|l} \hline .3 \\ \text { (7) } \end{array}$

Figure 40-68. SPX9000 Dimensions, NEMA Type 1 and NEMA Type 12, FR7
Table 40-231. SPX9000 Drive Dimensions, FR7

Frame Size	Voltage	hp ($\mathrm{IH}^{\text {) }}$	Approximate Dimensions in Inches (mm)										Weight Lbs. (kg)	Knockouts @ Inches (mm) N1 (O.D.)
			H1	H2	H3	D1	D2	D3	W1	W2	R1 dia.	R2 dia.		
FR7	230 V	20-30	$\begin{array}{\|l} \hline 24.8 \\ (630) \end{array}$	$\begin{array}{\|l} \hline 24.2 \\ (614) \end{array}$	$\begin{array}{\|l} \hline 23.2 \\ (590) \end{array}$	$\begin{array}{\|l\|l\|} \hline 10.1 \\ (257) \end{array}$	$\begin{array}{\|l} 3.0 \\ (77) \end{array}$	$\begin{array}{\|l\|} \hline 7.3 \\ \text { (184) } \end{array}$	$\begin{array}{\|l\|l\|} \hline 9.3 \\ (237) \end{array}$	$\begin{array}{\|l\|} \hline 7.5 \\ \text { (190) } \end{array}$	$\begin{array}{\|l} \hline 7 \\ (18) \end{array}$	$\begin{array}{\|l} \hline 4 \\ (9) \end{array}$	$\begin{aligned} & 77.2 \\ & (35) \end{aligned}$	3 @ 1.5 (37)
	480 V	40-60												
	575 V	30-40												

Figure 40-69. SPX9000 Dimensions, NEMA Type 1 and NEMA Type 12, FR8
Table 40-232. SPX9000 Drive Dimensions, FR8

Frame Size	Voltage	hp (H_{H})	Approximate Dimensions in Inches (mm)								Weight Lbs. (kg)
			D1	H1	H2	H3	W1	W2	R1 dia.	R2 dia.	
FR8	230 V	40-60	13.5 (344)	30.1 (764)	28.8 (732)	28.4 (721)	11.5 (291)	10 (255)	. 7 (18)	. 4 (9)	127 (58)
	480 V	75-125									
	575 V	50-75									

Figure 40-70. SPX9000 Dimensions, NEMA Type 1 and NEMA Type 12, with Flange Kit, FR7 and FR8
Table 40-233. Dimensions for SPX9000, FR7 and FR8 with Flange Kit

Frame Size	Approximate Dimensions in Inches (mm)													
	W1	W2	W3	W4	H1	H2	H3	H4	H5	H6	H7	D1	D2	Dia. A
FR7	$\begin{aligned} & \hline 9.3 \\ & (237) \end{aligned}$	$\begin{array}{\|l\|} \hline 6.8 \\ (175) \end{array}$	$\begin{array}{\|l\|} \hline 10.6 \\ (270) \end{array}$	$\begin{aligned} & \hline 10.0 \\ & (253) \end{aligned}$	$\begin{aligned} & \hline 25.6 \\ & (652) \end{aligned}$	$\begin{aligned} & \hline 24.8 \\ & (632) \end{aligned}$	$\begin{aligned} & \hline 24.8 \\ & (630) \end{aligned}$	$\begin{aligned} & \hline 7.4 \\ & (189) \end{aligned}$	$\begin{aligned} & \hline 7.4 \\ & (189) \end{aligned}$	$\begin{array}{\|l\|} \hline .9 \\ (23) \end{array}$	$\begin{aligned} & \hline .8 \\ & (20) \end{aligned}$	$\begin{aligned} & \hline 10.1 \\ & (257) \end{aligned}$	$\begin{aligned} & \hline 4.6 \\ & (117) \end{aligned}$	$\begin{array}{\|l} \hline .3 \\ (6) \\ \hline \end{array}$
FR8	$\begin{aligned} & \hline 11.2 \\ & (285) \end{aligned}$	-	$\begin{array}{\|l\|} \hline 14.0 \\ (355) \\ \hline \end{array}$	$\begin{aligned} & \hline 13.0 \\ & (330) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 32.8 \\ & (832) \end{aligned}$	-	$\begin{aligned} & 29.3 \\ & (745) \end{aligned}$	$\begin{aligned} & \hline 10.2 \\ & (258) \end{aligned}$	$\begin{array}{\|l\|} \hline 10.4 \\ (265) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 1.7 \\ \text { (43) } \\ \hline \end{array}$	$\begin{aligned} & 2.2 \\ & (57) \end{aligned}$	$\begin{aligned} & \hline 13.5 \\ & (344) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 4.3 \\ (110) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline .4 \\ \text { (9) } \\ \hline \end{array}$

Table 40-234. Dimensions for the Flange Opening, FR7/FR8

Frame Size	Approximate Dimensions in Inches (mm)									
	W5	W6	W7	H8	H9	H10	H11	H12	H13	Dia. B
FR7	$\begin{aligned} & \hline 9.2 \\ & (233) \end{aligned}$	$\begin{aligned} & \hline 6.9 \\ & (175) \end{aligned}$	$\begin{aligned} & \hline 10.0 \\ & (253) \end{aligned}$	$\begin{aligned} & \hline 24.4 \\ & (619) \end{aligned}$	$\begin{aligned} & \hline 7.4 \\ & (189) \end{aligned}$	$\begin{aligned} & \hline 7.4 \\ & (189) \end{aligned}$	$\begin{array}{\|l\|} \hline 1.4 \\ (35) \end{array}$	$\begin{aligned} & \hline 1.3 \\ & (32) \end{aligned}$	$\begin{aligned} & \hline 1.0 \\ & (25) \end{aligned}$	$\begin{aligned} & \hline .3 \\ & (6) \\ & \hline \end{aligned}$
FR8	$\begin{aligned} & \hline 11.9 \\ & (301) \end{aligned}$	-	$\begin{array}{\|l\|} \hline 13.0 \\ (330) \end{array}$	$\begin{array}{\|l\|} \hline 31.9 \\ (810) \end{array}$	$\begin{array}{\|l\|} \hline 10.2 \\ (258) \end{array}$	$\begin{aligned} & \hline 10.4 \\ & (265) \end{aligned}$	-	-	$\begin{array}{\|l\|} \hline 1.3 \\ \text { (33) } \\ \hline \end{array}$	$\begin{aligned} & \hline .4 \\ & \text { (9) } \\ & \hline \end{aligned}$

Figure 40-71. SPX9000 Dimensions, NEMA Type 1 and NEMA Type 12, FR9
Table 40-235. SPX9000 Drive Dimensions, FR9

$\begin{array}{\|l} \text { Frame } \\ \text { Size } \end{array}$	Voltage	$\mathrm{hp}\left(\mathrm{l}_{\mathrm{H}}\right)$	Approximate Dimensions in Inches (mm)									Weight Lbs. (kg)
			H1	H2	H3	D1	D2	W1	W2	R1 dia.	R2 dia.	
FR9	230 V	75-100	$\begin{array}{\|l\|} \hline 45.3 \\ (1150) \end{array}$	$\begin{aligned} & \hline 44.1 \\ & (1120) \end{aligned}$	$\begin{aligned} & \hline \begin{array}{l} 42.4 \\ (1076) \end{array} \end{aligned}$	$\begin{array}{\|l\|} \hline 13.4 \\ (340) \end{array}$	$\begin{array}{\|l\|} \hline 14.3 \\ (362) \end{array}$	$\begin{aligned} & 18.9 \\ & (480) \end{aligned}$	$\begin{array}{\|l\|} \hline 15.7 \\ (400) \end{array}$	$\begin{array}{\|l\|} \hline .8 \\ (20) \end{array}$	- ${ }_{\text {(9) }}$	$\begin{array}{\|l\|} \hline 322 \\ (146) \end{array}$
	480 V	150-200										
	575 V	100-175										

Figure 40-72. SPX9000 Dimensions, NEMA Type 1 and NEMA Type 12 FR9
Table 40-236. Dimensions for SPX9000, FR9

Frame	Approximate Dimensions in Inches (mm)														
	W1	W2	W3	W4	W5	H1	H2	H3	H4	H5	H6 ${ }^{1}$	D1	D2	D3	Dia.
FR9	$\begin{aligned} & \hline 18.9 \\ & (480) \end{aligned}$	$\begin{aligned} & \hline 15.7 \\ & (400) \end{aligned}$	$\begin{array}{\|l\|} \hline 6.5 \\ (165) \end{array}$	$\begin{aligned} & .4 \\ & \text { (9) } \end{aligned}$	$\begin{aligned} & \hline 2.1 \\ & (54) \end{aligned}$	$\begin{aligned} & \hline 45.3 \\ & (1150) \end{aligned}$	$\begin{aligned} & \hline 44.1 \\ & (1120) \end{aligned}$	$\begin{aligned} & \hline 28.3 \\ & (721) \end{aligned}$	$\begin{aligned} & \hline 8.0 \\ & (205) \end{aligned}$	$\begin{aligned} & \hline .6 \\ & (16) \end{aligned}$	$\begin{aligned} & \hline 7.4 \\ & (188) \end{aligned}$	$\begin{aligned} & 14.2 \\ & (361.5) \end{aligned}$	$\begin{aligned} & 13.4 \\ & (340) \end{aligned}$	$\begin{aligned} & 11.2 \\ & (285) \end{aligned}$	$\begin{array}{\|l\|} \hline .8 \\ (21) \end{array}$

[^25]

Figure 40-73. SPX9000 Dimensions, NEMA Type 1 and NEMA Type 12 FR9 with Flange Kit
Table 40-237. Dimensions for SPX9000, FR9 with Flange Kit

Frame Size	Approximate Dimensions in Inches (mm)															
	W1	W2	W3	W4	W5	H1	H2	H3	H4	H5	H6	H7	D1	D2	D3	Dia.
FR9	$\begin{aligned} & 20.9 \\ & (530) \end{aligned}$	$\begin{aligned} & \hline 20.0 \\ & (510) \end{aligned}$	$\begin{array}{\|l} \hline 19.1 \\ (485) \end{array}$	$\begin{aligned} & \hline 7.9 \\ & (200) \end{aligned}$	$\begin{aligned} & \hline .2 \\ & (5.5) \end{aligned}$	$\begin{array}{\|l\|} \hline 51.7 \\ (1312) \end{array}$	$\begin{array}{\|l\|} \hline 45.3 \\ (1150) \end{array}$	$\begin{array}{\|l} \hline 16.5 \\ (420) \end{array}$	$\begin{aligned} & \hline 3.9 \\ & (100) \end{aligned}$	$\begin{aligned} & 1.4 \\ & (35) \end{aligned}$	$\begin{array}{\|l} \hline .4 \\ (9) \end{array}$	$\begin{aligned} & .1 \\ & (2) \end{aligned}$	$\begin{aligned} & 24.9 \\ & (362) \end{aligned}$	$\begin{array}{\|l\|} \hline 13.4 \\ (340) \end{array}$	$\begin{aligned} & \hline 4.3 \\ & (109) \end{aligned}$	$\begin{array}{\|l\|} \hline .8 \\ (21) \end{array}$

Figure 40-74. SPX9000 Dimensions, NEMA Type 1 and NEMA Type 12 FR10 Freestanding Drive
Table 40-238. Dimensions for SPX9000, FR10 Freestanding Drive

Frame Size	Volt.	$\operatorname{lip}_{\left(\mathrm{l}_{\mathrm{H}}\right)}$	Approximate Dimensions in Inches (mm)																				Wt . Lbs. (kg)
			W1	W2	W3	W4	W5	W6	W7	H1	H2	H3	D1	D2	D3	D4	D5	D6	D7	Dia. 1	Dia. 2	Dia. 3	
FR10	480 V	$\begin{array}{l\|} \hline 250- \\ 350 \end{array}$	$\begin{array}{\|l\|} \hline 23.43 \\ (595) \end{array}$	$\begin{array}{\|l} \hline 2.46 \\ (62.5) \end{array}$	$\begin{array}{\|l} 4.53 \\ (115) \end{array}$	$\begin{array}{\|l\|} \hline .79 \\ (20) \end{array}$	$\begin{aligned} & \hline 5.95 \\ & (151) \end{aligned}$	$\begin{array}{\|l\|l} 2.95 \\ (75) \end{array}$	$\begin{array}{\|l\|l\|} \hline 3.11 \\ \text { (79) } \end{array}$	$\begin{aligned} & 79.45 \\ & (2018) \end{aligned}$	$\begin{aligned} & 74.80 \\ & (1900) \end{aligned}$	$\begin{array}{\|l\|} \hline 20.18 \\ (512.5) \end{array}$	$\begin{array}{\|l} 23.70 \\ (602) \end{array}$	$\begin{aligned} & 17.44 \\ & (443) \end{aligned}$	$\begin{aligned} & 19.02 \\ & (483) \end{aligned}$	$\begin{array}{\|l\|} \hline .47 \\ (12) \end{array}$	$\begin{aligned} & 11.22 \\ & (285) \end{aligned}$	$\begin{array}{\|l} 17.60 \\ (447) \end{array}$	$\begin{array}{\|l} 20.08 \\ (510) \end{array}$	$\begin{array}{\|l\|} \hline .83 \\ \text { (21) } \end{array}$	$\begin{array}{\|l\|l\|} \hline 1.89 \\ (48) \end{array}$	$\begin{array}{\|l\|} \hline .43 \\ (11) \end{array}$	$\begin{array}{\|l\|} \hline 857 \\ (389) \end{array}$
	690V	$\begin{aligned} & 200- \\ & 300 \end{aligned}$																					

Figure 40-75. SPX9000 Dimensions, FR10 Open Chassis
Table 40-239. Dimensions for SPX9000, FR10 Open Chassis

Frame Size	Voltage	hp (l_{H})	Approximate Dimensions in Inches (mm)																Weight Lbs. (kg)
			W1	W2	W3	W4	W5	H1	H2	H3	H4	H5	H6	H7	D1	D2	D3	D4	
FR10	480 V	250-350	$\begin{aligned} & \hline 19.7 \\ & (500) \end{aligned}$	$\begin{aligned} & 16.7 \\ & (425) \end{aligned}$	$\begin{array}{\|l\|} \hline 1.2 \\ (30) \end{array}$	$\begin{aligned} & \hline 2.6 \\ & (67) \end{aligned}$	$\begin{aligned} & \hline 12.8 \\ & (325) \end{aligned}$	$\begin{array}{\|l\|} \hline 45.9 \\ (1165) \end{array}$	$\begin{aligned} & \hline 44.1 \\ & (1121) \end{aligned}$	$\begin{aligned} & 34.6 \\ & (879) \end{aligned}$	$\begin{aligned} & \hline 33.5 \\ & (850) \end{aligned}$	$\begin{aligned} & \hline .7 \\ & (17) \end{aligned}$	$\begin{aligned} & \hline 24.7 \\ & (627) \end{aligned}$	$\begin{aligned} & \hline 10.8 \\ & (275) \end{aligned}$	$\begin{array}{\|l\|} \hline 19.9 \\ (506) \end{array}$	$\begin{aligned} & \hline 17.9 \\ & (455) \end{aligned}$	$\begin{aligned} & \hline 16.7 \\ & (423) \end{aligned}$	$\begin{aligned} & \hline 16.6 \\ & (421) \end{aligned}$	$\begin{aligned} & \hline 518 \\ & (235) \end{aligned}$
	575 V	200-300																	

Note: SPX9000 FR12 is built of two FR10 modules. Please refer to SPX9000 installation manual for mounting instructions.

Figure 40-76. SPX9000 Dimensions, NEMA Type 1 FR11 Freestanding Drive
Table 40-240. Dimensions for SPX9000, NEMA Type 1 FR11 Freestanding Drive

Frame Size	Voltage	$\mathrm{hp}\left(\mathrm{l}_{\mathrm{H}}\right)$	Approximate Dimensions in Inches (mm)																			Weight Lbs. (kg)
			W1	W2	W3	W4	W5	W6	W7	W8	H1	H2	H3	D1	D2	D3	D4	D5	Dia. 1	Dia. 2	Dia. 3	
FR11	480 V	400-550	$\begin{array}{\|l\|} \hline 31.26 \\ \text { (794) } \end{array}$	$\begin{aligned} & \hline 2.40 \\ & (61) \end{aligned}$	$\begin{aligned} & \hline 6.50 \\ & (165) \end{aligned}$	$\begin{array}{\|l\|} \hline .79 \\ (20) \end{array}$	$\begin{aligned} & 3.43 \\ & (87) \end{aligned}$	$\begin{aligned} & 2.95 \\ & (75) \end{aligned}$	$\begin{aligned} & 2.52 \\ & (64) \end{aligned}$	$\begin{array}{\|l\|} \hline 1.18 \\ (30) \end{array}$	$\begin{array}{l\|} \hline 79.45 \\ (2018) \end{array}$	$\begin{array}{\|l\|} \hline 74.80 \\ (1900) \end{array}$	$\begin{array}{\|l\|} \hline 20.18 \\ (512.5) \end{array}$	$\begin{aligned} & 23.70 \\ & (602) \end{aligned}$	$\begin{aligned} & \hline 11.22 \\ & (285) \end{aligned}$	$\begin{aligned} & 19.09 \\ & (485) \end{aligned}$	$\begin{array}{\|l} \hline .47 \\ (12) \end{array}$	$\begin{array}{\|l\|} \hline 17.60 \\ (447) \\ \hline \end{array}$.83 (21)	$\begin{aligned} & 1.89 \\ & (48) \end{aligned}$	$\begin{array}{\|l\|} \hline .35 \times .43 \\ (9 \times 11) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 526 \\ (239) \end{array}$
	690 V	400-500																				

Figure 40-77. SPX9000 Dimensions, FR11 Open Chassis
Table 40-241. Dimensions for SPX9000, FR11 Open Chassis

Frame Size	Voltage	hp (\mathbf{H}_{H})	Approximate Dimensions in Inches (mm)							Weight Lbs. (kg)
			W1	W2	W3	H1	H2	D1	D2	
FR11	480 V	400-550	$\begin{array}{\|l} \hline 27.9 \\ (709) \end{array}$	$\begin{aligned} & \hline 8.6 \\ & (225) \end{aligned}$	$\begin{array}{\|l\|} \hline 2.6 \\ (67) \end{array}$	$\begin{aligned} & \hline 45.5 \\ & (1155) \end{aligned}$	$\begin{aligned} & \hline 33.5 \\ & (850) \end{aligned}$	$\begin{aligned} & \hline 19.8 \\ & (503) \end{aligned}$	$\begin{aligned} & \hline 18.4 \\ & (468) \end{aligned}$	$\begin{aligned} & \hline 833 \\ & (378) \end{aligned}$
	575 V	400-500								

Figure 40-78. SPX9000 Dimensions, FR13 Open Chassis Inverter
Table 40-242. Dimensions for SPX9000, FR13 Open Chassis Inverter

Frame Size	Approximate Dimensions in Inches (mm)																						Weight Lbs. (kg)
	W1	W2	W3	W4	W5	H1	H2	H3	H4	H5	D1	D2	D3	D4	D5	D6	D7	D8	Dia. 1	Dia. 2	Dia. 3	Dia. 4	
FR13	$\begin{array}{\|l} 27.87 \\ (708) \end{array}$	$\begin{aligned} & 5.91 \\ & (150) \end{aligned}$	$\begin{aligned} & 26.65 \\ & (677) \end{aligned}$	$\begin{aligned} & \hline 4.57 \\ & (116) \end{aligned}$	$\begin{aligned} & 3.35 \\ & (85) \end{aligned}$	$\begin{array}{\|l\|} \hline 41.54 \\ (1055) \end{array}$	$\begin{aligned} & 2.46 \\ & (62.5) \end{aligned}$	$\begin{array}{\|l\|} \hline 39.86 \\ (1012.5) \end{array}$	$\begin{aligned} & 41.34 \\ & (1050) \end{aligned}$	$\begin{aligned} & \hline .79 \\ & (20) \end{aligned}$	$\begin{aligned} & 21.77 \\ & (553) \end{aligned}$	$\begin{array}{\|l\|} \hline .51 \\ (13) \end{array}$	$\begin{array}{\|l\|} \hline .63 \\ (16) \end{array}$	$\begin{array}{\|l\|} \hline 1.97 \\ (50) \end{array}$	$\begin{aligned} & 1.06 \\ & (27) \end{aligned}$	$\begin{array}{\|l\|} \hline 1.57 \\ (40) \end{array}$	$\begin{aligned} & 5.91 \\ & (150) \end{aligned}$	$\begin{aligned} & \hline 9.64 \\ & (244.8) \end{aligned}$	$\begin{aligned} & \hline .35 x .59 \\ & (9 \times 15) \end{aligned}$	$\begin{array}{\|l\|} \hline .18 \\ \hline(4.6) \end{array}$	$\begin{array}{\|l\|} \hline .51 \\ (13) \end{array}$	$\begin{array}{\|l\|} \hline .37 \\ (9.5) \end{array}$	$\begin{aligned} & \hline 683 \\ & (310) \end{aligned}$

Note: 9000 X FR14 is built of two FR13 modules. Please refer to SPX9000 installation manual for mounting instructions.
Note: FR13 is built from an inverter module and a converter module. Please refer to the SPX9000 installation manual for mounting instructions.

Figure 40-79. SPX9000 Dimensions, FR13 Open Chassis Converter
Table 40-243. FR13 - Number of Input Units

480V	hp	Input Modules	690V	hp	Input Modules
SPX800A0-4A2N1	800	2	SPX800A0-5A2N1	800	2
			SPX900A0-5A2N1	900	2
			SPXH10A0-5A2N1	1000	2

Table 40-244. Dimensions for SPX9000, FR13 Open Chassis Converter

Frame Size	Approximate Dimensions in Inches (mm)																						Weight Lbs. (kg)
	W1	W2	W3	W4	W5	H1	H2	H3	H4	H5	D1	D2	D3	D4	D5	D6	D7	D8	D9	Dia. 1	Dia. 2	Dia. 3	
FR13	$\begin{array}{\|l\|} \hline 18.74 \\ (476) \end{array}$	$\begin{aligned} & \hline 5.91 \\ & (150) \end{aligned}$	$\begin{aligned} & \hline \begin{array}{l} 17.52 \\ (445) \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4.57 \\ & (116) \end{aligned}$	$\begin{aligned} & \hline 3.35 \\ & \text { (85) } \end{aligned}$	$\begin{aligned} & 41.54 \\ & (1055) \end{aligned}$	$\begin{array}{\|l\|} \hline 2.46 \\ (62.5) \end{array}$	$\begin{array}{\|l\|} \hline 39.86 \\ (1012.5) \end{array}$	$\begin{aligned} & \hline 41.34 \\ & (1050) \end{aligned}$	$\begin{array}{\|l\|} \hline .69 \\ (17.5) \end{array}$	$\begin{aligned} & \hline 14.69 \\ & (373) \end{aligned}$	$\begin{array}{\|l\|} \hline .51 \\ \hline(13) \end{array}$	$\begin{array}{\|l\|} \hline .73 \\ (18.5) \end{array}$	$\begin{array}{\|l\|} \hline 6.42 \\ (163) \end{array}$	$\begin{array}{\|l\|} \hline 2.56 \\ (65) \end{array}$	$\begin{array}{\|l\|} \hline 1.06 \\ \text { (27) } \end{array}$	$\begin{array}{\|l\|} \hline 1.57 \\ \text { (40) } \end{array}$	$\begin{aligned} & 5.91 \\ & (150) \end{aligned}$	$\begin{aligned} & \hline 5.24 \\ & (133) \end{aligned}$	$\begin{array}{\|l} \hline .35 \times .59 \\ (9 \times 15) \end{array}$	$\begin{array}{\|l\|} \hline .51 \\ \hline(13) \end{array}$	$\begin{array}{\|l\|} \hline .37 \\ (9.5) \end{array}$	$\begin{array}{\|l\|} \hline 295 \\ (134) \end{array}$

Figure 40-80. SPX9000 Dimensions, FR13 Open Chassis Converter - 900/1000 hp 480V
Table 40-245. FR13 - Number of Input Units

480V	hp	Input Modules
SPX900A0-4A2N1	900	3
SPXH10A0-4A2N1	1000	3

Table 40-246. Dimensions for SPX9000, FR13 Open Chassis Converter - 900/1000 hp 480V

Frame Size	Approximate Dimensions in Inches (mm)																							Weight Lbs. (kg)
	W1	W2	W3	W4	W5	H1	H2	H3	H4	H5	D1	D2	D3	D4	D5	D6	D7	D8	D9	Dia. 1	Dia. 2	Dia. 3	Dia. 4	
FR13	$\begin{array}{l\|} \hline 27.87 \\ (708) \end{array}$	$\begin{aligned} & 5.91 \\ & (150) \end{aligned}$	$\begin{array}{l\|} \hline 26.65 \\ (677) \end{array}$	$\begin{aligned} & 4.57 \\ & (116) \end{aligned}$	$\left\|\begin{array}{l} 3.35 \\ (85) \end{array}\right\|$	$\begin{array}{\|l\|} \hline 41.54 \\ (1055) \end{array}$	$\begin{array}{\|l\|} \hline 2.46 \\ (62.5) \end{array}$	$\begin{array}{\|l\|} \hline 39.86 \\ (1012.5) \end{array}$	$\begin{array}{\|l\|} \hline 41.34 \\ (1050) \end{array}$	$\begin{array}{\|l\|} \hline .69 \\ (17.5) \end{array}$	$\begin{array}{\|l\|} \hline 14.69 \\ (373) \end{array}$	$\begin{array}{\|l\|} \hline .51 \\ \hline(13) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline .73 \\ (18.5) \end{array}$	$\begin{array}{\|l\|} \hline 6.42 \\ (163) \end{array}$	$\begin{array}{\|l\|} \hline 2.56 \\ (65) \end{array}$	$\begin{array}{\|l\|} \hline 1.06 \\ (27) \end{array}$	$\begin{array}{\|l\|} 1.57 \\ (40) \end{array}$	$\begin{aligned} & 5.91 \\ & (150) \end{aligned}$	$\begin{array}{\|l\|} \hline 5.24 \\ (133) \end{array}$	$\begin{array}{\|l\|} \hline .35 x .59 \\ (9 \times 15) \end{array}$	$\begin{array}{\|l\|} \hline .18 \\ (4.6) \end{array}$	$\begin{array}{\|l\|} \hline .51 \\ \hline(13) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline .37 \\ (9.5) \end{array}$	$\begin{aligned} & 443 \\ & (201) \end{aligned}$

Table 40-247. Choke Types

Catalog Number	Frame Size	Choke Type
Voltage Range 380-500V		
SPX 2504	FR10	CHK0400
SPX 3004	FR10	CHK0520
SPX 3504	FR10	CHK0520
SPX 4004	FR11	$2 \times$ CHK0400
SPX 5004	FR11	$2 \times$ CHK0400
SPX 5504	FR11	$2 \times$ CHK0400
SPX 6004	FR12	$2 \times$ CHK0520
SPX 6504	FR12	$2 \times$ CHK0520
SPX 7004	FR12	$2 \times$ CHK0520
SPX 8004	FR13	$2 \times$ CHK0400
SPX 9004	FR13	$3 \times$ CHK0520
SPX H10 4	FR13	$3 \times$ CHK0520
SPX H12 4	FR14	$4 \times$ CHK0520
SPX H16 4	FR14	$6 \times$ CHK0400
Voltage Range 525-690V		
SPX 2005	FR10	CHK0261
SPX 2505	FR10	CHK0400
SPX 3005	FR10	CHK0400
SPX 4005	FR11	CHK0520
SPX 4505	FR11	CHK0520
SPX 5005	FR11	$2 \times$ CHK0400
SPX 5505	FR12	$2 \times$ CHK0400
SPX 6005	FR12	$2 \times$ CHK0400
SPX 7005	FR12	$2 \times$ CHK0400
SPX 8005	FR13	$2 \times$ CHK0400
SPX 9005	FR13	$2 \times$ CHK0400
SPX H10 5	FR13	$2 \times$ CHK0400
SPX H135	FR14	$4 \times$ CHK0400
SPX H15 5	FR14	$6 \times$ CHK0400

(1) Chokes are provided with all FR10 - FR14 drives.

Figure 40-81. Dimensions of AC Choke CHK0520 in Inches (mm)

Figure 40-82. Dimensions of AC Choke CHKO400 in Inches (mm)

Figure 40-83. Dimensions of AC Choke CHK0261 in Inches (mm)

Spare Units \& Replacement Parts

Table 40-248. 9000X Spare Units - SPX9000, 208-690V, Frames 4-12

Description	Catalog Number	Price U.S. $\$$
Control Unit - Includes the control board, blue base housing, installed SPX9000 software program and blue flip cover. Does not include any OPT boards or keypad. See Figure 40-65 and Table 40-213 (Page 40-139) for standard and option boards and keypad.	CPBS00000000000	

Table 40-249. 9000X Series Replacement Parts - SPX9000 Drives, 208-240V

Frame:	4					5			6		7			8			DeliveryCode	Catalog Number	Price U.S. \$
hp (l_{H}):	3/4	1	1-1/2	2	3	$5{ }^{1}$	5	7-1/2	10	15	20	25	30	40	50	60			
Control Board																			
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	W	VB00561	
Power Boards																			
	1																FB	VB00308-0004-2	
		1															FB	VB00308-0007-2	
			1														FB	VB00308-0008-2	
				1													FB	VB00310-0011-2	
					1												FB	VB00310-0012-2	
						1											FB	VB00313-0017-2	
							1										FB	VB00313-0025-2	
								1									FB	VB00313-0031-2	
									1								FB	VB00316-0048-2	
										1							FB	VB00316-0061-2	
											1						FB	VB00319-0075-2	
												1					FB	VB00319-0088-2	
													1				FB	VB00319-0114-2	
														1			FB	VB00322-0140-2	
															1		FB	VB00322-0170-2	
																1	FB	VB00322-0205-2	
Electrolytic Capacitors																			
	2	2	2														W	PP01000	
				2	2												W	PP01001	
						2	2										W	PP01002	
								2									W	PP01003	
									2	2							W	PP01004	
											2	2	2	4	4		W	PP01005	
																4	W	PP01099	
Cooling Fans																			
	1	1	1	1	1												W	PP01060	
						1	1	1									W	PP01061	
									1	1							W	PP01062	
											1	1	1				W	PP01063	
														1	1	1	FC	PP01123 ${ }^{(2)}$	
	1	1	1	1	1												W	PP01086	
						1	1	1	1	1							FC	PP01088	
											1	1	1				W	PP01049	
														1	2	2	FC	CP01180	
														1	1	1	FC	PP08037	
	IGBT Modules																		
	1	1															W	CP01304	
			1														W	CP01305	
				1	1	1											W	CP01306	
							1										W	CP01307	
								1									W	CP01308	
									1								W	PP01022	
										1							W	PP01023	
											1						W	PP01024	
												1					W	PP01025	
													1				W	PP01029	
														1			W	PP01026	
															1	1	W	PP01027	

[^26](2) PP00061 capacitor not included in main fan; please order separately.

Table 40-249. 9000X Series Replacement Parts - SPX9000 Drives, 208 - 240V (Continued)

Frame:	4					5			6		7			8			Delivery Code	Catalog Number	$\begin{array}{\|l\|} \hline \text { Price } \\ \text { U.S. \$ } \end{array}$
hp (l_{H}):	3/4	1	1-1/2	2	3	$5{ }^{1}$	5	7-1/2	10	15	20	25	30	40	50	60			
Choppers/Rectifiers																			
									1								W	CP01367	
										1							W	CP01368	
Diode/Thyristor Modules																			
											3	3	3				W	PP01035	
														3	3	3	W	CP01268	
Rectifying Boards																			
											1	1	1				W	VB00242	
														1	1	1	W	VB00227	

(1) $5 \mathrm{hp} \mathrm{I}_{\mathrm{L}}$ only; has no corresponding I_{H} rated hp rating.

Table 40-250. 9000X Series Replacement Parts - FR4 - FR9 SPX9000 Drives, 380-500V

Frame:	4						5			6			7			8			9		Delivery Code	Catalog Number	Price U.S. \$
hp (I_{H}):	1	1-1/2	2	3	5	7-1/2 ${ }^{(2)}$	7-1/2	10	15	20	25	30	40	50	60	75	100	125	150	200			
	Control Board																						
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	W	VB00252	
	Power Boards																						
	1																				FB	VB00208-0003-5	
		1																			FB	VB00208-0004-5	
			1																		FB	VB00208-0005-5	
				1																	FB	VB00208-0007-5	
					1																FB	VB00208-0009-5	
						1															FB	VB00210-0012-5	
							1														FB	VB00213-0016-5	
								1													FB	VB00213-0022-5	
									1												FB	VB00213-0031-5	
										1											FB	VB00216-0038-5	
											1										FB	VB00216-0045-5	
												1									FB	VB00216-0061-5	
													1								FB	VB00219-0072-5	
														1							FB	VB00219-0087-5	
															1						FB	VB00219-0105-5	
																1					FB	VB00236-0140-5	
																	1				FB	VB00236-0168-5	
																		1			FB	VB00236-0205-5	

Cooling Fans

(2) I_{L} only; has no corresponding I_{H} rated hp rating.
(3) PP00061 capacitor not included in main fan; please order separately.
(4) PP00011 capacitor not included in main fan; please order separately.
(5) For FR9 NEMA Type 12 you need two PP01068 internal fans.

Table 40-250. 9000X Series Replacement Parts - FR4 - FR9 SPX9000 Drives, 380 - 500V (Continued)

Frame:	4						5			6			7				8			9		Delivery Code	Catalog Number	PriceU.S. $\$ ~$
hp (I_{H}):	1	1-1/2	2	3	5	7-1/2 ${ }^{1}$	7-1/2	10	15	20	25	30	40	50		60	75	100	125	150	200			
	IGBT Modules																							
	1	1	1																			W	CP01304	
				1	1																	W	CP01305	
						1	1															W	CP01306	
								1														W	CP01307	
									1													W	CP01308	
										1	1											W	PP01022	
												1										W	PP01023	
													1									W	PP01024	
														1								W	PP01025	
																1						W	PP01029	
																	1					W	PP01026	
																		1	1			W	PP01027	
	Chopper/Rectifiers																							
										1	1											W	CP01367	
												1										W	CP01368	
	Diode/Thyristor Modules																							
													3	3		3						W	PP01035	
																	3	3	3			W	CP01268	
																				3	3	W	PP01037	
	Rectifying Boards																							
													1	1		1						W	VB00242	
																	1	1	1			W	VB00227	
																				1	1	W	VB00459	
	Rectifying Module Sub-assembly																							
																				1	1	W	FR09810	
	Power Module Sub-assemblies																							
																				1		W	FR09-150-4-ANS ${ }^{2}$	
																					1	W	FR09-200-4-ANS (2)	

(1) I_{L} only; has no corresponding I_{H} rated hp rating.
(2) See Table 40-254 for details.

Table 40-251. 9000X Series Replacement Parts - FR10 - FR12 SPX9000 Drives, 380 - 500V

Frame:	10			11			12			Delivery Code	Catalog Number	Price U.S. \$
hp (l_{H}):	250	300	350	400	500	550	600	650	700			
	Control Board											
	1	1	1	1	1	1	1	1	1	W	VB00561	
	Shunt Boards											
	6									FC	VB00537	
		6								FC	VB00497	
			6				12	12	12	FC	VB00498	
				9						FC	VB00538	
					9					FC	VB00513	
						9				FC	VB00514	
	Driver Boards											
				3	3	3				FC	VB00489	
	1	1	1				2	2	2	FC	VB00487	
	Driver Adapter Board											
	1	1	1				2	2	2	FC	VB00330	
	ASIC Board											
	1	1	1	1	1	1	2	2	2	FC	VB00451	
	Feedback Interface Board											
							2	2	2	FC	VB00448	
	Star Coupler Board											
							1	1	1	FC	VB00336	
	Power Modules											
	1	1	1	2	2	2	2	2	2	FC	FR10820 ${ }^{1}$	
	2	2	2							FC	FR10828	
	1									FC	FR10-250-4-ANS ${ }^{(2)}$	
		1								FC	FR10-300-4-ANS ${ }^{(2)}$	
			1				2	2	2	FC	FR10-350-4-ANS ${ }^{(2)}$	
				3						FC	FR11-400-4-ANS ${ }^{(2)}$	
					3					FC	FR11-500-4-ANS ${ }^{2}{ }^{\text {2 }}$	
						3				FC	FR11-550-4-ANS ${ }^{2}{ }^{\text {2 }}$	
	Electrolytic Capacitors											
	2	2	2	3	3	3	4	4	4	FC	PP00060	
	12	12	12	18	18	18	24	24	24	FC	PP01005	
	Fuses											
	1	1	1	1	1	1	2	2	2	FC	PP01094	
	2	2	2	2	2	2	4	4	4	FC	PP01095	
	Cooling Fans and Isolation Transformers											
	2	2	2	3	3	3	4	4	4	FC	VB00299	
	2	2	2	3	3	3	4	4	4	FC	PP01080 ${ }^{(3)}$	
	2	2	2				4	4	4	FC	PP01068	
	1	1	1	1	1	1	2	2	2	FC	PP01096	
	1	1	1				2	2	2	FC	FR10844	
	1	1	1	3	3	3	2	2	2	FC	FR10845	
	1	1	1				2	2	2	FC	FR10846	
	1	1	1	3	3	3	2	2	2	FC	FR10847	
	Rectifying Board											
	1	1	1	2	2	2	2	2	2	FC	VB00459	

[^27](2) See Table 40-254 for details.
${ }^{3}$ PP00060 capacitor not included in main fan; please order separately.

Table 40-252. 9000X Series Replacement Parts — FR6 - FR9 SPX9000 Drives, 525 - 690V

Frame: 6	6								7		8			9				Delivery Code	Catalog Number	$\begin{aligned} & \hline \text { Price } \\ & \text { U.S. \$ } \end{aligned}$
hp (l_{H}): 2	2 l 3	35^{51}	(1) 5	5 7-1/2	10	15	20	25	30	40	50	60	75	100	125	150	$200{ }^{(1)}$			
	Control Board																			
	1 1	11	1 1	$1{ }^{1}$	1	1	1	1	1	1					1	1	1	W	VB00561	
	Driver Board																			
	1																	FB	VB00404-0004-6	
	1	1																FB	VB00404-0005-6	
		1																FB	VB00404-0007-6	
				1														FB	VB00404-0010-6	
				1														FB	VB00404-0013-6	
					1													FB	VB00404-0018-6	
						1												FB	VB00404-0022-6	
							1											FB	VB00404-0027-6	
								1										FB	VB00404-0034-6	
	Power Boards																			
	1 1	11	1	$1{ }^{1}$	1	1	1	1										FB	VB00414	
									1									FB	VB00419-0041-6	
										1								FB	VB00419-0052-6	
											1							FB	VB00422-0062-6	
												1						FB	VB00422-0080-6	
													1					FB	VB00422-0100-6	
	Power Modules																			
														1				FC	FR09-100-5-ANS (2)	
															1			FC	FR09-125-5-ANS ${ }^{(2)}$	
																1		FC	FR09-150-5-ANS ${ }^{(2)}$	
																	1	FC	FR09-175-5-ANS ${ }^{(2)}$	
	Electrolytic Capacitors																			
	2 2	2 2	- 2	2 2	2	2	2	2										FC	PP01093	
									2	2	4	4		8	8	8	8	FC	PP01041	
													4					FC	PP01040	
	Fuses																			
											1	1	1	1	1	1	1	W	PP01094	
											2	2	2	2	2	2	2	W	PP01095	
	Cooling Fans																			
	1 1	11	1	$1{ }^{1}$														W	PP01061	
					1	1	1	1										W	PP01062	
									1	1								W	PP01063	
											1	1	1					FC	PP01123	
	1 1	11	1	$1{ }^{1}$	1	1	1	1	1	1								W	PP01049	
											1	1	1					FC	CP01180	
														1	1	1	$1{ }^{(3)}$	W	PP01068	
														1	1	1	1	FC	PP01080	
	Fan Power Supply																			
															1	1	1	FC	VB00299	
	IGBT Modules																			
	3 3	$3{ }^{3}$	3 3	3 3	3	3	3	3										FC	PP01091	
									1	1								FC	PP01089	
											1	1	1					FC	PP01127	
	IGBT/Diode (Brake)																			
	1 1	$1{ }^{1} 1$	11	$1{ }^{1} 1$	1	1	1	1	1	1	2	2	2	2	2	2	2	FC	PP01040	
	Diode Module																			
	1 1	$1{ }^{1}$	11	$1{ }^{1} 1$	1	1	1	1										FC	PP01092	
	Diode/Thyristor Modules																			
									3	3								FC	PP01071	
														3	3	3	3	FC	PP01072	
	Rectifying Boards																			
									1	1								FC	VB00442	
														1	1	1	1	FC	VB00460	
	Rectifying Module Sub-assemblies																			
															1	1	1	W	FR09810	
															1	1	1	FC	FR09811	

[^28](2) See Table 40-254 for details.
(3) For NEMA Type 12, two PP01068 internal fans are needed.

Table 40-253. 9000X Series Replacement Parts - FR10 - FR12 SPX9000 Drives, 525-690V

Frame:	10			11			12			Delivery Code	Catalog Number	$\begin{array}{\|l\|} \hline \text { Price } \\ \text { U.S. \$ } \end{array}$
hp (l_{H}):	200	250	300	400	450	500	550	600	700			
Component Boards												
	1	1	1	1	1	1	1	1	1	W	VB00561	
	1	1	1	1	1	1	2	2	2	FC	VB00451	
	6									FC	VB00545	
		6								FC	VB00510	
			6				12	12	12	FC	VB00511	
	1	1	1				2	2	2	FC	VB00330	
	1	1	1				2	2	2	FC	VB00487	
				3	3	3				FC	VB00489	
				9						FC	VB00546	
					9					FC	VB00547	
						9				FC	VB00512	
							2	2	2	FC	VB00448	
							1	1	1	FC	VB00336	
	Power Modules											
	1	1	1	2	2	2	2	2	2	FC	FR10821 ${ }^{(1)}$	
	2	2	2							FC	FR10829	
	1									FC	FR10-200-5-ANS ${ }^{(2)}$	
		1								FC	FR10-250-5-ANS ${ }^{(2)}$	
			1				2	2	2	FC	FR10-300-5-ANS ${ }^{(2)}$	
				3						FC	FR11-400-5-ANS ${ }^{(2)}$	
					3					FC	FR11-450-5-ANS ${ }^{(2)}$	
						3				FC	FR11-500-5-ANS ${ }^{(2)}$	
	Electrolytic Capacitors											
	2	2	2	3	3	3	4	4	4	FC	PP00060	
	12	12	12	18	18	18	24	24	24	FC	PP01099	
	Fuses											
	1	1	1	1	1	1	2	2	2	FC	PP01094	
	2	2	2	2	2	2	4	4	4	FC	PP01095	
	Cooling Fans and Isolation Transformers											
	2	2	2	3	3	3	4	4	4	FC	VB00299	
	2	2	2	3	3	3	4	4	4	FC	PP01080 ${ }^{(3)}$	
	2	2	2				4	4	4	FC	PP01068	
	1	1	1	1	1	1	2	2	2	FC	PP01096	
	1	1	1				2	2	2	FC	FR10844	
	1	1	1	3	3	3	2	2	2	FC	FR10845	
	1	1	1				2	2	2	FC	FR10846	
	1	1	1	3	3	3	2	2	2	FC	FR10847	
	Fan Power Supply											
							1	1	1	FC	VB00299	
	Rectifying Boards											
	1	1	1	2	2	2	2	2	2	FC	VB00460	

(1) Rectifying board not included.
(2) See Table 40-254 for details.
${ }^{3}$ PP00060 capacitor not included in main fan; please order separately.
Table 40-254. Power Module Catalog Number Matrix

Open Drives

Contents	
Description	Page
HVX9000 Open Drives	
Product Description	40-167
Features and Benefits	40-167
Technical Data and Specifications	40-168
Catalog Number	
Selection	40-169
Product Selection	40-170
Accessories	40-173
Dimensions	40-175
Replacement Parts	40-189

HVX9000 Open Drives

Product Description

Cutler-Hammer ${ }^{\circledR}$ HVX9000 Series Adjustable Frequency Drives by Eaton's electrical business are the next generation of drives specifically engineered for HVAC, pump and fluid control applications. The power unit makes use of the most sophisticated semiconductor technology and a highly modular construction that can be flexibly adapted to the customer's needs.

The input and output configuration (I / O) is designed with modularity in mind. The I/O is compromised of option cards, each with its own input and output configuration. The control module is designed to accept a total of five of these cards. The cards contain not only normal analog and digital inputs but also fieldbus cards.

These drives continue the tradition of robust performance, and raise the bar on features and functionality, ensuring the best solution at the right price.

Features and Benefits

■ Robust design - proven 500,000 hours MTBF
■ Integrated 3\% line reactors standard on drives from FR4 through FR9
■ EMI/RFI Filters standard on all drives from FR4 through FR9

- HAND/OFF/AUTO and DRIVE/ BYPASS selector on keypad simplifies control
- Additional I/O and communication cards provide plug and play functionality
■ Copy/Paste function allows transfer of parameter settings from one drive to the next
■ Keypad can display up to three monitored parameters simultaneously
- Hand-held Auxiliary Power Supply allows programming/monitoring of control module without applying power to the drive
■ NEMA Type 1 and NEMA Type 12 enclosures available
- Standard NEMA Type 12 keypad on all drives
- Simplified operating menu allows for typical programming changes, while programming mode provides control of everything
■ Accommodates a wide selection of expander boards and adapter boards
- UL Listed

■ Quickstart wizard built into programming of drive ensures a smooth start-up
■ The HVX can be flexibly adapted to a variety of needs using our preinstalled program
■ I/O connections with simple quick connection terminals

- Control logic can be powered from an external auxiliary control panel, internal drive functions and fieldbus if necessary
- Standard option board configuration includes an A9 I/O board and an A2 relay output board installed in slots A and B

Open Drives

Technical Data and Specifications

Table 40-255. HVX9000 Specifications

Description	Specification
Input Ratings	
Input Voltage ($\mathrm{V}_{\text {in }}$)	+10\% / -15\%
Input Frequency ($\mathrm{f}_{\text {in }}$)	$50 / 60 \mathrm{~Hz}$ (variation up to $45-66 \mathrm{~Hz}$)
Connection to Power	Once per minute or less (typical operation)
Short Circuit Withstand Rating	100 kAIC
Output Ratings	
Output Voltage	0 to $\mathrm{V}_{\text {in }}$
Continuous Output Current	Ambient temperature max. $+104^{\circ} \mathrm{F}\left(+40^{\circ} \mathrm{C}\right)$
Overload Current	110\% (1 min./10 min.)
Output Frequency	0 to 320 Hz
Frequency Resolution	. 01 Hz

Control Characteristics	
Control Method	Frequency Control (V/f) Open Loop Sensorless Vector Control
Switching Frequency	Adjustable with Parameter 2.6.9 1 - $40 \mathrm{hp}: 1$ to 16 kHz ; default 10 kHz $50-75 \mathrm{hp}: 1$ to 10 kHz ; default 3.6 kHz
Frequency Reference	Analog Input: Resolution .1\% (10-bit), accuracy $\pm 1 \%$ Panel Reference: Resolution .01 Hz
Field Weakening Point	30 to 320 Hz
Acceleration Time	0 to 3000 sec .
Deceleration Time	0 to 3000 sec .
Braking Torque	DC brake: $30 \% \times \mathrm{T}_{\mathrm{n}}$ (without brake option)
Ambient Conditions	
Ambient Operating Temperature	$14^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right)$, no frost to $104^{\circ} \mathrm{F}\left(+40^{\circ} \mathrm{C}\right)$
Storage Temperature	$-40^{\circ} \mathrm{F}\left(-40^{\circ} \mathrm{C}\right)$ to $158^{\circ} \mathrm{F}\left(70^{\circ} \mathrm{C}\right)$
Relative Humidity	0 to $95 \% \mathrm{RH}$, noncondensing, non-corrosive, no dripping water
Air Quality	Chemical vapors: IEC 721-3-3, unit in operation, class 3C2; Mechanical particles: IEC 721-3-3, unit in operation, class 3S2
Altitude	100% load capacity (no derating) up to 3280 ft . (1000 m); 1\% derating for each 328 ft . $(100 \mathrm{~m})$ above 3280 ft . (1000 m); max. 9842 ft . (3000m)
Vibration	EN 50178, EN 60068-2-6; 5 to 50 Hz , Displacement amplitude 1 mm (peak) at 3 to 15.8 Hz , Max. acceleration amplitude 1G at 15.8 to 150 Hz
Shock	EN 50178, EN 60068-2-27 UPS Drop test (for applicable UPS weights) Storage and shipping: max. 15G, 11 ms (in package)
Enclosure Class	NEMA Type 1/IP21 or NEMA Type 12/IP54

Description	Specification
Standards	
Product	IEC 61800-2
Safety	UL 508C
EMC (at default settings)	Immunity: Fulfills all EMC immunity requirements; Emissions: EN 61800-3, LEVEL H
Control Connections	
Analog Input Voltage	0 to $10 \mathrm{~V}, \mathrm{R}=200 \Omega$ differential (-10 to 10 V joystick control) Resolution .1\%; accuracy $\pm 1 \%$
Analog Input Current	0(4) to 20 mA ; $\mathrm{R}_{\mathrm{i}}-250 \Omega$ differential
Digital Inputs (6)	Positive or negative logic; 18 to 24V DC
Auxiliary Voltage	+24V $\pm 15 \%$, max. 250 mA
Output Reference Voltage	+10V +3\%, max. load 10 mA
Analog Output	0(4) to 20 mA ; R_{L} max. 500Ω; Resolution 10 bit; Accuracy $\pm 2 \%$
Digital Outputs	Open collector output, $50 \mathrm{~mA} / 48 \mathrm{~V}$
Relay Outputs	2 programmable Form C relay outputs Switching capacity: 24V DC / 8A, 250V AC / 8A, 125V DC / 0.4A
Protections	
Overcurrent Protection	Yes
Overvoltage Protection	Yes
Undervoltage Protection	Yes
Earth Fault Protection	In case of earth fault in motor or motor cable, only the frequency converter is protected
Input Phase Supervision	Trips if any of the input phases are missing
Motor Phase Supervision	Trips if any of the output phases are missing
Overtemperature Protection	Yes
Motor Overload Protection	Yes
Motor Stall Protection	Yes
Motor Underload Protection	Yes
Short Circuit Protection	Yes (Of the +24 V and +10 V Reference Voltages)

Open Drives

Catalog Number Selection

Table 40-256. Adjustable Frequency Drive Catalog Numbering System

(1) All 230V Drives and 480 V Drives up to $250 \mathrm{hp}\left(I_{L}\right)$ are only available with Input Option 1. 480V Freestanding Drives are available with Input Option 4 (EMC Level L). 2. 575V Drives up to $200 \mathrm{hp}\left(l_{\mathrm{L}}\right)$ are only available with Input Option 4 (EMC Level L).
(2) 480V Drives up to $40 \mathrm{hp}\left(l_{\mathrm{L}}\right)$ are only available with Brake Chopper Option B. 480V Drives $50 \mathrm{hp}\left(l_{\mathrm{L}}\right)$ or larger are only available with Brake Chopper Option N. 230V Drives up to 20 hp (l_{L}) are only available with Brake Chopper Option B. 575 V Drives are standard without Brake Chopper Option (N).
(3) 480 V Drives $300-600 \mathrm{hp}\left(\mathrm{I}_{\mathrm{L}}\right)$ are available with enclosure style $\mathbf{0}$ (Chassis). 480V FR10 Freestanding Drives are available with enclosure style 1 (NEMA Type 1) or $\mathbf{2}$ (NEMA Type 12). FR11 Freestanding Drives are only available with enclosure style 1 (NEMA Type 1).

Product Selection

230V HVX9000 Drives

Table 40-257. 208-240V, NEMA Type 1 Drive

Frame Size	Delivery Code	hp (l_{L})	Current ($\mathrm{I}_{\text {L }}$)	Catalog Number	Price U.S. \$
FR4	F1	$\begin{aligned} & \hline 1 \\ & 1-1 / 2 \\ & 2 \\ & 3 \end{aligned}$	$\begin{array}{r} 4.8 \\ 6.6 \\ 7.8 \\ 11 \end{array}$	HVX001A1-2A1B1 HVXF15A1-2A1B1 HVX002A1-2A1B1 HVX003A1-2A1B1	
FR5	F1	$\begin{aligned} & \hline 5 \\ & 7-1 / 2 \\ & 10 \end{aligned}$	$\begin{aligned} & 17.5 \\ & 25 \\ & 31 \end{aligned}$	HVX005A1-2A1B1 HVX007A1-2A1B1 HVX010A1-2A1B1	
FR6	F1	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & 48 \\ & 61 \end{aligned}$	HVX015A1-2A1B1 HVX020A1-2A1B1	
FR7	F1	$\begin{aligned} & 25 \\ & 30 \\ & 40 \end{aligned}$	$\begin{array}{\|r} \hline 75 \\ 88 \\ 114 \\ \hline \end{array}$	HVX025A1-2A1N1 HVX030A1-2A1N1 HVX040A1-2A1N1	
FR8	F1	$\begin{aligned} & 50 \\ & 60 \\ & 75 \end{aligned}$	$\begin{array}{\|l\|} \hline 140 \\ 170 \\ 205 \end{array}$	HVX050A1-2A1N1 HVX060A1-2A1N1 HVX075A1-2A1N1	

Table 40-258. 208-240V, NEMA Type 12 Drive

Frame Size	Delivery Code	hp (lL)	Current (${ }_{\text {L }}$)	Catalog Number	Price U.S. \$
FR4	F1	$\begin{aligned} & 1 \\ & 1-1 / 2 \\ & 2 \\ & 3 \end{aligned}$	$\begin{array}{r} 4.8 \\ 6.6 \\ 7.8 \\ 11 \end{array}$	HVX001A2-2A1B1 HVXF15A2-2A1B1 HVX002A2-2A1B1 HVX003A2-2A1B1	
FR5	F1	$\begin{gathered} \hline 5 \\ 7-1 / 2 \\ 10 \end{gathered}$	$\begin{aligned} & 17.5 \\ & 25 \\ & 31 \end{aligned}$	HVX005A2-2A1B1 HVX007A2-2A1B1 HVX010A2-2A1B1	
FR6	F1	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & 48 \\ & 61 \end{aligned}$	HVX015A2-2A1B1 HVX020A2-2A1B1	
FR7	F1	$\begin{aligned} & 25 \\ & 30 \\ & 40 \end{aligned}$	$\begin{array}{\|r} \hline 75 \\ 88 \\ 114 \\ \hline \end{array}$	HVX025A2-2A1N1 HVX030A2-2A1N1 HVX040A2-2A1N1	
FR8	FP	$\begin{aligned} & 50 \\ & 60 \\ & 75 \end{aligned}$	$\begin{array}{\|l\|} \hline 140 \\ 170 \\ 205 \end{array}$	HVX050A2-2A1N1 HVX060A2-2A1N1 HVX075A2-2A1N1	

480V HVX9000 Drives

Table 40-259. 380-500V, NEMA Type 1 Drive

Frame Size	Delivery Code	hp (l)	Current (lL)	Catalog Number	Price U.S. \$
FR4	F1	$\begin{aligned} & 1-1 / 2 \\ & 2 \\ & 3 \\ & 5 \\ & 7-1 / 2 \end{aligned}$	$\begin{aligned} & \hline 3.3 \\ & 4.3 \\ & 5.6 \\ & 7.6 \\ & 12 \end{aligned}$	HVXF15A1-4A1B1 HVX002A1-4A1B1 HVX003A1-4A1B1 HVX005A1-4A1B1 HVX007A1-4A1B1	
FR5	F1	$\begin{aligned} & 10 \\ & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & 16 \\ & 23 \\ & 31 \end{aligned}$	HVX010A1-4A1B1 HVX015A1-4A1B1 HVX020A1-4A1B1	
FR6	F1	$\begin{aligned} & 25 \\ & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & 38 \\ & 46 \\ & 61 \end{aligned}$	HVX025A1-4A1B1 HVX030A1-4A1B1 HVX040A1-4A1B1	
FR7	F1	$\begin{aligned} & 50 \\ & 60 \\ & 75 \end{aligned}$	$\begin{array}{\|r\|} \hline 72 \\ 87 \\ 105 \end{array}$	HVX050A1-4A1N1 HVX060A1-4A1N1 HVX075A1-4A1N1	
FR8	F1	$\begin{array}{\|l\|} \hline 100 \\ 125 \\ 150 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 140 \\ 170 \\ 205 \end{array}$	HVX100A1-4A1N1 HVX125A1-4A1N1 HVX150A1-4A1N1	
FR9	F1	$\begin{array}{\|l\|} \hline 200 \\ 250 \\ \hline \end{array}$	$\begin{aligned} & 261 \\ & 300 \end{aligned}$	HVX200A1-4A1N1 HVX250A1-4A1N1	

Open Drives

Table 40-260. 380-500V, NEMA Type 1 Freestanding Drive

Frame Size	Delivery Code	hp (IL)	Current (IL)	Catalog Number	Price U.S. \$
FR10	W	300	385	HVX300A1-4A4N1	
	FP	350	460	HVX350A1-4A4N1	
	W	400	520	HVX400A1-4A4N1	
FR11	FP	500	590	HVX500A1-4A4N1	
	FP	550	650	HVX550A1-4A4N1	
	FP	600	730	HVX600A1-4A4N1	

Note: Integrated fuses as standard. Limited option selection available; 115V Transformer (KB), Light Kit (L1), HOA (K4), Speed Potentiometer w/HOA (K2), Disconnect Switch (P2). See Freestanding Option Selection on Page 40-174.

Table 40-261. 380 - 500V, NEMA Type 12 Drive

Frame Size	Delivery Code	hp (lL)	Current (lL)	Catalog Number	Price U.S. $\$$
FR4	F1	$1-1 / 2$	3.3	HVXF15A2-4A1B1	
		2	4.3	HVX002A2-4A1B1	
		3	5.6	HVX003A2-4A1B1	
		5	7.6	HVX005A2-4A1B1	
HVX007A2-4A1B1					
FR5	F1	10	12	16	HVX010A2-4A1B1
		15	23	HVX015A2-4A1B1	
FR6	F1	20	31	HVX020A2-4A1B1	
		25	38	HVX025A2-4A1B1	
FR7	F1	30	46	HVX030A2-4A1B1	
		40	61	HVX040A2-4A1B1	
FR8	F1	60	72	HVX050A2-4A1N1	
		75	87	HVX060A2-4A1N1	
FR9	F1	100	105	HVX075A2-4A1N1	
		125	170	HVX100A2-4A1N1	

Table 40-262. 380 - 500V, NEMA Type 12 Freestanding Drive

Frame Size	Delivery Code	hp (IL)	Current (IL)	Catalog Number	Price U.S. $\$$
FR10	FP	300	385	HVX300A2-4A4N1	
	FP	350	460	HVX350A2-4A4N1	
	FP	400	520	HVX400A2-4A4N1	

Note: Integrated fuses as standard. Limited option selection available; 115V Transformer (KB), Light Kit (L1), HOA (K4), Speed Potentiometer w/HOA (K2), Disconnect Switch (P2). See Freestanding Option Selection on Page 40-174.

Table 40-263. 380 - 500V, Open Chassis Drive

Frame Size	Delivery Code	hp (lL)	Current (IL)	Catalog Number	Price U.S. $\$$
FR10 ${ }^{1}$ (F1	300	385	HVX300A0-4A2N1	
		350	460	HVX350A0-4A2N1	
FR11	F1	400	520	HVX400A0-4A2N1	
	F1	500	590	HVX500A0-4A2N1	
	F1	550	650	HVX550A0-4A2N1	

[^29]
575V HVX9000 Drives

Table 40-264. 525-690V, NEMA Type 1 Drive

Frame Size	Delivery Code	hp (IL)	Current $\left(\mathbf{I}_{\mathrm{L}}\right)$	Catalog Number	Price U.S. $\$$
FR6	F1	3	4.5	HVX003A1-5A4N1	
		5	7.5	HVX005A1-5A4N1	
		$7-1 / 2$	10	HVX007A1-5A4N1	
		10	13.5	HVX010A1-5A4N1	
		15	18	HVX015A1-5A4N1	
		20	22	HVX020A1-5A4N1	
		25	27	HVX025A1-5A4N1	
FR7	F1	40	34	HVX030A1-5A4N1	
		50	52	HVX040A1-5A4N1	
FR8	F1	60	62	HVX050A1-5A4N1	
		75	80	HVX060A1-5A4N1	
		100	100	HVX100A1-5A4N1	
FR9	F1	125	125	HVX125A1-5A4N1	
		150	144	HVX150A1-5A4N1	
		200	208	HVX200A1-5A4N1	

Table 40-265. 525-690V, NEMA Type 12 Drive

Frame Size	Delivery Code	hp (IL)	Current $\left(I_{L}\right)$	Catalog Number	Price U.S. $\$$
FR6	F1	3	4.5	HVX003A2-5A4N1	
		5	H.5	HVX005A2-5A4N1	
		$7-1 / 2$	10	HVX007A2-5A4N1	
		10	13.5	HVX010A2-5A4N1	
		15	18	HVX015A2-5A4N1	
		20	22	HVX020A2-5A4N1	
		25	27	HVX025A2-5A4N1	
FR7	MP28	40	34	41	HVX030A2-5A4N1

9000X Series Option Board Kits

The 9000X Series drives can accommodate a wide selection of expander and adapter option boards to customize the drive for your application needs. The drive's control unit is designed to accept a total of five option boards (see Figure 40-84).
The 9000X Series factory installed standard board configuration includes an A9 I/O board and an A2 relay output board, which are installed in slots A and B.

Figure 40-84. 9000X Series Option Boards

Open Drives

Johnson Controls Metasys ${ }^{\text {TM }}$ N2 Network Communications

The OPTC2 fieldbus board provides communication between the 9000X Drive and a Johnson Controls Metasys ${ }^{\text {TM }}$ N2 network. With this connection, the drive can be controlled, monitored and programmed from the Metasys system. The N2 fieldbus is available as a factory installed option and as a field installable kit.

BACnet Network Communications

The BACnet Network Card OPTCJ is used for connecting the 9000X Drive to BACnet networks. It includes a 5.08 mm pluggable connector. Data transfer is Master-Slave/Token Passing (MS/TP) RS-485. This interface uses a collection of 30 Binary Value Objects (BVOs) and 35 Analog Value Objects (AVOs) to communicate drive parameters. The card supports 9.6, 19.2 and 38.4 Kbaud communication speeds and supports network addresses 1-127.

Modbus RTU Network Communications

The Modbus Network Card OPTC2 is used for connecting the 9000X Drive as a slave on a Modbus network. The interface is connected by a 9 -pin DSUB connector (female) and the baud rate ranges from 300 to 19200 baud. Other communication parameters include an address range from 1 to 247; a parity of None, Odd or Even; and the stop bit is 1.

LonWorks Network Communications

The LonWorks Network Card OPTC4 is used for connecting the 9000X Drive on a LonWorks network. This interface uses Standard Network Variable Types (SNVT) as data types. The channel connection is achieved using a FTT-10A Free Topology transceiver via a single twisted transfer cable. The communication speed with LonWorks is $78 \mathrm{kBits} / \mathrm{s}$.

Accessories

Drive Demo and Power Supply

Table 40-267. Drive Demo and Power Supply

Description	Catalog Number	Price U.S. \$
HVX9000 Drive Demo	9000HVXDEMO	
Hand Held 24V Auxiliary Power Supply — used to supply power to the control module in order to perform keypad programming before the drive is connected to line voltage	9000XAUX24V	

NEMA Type 12 Conversion Kit

The NEMA Type 12 kit option is used to convert a NEMA Type 1 to a NEMA Type 12 drive. The NEMA Type 12 Kit consists of a metal drive shroud, fan kit for some frames, adapter plate and plugs.

Flange Kits

Flange Kit Type 12

The flange kit is utilized when the power section is mounted through the back panel of an enclosure. Includes flange mount brackets and NEMA Type 12 fan components. Metal shroud not included.

Table 40-268. Flange Kit Type 12 Frames 4, 5 and 6 (1)

Frame Size	Delivery Code	Catalog Number	Price U.S. \$
FR4	W	OPTTHRFR4	
FR5	W	OPTTHRFR5	
FR6	W	OPTTHRFR6	

(1) For installation of a NEMA Type 1 drive into a NEMA Type 12 oversized enclosure.

Flange Kit Type 1

Flange kits for NEMA Type 1 enclosure drive rating determined by rating of drive.

Table 40-269. Flange Kit Type 1 Frames 4-9 (2)

Frame Size	Delivery Code	Catalog Number	$\begin{array}{\|l\|} \hline \text { Price } \\ \text { U.S. \$ } \end{array}$
FR4	FP	OPTTHR4	
FR5	FP	OPTTHR5	
FR6	FP	OPTTHR6	
FR7	FP	OPTTHR7	
FR8	FP	OPTTHR8	
FR9	FP	OPTTHR9	

(2) For installation of a NEMA Type 1 drive into a NEMA Type 1 oversized enclosure.

Flange Kit Type 12

Flange kits for NEMA Type 12 enclosure drive rating determined by rating of drive.

Table 40-270. Flange Kit Type 12 -
Frames 4-9 (3)

Frame Size	Delivery Code	Catalog Number	Price U.S. $\$$
FR4 FP OPTTHR4 FR5 FP OPTTHR5 FR6 FP OPTTHR6 FR7 FP OPTTHR7 FR8 FP OPTTHR8 FR9 FP OPTTHR9			

(3) For installation of a NEMA Type 12 drive into a NEMA Type 12 oversized enclosure.

Table 40-271. NEMA Type 12 Conversion Kit

Frame Size	Delivery Code	Approximate Dimensions in Inches (mm)		Approximate Weight in Lb. (kg)	Catalog Number	Price U.S. \mathbf{S}	
		Length	Width	Height	Weight		
FR4	W	$13(330)$	$7(178)$	$4(102)$	$4(1.8)$	OPTN12FR4	
FR5	W	$16(406)$	$8(203)$	$7(178)$	$5(2.3)$	OPTN12FR5	
FR6	W	$21(533)$	$10(254)$	$5(127)$	$7(3.2)$	OPTN12FR6	

Control/Communication Option Descriptions

Table 40-272. Available Control/Communications Options

Option	Description	Option Type
K2	Door-Mounted Speed Potentiometer with HOA Selector Switch - Provides the HVX9000 with the ability to start/stop and adjust the speed reference from door-mounted control devices or remotely from customer supplied inputs. In HAND position, the drive will start and the speed is controlled by the door- mounted speed potentiometer. The drive will be disabled in the OFF position. When AUTO is selected, the drive run and speed control commands are via user-supplied dry contact and 4-20 mA signal.	Control
K4	HAND/OFF/AUTO Switch for Non-bypass Configurations - Provides a three-position selector switch that allows the user to select either a Hand or Auto mode of operation. Hand mode is defaulted to keypad operation, and Auto mode is defaulted to control from an external terminal source. These modes of operation can be configured via programming to allow for alternate combinations of start and speed sources. Start and speed sources include Keypad, I/O and FieldBus.	Control
KB	115V Control Transformer - 550 VA - Provides a fused control power transformer with additional 550 VA at 115V for customer use.	Control
L1	Power On and Fault Pilot Lights - Provides a white power on light that indicates power to the enclosed cabinet and a red fault light indicates a drive fault has occurred.	Light
P2	Disconnect Switch - Disconnect switch option is applicable only with NEMA Type 1 and NEMA Type 12 Freestanding drives. Allows a convenient means of disconnecting the HV X9000 from the line, and the operating mechanism can be padlocked in the OFF position. This is factory-mounted in the enclosure.	Input

HVX Freestanding Options

Table 40-273. 480V and 690V Control Options

Catalog Number Suffix	Door-Mounted Speed Potentiometer with HOA Selector Switch	HAND/OFF/AUTO Switch (22 mm)	115 Volt Control Transformer 550 VA
	K2	K4	KB
	Adder U.S. \$	Adder U.S. \$	Adder U.S. \$
$300-600$			

Table 40-274. Input Options

Catalog Number Suffix 1 II \Rightarrow	Disconnect Switch
	P2 ${ }^{4}$
hp	Adder U.S. \$
$\begin{aligned} & 300 \\ & 350 \\ & 400 \end{aligned}$	
$\begin{aligned} & 500 \\ & 550 \\ & 600 \end{aligned}$	

Table 40-275. 480V and 690V Light Options

Catalog Number Suffix II	Power On/ Fault Pilot Lights
	L1
	Adder U.S. \$
$300-600$	

Dimensions

Figure 40-85. NEMA Type 1 and NEMA Type 12 HVX9000 Drive Dimensions, FR4, FR5 and FR6
Table 40-276. HVX9000 Drive Dimensions

Frame Size	Voltage	hp (I_{L})	Approximate Dimensions in Inches (mm)											Weight Lbs. (kg)	$\begin{aligned} & \hline \text { Knockouts @ Inches (mm) } \\ & \hline \text { N1 (O.D.) } \end{aligned}$
			H1	H2	H3	D1	D2	D3	W1	W2	W3	R1 dia.	R2 dia.		
FR4	230 V	1-3	$\begin{array}{\|l\|} \hline 12.9 \\ (327) \end{array}$	$\begin{aligned} & \hline 12.3 \\ & (313) \end{aligned}$	$\begin{aligned} & \hline 11.5 \\ & (292) \end{aligned}$	$\begin{aligned} & \hline 7.5 \\ & (190) \end{aligned}$	$\begin{array}{\|l\|} \hline 3.0 \\ (77) \end{array}$	$\begin{aligned} & \hline 5.0 \\ & (126) \end{aligned}$	$\begin{array}{\|l\|} \hline 5.0 \\ (128) \end{array}$	$\begin{aligned} & \hline 3.9 \\ & (100) \end{aligned}$	-	$\begin{array}{\|l\|} \hline .5 \\ (13) \end{array}$	$\begin{array}{\|l} \hline .3 \\ \text { (7) } \end{array}$	$\begin{array}{\|l} \hline 11.0 \\ (5) \end{array}$	$\begin{aligned} & \hline 3 @ 1.1 \\ & (28) \end{aligned}$
	480 V	$\begin{array}{\|l\|} \hline 1-1 / 2- \\ 7-1 / 2 \end{array}$													
FR5	230 V	5-10	$\begin{aligned} & \hline 16.5 \\ & (419) \end{aligned}$	$\begin{aligned} & 16.0 \\ & (406) \end{aligned}$	$\begin{aligned} & \hline 15.3 \\ & (389) \end{aligned}$	$\begin{array}{\|l\|} \hline 8.4 \\ (214) \end{array}$	$\begin{array}{\|l\|} \hline 3.9 \\ (100) \end{array}$	$\begin{aligned} & \hline 5.8 \\ & (148) \end{aligned}$	$\begin{array}{\|l\|} \hline 5.6 \\ (143) \end{array}$	$\begin{array}{\|l\|} \hline 3.9 \\ (100) \end{array}$	-	$\begin{array}{\|l\|} \hline .5 \\ (13) \end{array}$	$\begin{aligned} & \hline .3 \\ & \text { (7) } \end{aligned}$	17.9 (8)	$\begin{aligned} & 2 \text { @ } 1.5 \\ & \text { (37) } \\ & 1 \text { @ } 1.1 \\ & (28) \end{aligned}$
	480 V	10-20													
FR6	230 V	15-20	$\begin{aligned} & 22.0 \\ & (558) \end{aligned}$	$\begin{aligned} & \hline 21.3 \\ & (541) \end{aligned}$	$\begin{aligned} & \hline 20.4 \\ & (519) \end{aligned}$	$\begin{aligned} & \hline 9.3 \\ & (237) \end{aligned}$	$\begin{aligned} & \hline 4.2 \\ & (105) \end{aligned}$	$\begin{aligned} & \hline 6.5 \\ & (165) \end{aligned}$	$\begin{array}{\|l\|} \hline 7.6 \\ (195) \end{array}$	$\begin{aligned} & \hline 5.8 \\ & (148) \end{aligned}$	-	$\begin{array}{\|l\|} \hline .6 \\ (15.5) \end{array}$	$\begin{aligned} & \hline .4 \\ & \text { (9) } \end{aligned}$	$\begin{array}{\|l} \hline 40.8 \\ (19) \end{array}$	$\begin{aligned} & \hline 3 @ 1.5 \\ & (37) \end{aligned}$
	480 V	25-40													

Figure 40-86. HVX9000 Dimensions, NEMA Type 1 and NEMA Type 12 with Flange Kit, FR4, FR5 and FR6
Table 40-277. Dimensions for HVX9000, FR4, FR5 and FR6 with Flange Kit

Frame Size	Approximate Dimensions in Inches (mm)									
	W1	W2	H1	H2	H3	H4	H5	D1	D2	Dia. A
FR4	$\begin{aligned} & \hline 5.0 \\ & (128) \end{aligned}$	$\begin{aligned} & \hline 4.5 \\ & (113) \end{aligned}$	$\begin{aligned} & \hline 13.3 \\ & (337) \end{aligned}$	$\begin{aligned} & \hline 12.8 \\ & (325) \end{aligned}$	$\begin{array}{\|l\|} \hline 12.9 \\ (327) \end{array}$	$\begin{array}{\|l\|} \hline 1.2 \\ (30) \end{array}$	$\begin{aligned} & \hline .9 \\ & \hline(22) \end{aligned}$	$\begin{aligned} & \hline 7.5 \\ & (190) \end{aligned}$	$\begin{array}{\|l\|} \hline 3.0 \\ \text { (77) } \end{array}$	$\begin{array}{\|l} \hline .3 \\ (7) \\ \hline \end{array}$
FR5	$\begin{aligned} & \hline 5.6 \\ & (143) \end{aligned}$	$\begin{array}{\|l} \hline 4.7 \\ (120) \end{array}$	$\begin{array}{\|l\|} \hline 17.0 \\ (434) \end{array}$	$\begin{aligned} & \hline 16.5 \\ & (420) \end{aligned}$	$\begin{array}{\|l\|} \hline 16.5 \\ (419) \end{array}$	$\begin{array}{\|l\|} \hline 1.4 \\ (36) \end{array}$	$\begin{aligned} & \hline .7 \\ & (18) \end{aligned}$	$\begin{array}{\|l\|} \hline 8.4 \\ (214) \end{array}$	$\begin{array}{\|l\|} \hline 3.9 \\ (100) \end{array}$	$\begin{array}{\|l\|} \hline .3 \\ (7) \end{array}$
FR6	$\begin{aligned} & \hline 7.7 \\ & (195) \end{aligned}$	$\begin{array}{\|l\|} \hline 6.7 \\ (170) \end{array}$	$\begin{aligned} & \hline 22.0 \\ & (560) \end{aligned}$	$\begin{aligned} & 21.6 \\ & (549) \end{aligned}$	$\begin{array}{\|l\|} \hline 22.0 \\ \text { (558) } \end{array}$	$\begin{array}{\|l\|} \hline 1.2 \\ (30) \\ \hline \end{array}$	$\begin{aligned} & \hline .8 \\ & (20) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 9.3 \\ (237) \end{array}$	$\begin{array}{\|l\|} \hline 4.2 \\ (106) \end{array}$	$\begin{array}{\|l} \hline .3 \\ \text { (7) } \\ \hline \end{array}$

Table 40-278. Dimensions for the Flange Opening, FR4 to FR6

Frame Size	Approximate Dimensions in Inches (mm)							
	W3	W4	W5	H6	H7	H8	H9	Dia. B
FR4	$\begin{array}{\|l\|} \hline 4.8 \\ (123) \end{array}$	$\begin{array}{\|l\|} \hline 4.5 \\ (113) \end{array}$	-	$\begin{array}{\|l\|} \hline 12.4 \\ (315) \end{array}$	$\begin{array}{\|l\|} \hline 12.8 \\ (325) \end{array}$	-	$\text { . } 2$ (5)	$\begin{array}{\|l} \hline .3 \\ \text { (7) } \end{array}$
FR5	$\begin{array}{\|l\|} \hline 5.3 \\ (135) \end{array}$	$\begin{array}{\|l\|} \hline 4.7 \\ (120) \end{array}$	-	$\begin{array}{\|l} \hline 16.2 \\ (410) \end{array}$	$\begin{aligned} & \hline 16.5 \\ & (420) \end{aligned}$	-	$\begin{array}{\|l} \hline .2 \\ (5) \end{array}$	$\begin{array}{\|l} \hline .3 \\ (7) \\ \hline \end{array}$
FR6	$\begin{array}{\|l\|} \hline 7.3 \\ (185) \end{array}$	$\begin{array}{\|l\|} \hline 6.7 \\ (170) \end{array}$	$\begin{array}{\|l\|} \hline 6.2 \\ (157) \end{array}$	$\begin{aligned} & \hline 21.2 \\ & (539) \end{aligned}$	$\begin{aligned} & \hline 21.6 \\ & (549) \end{aligned}$	$\begin{array}{\|l} \hline .3 \\ (7) \\ \hline \end{array}$	$\begin{array}{\|l} \hline .2 \\ (5) \end{array}$	$\begin{array}{\|l\|} \hline .3 \\ (7) \end{array}$

Adjustable Frequency Drives
HVX9000

Figure 40-87. HVX9000 Dimensions, NEMA Type 1 and NEMA Type 12, FR7
Table 40-279. HVX9000 Drive Dimensions, FR7

Frame Size	Voltage	hp ($\mathrm{l}^{\text {) }}$	Approximate Dimensions in Inches (mm)										Weight Lbs. (kg)	$\begin{array}{\|l\|} \hline \text { Knockouts @ Inches (mm) } \\ \hline \text { N1 (O.D.) } \\ \hline \end{array}$
			H1	H2	H3	D1	D2	D3	W1	W2	R1 dia.	R2 dia.		
FR7	230 V	25-40	$\begin{aligned} & \hline 24.8 \\ & (630) \end{aligned}$	$\begin{aligned} & 24.2 \\ & (614) \end{aligned}$	$\begin{aligned} & 23.2 \\ & (590) \end{aligned}$	$\begin{aligned} & \hline 10.1 \\ & (257) \end{aligned}$	$\begin{array}{\|l\|} \hline 3.0 \\ \text { (77) } \end{array}$	$\begin{aligned} & \hline 7.3 \\ & (184) \end{aligned}$	$\begin{aligned} & \hline 9.3 \\ & (237) \end{aligned}$	$\begin{array}{\|l\|} \hline 7.5 \\ (190) \end{array}$	$\begin{aligned} & \hline .7 \\ & (18) \end{aligned}$	$\begin{aligned} & \hline .4 \\ & \text { (9) } \end{aligned}$	$\begin{aligned} & \hline 77.2 \\ & (35) \end{aligned}$	3 @ 1.5 (37)
	480 V	50-75												
	575 V	40-50												

Figure 40-88. HVX9000 Dimensions, NEMA Type 1 and NEMA Type 12, FR8
Table 40-280. HVX9000 Drive Dimensions, FR8

Frame Size	Voltage	hp ($\mathrm{I}_{\text {L }}$)	Approximate Dimensions in Inches (mm)							
			D1	H1	H2	H3	W1	W2	R1 dia.	R2 dia.
FR8	230 V	50-75	13.5 (344)	30.1 (764)	28.8 (732)	28.4 (721)	11.5 (291)	10 (255)	. 7 (18)	. 4 (9)
	480 V	100-150								
	575 V	60-100								

Open Drives

Figure 40-89. HVX9000 Dimensions, NEMA Type 1 and NEMA Type 12, with Flange Kit, FR7 and FR8
Table 40-281. Dimensions for HVX9000, FR7 and FR8 with Flange Kit

Frame Size	Approximate Dimensions in Inches (mm)													
	W1	W2	W3	W4	H1	H2	H3	H4	H5	H6	H7	D1	D2	Dia. A
FR7	$\begin{array}{\|l\|} \hline 9.3 \\ (237) \end{array}$	$\begin{aligned} & \hline 6.8 \\ & (175) \end{aligned}$	$\begin{array}{\|l} \hline 10.6 \\ (270) \end{array}$	$\begin{aligned} & \hline 10.0 \\ & (253) \end{aligned}$	$\begin{aligned} & \hline 25.6 \\ & (652) \end{aligned}$	$\begin{aligned} & \hline 24.8 \\ & (632) \end{aligned}$	$\begin{aligned} & \hline 24.8 \\ & (630) \end{aligned}$	$\begin{aligned} & \hline 7.4 \\ & (189) \end{aligned}$	$\begin{aligned} & \hline 7.4 \\ & (189) \end{aligned}$	$\begin{array}{\|l\|} \hline .9 \\ (23) \end{array}$	$\begin{aligned} & \hline .8 \\ & (20) \end{aligned}$	$\begin{aligned} & \hline 10.1 \\ & (257) \end{aligned}$	$\begin{aligned} & \hline 4.6 \\ & (117) \end{aligned}$	3 (6)
FR8	$\begin{array}{\|l\|} \hline 11.2 \\ (285) \end{array}$	-	$\begin{array}{\|l\|} \hline 14.0 \\ (355) \end{array}$	$\begin{aligned} & \hline 13.0 \\ & (330) \end{aligned}$	$\begin{aligned} & \hline 32.8 \\ & (832) \end{aligned}$	-	$\begin{aligned} & 29.3 \\ & (745) \end{aligned}$	$\begin{aligned} & \hline 10.2 \\ & (258) \end{aligned}$	$\begin{array}{\|l\|} \hline 10.4 \\ (265) \end{array}$	$\begin{array}{\|l\|} \hline 1.7 \\ \hline(43) \end{array}$	$\begin{aligned} & \hline 2.2 \\ & (57) \end{aligned}$	$\begin{aligned} & 13.5 \\ & (344) \end{aligned}$	$\begin{aligned} & \hline 4.3 \\ & (110) \end{aligned}$	$\begin{aligned} & \hline .4 \\ & (9) \end{aligned}$

Table 40-282. Dimensions for the Flange Opening, FR7/FR8

Frame Size	Approximate Dimensions in Inches (mm)									
	W5	W6	W7	H8	H9	H10	H11	H12	H13	Dia. B
FR7	$\begin{array}{\|l\|} \hline 9.2 \\ (233) \end{array}$	$\begin{array}{\|l\|} \hline 6.9 \\ (175) \end{array}$	$\begin{array}{\|l\|} \hline 10.0 \\ (253) \end{array}$	$\begin{aligned} & \hline 24.4 \\ & (619) \end{aligned}$	$\begin{aligned} & \hline 7.4 \\ & (189) \end{aligned}$	$\begin{aligned} & \hline 7.4 \\ & (189) \end{aligned}$	$\begin{aligned} & \hline 1.4 \\ & (35) \end{aligned}$	$\begin{array}{\|l\|} \hline 1.3 \\ (32) \end{array}$	$\begin{array}{\|l} \hline .3 \\ (7) \end{array}$	$.3$ (6)
FR8	$\begin{array}{\|l} \hline 11.9 \\ (301) \end{array}$	-	$\begin{array}{\|l\|} \hline 13.0 \\ (330) \end{array}$	$\begin{array}{\|l\|} \hline 31.9 \\ (810) \end{array}$	$\begin{array}{\|l} \hline 10.2 \\ (258) \end{array}$	$\begin{aligned} & \hline 10.4 \\ & (265) \end{aligned}$	-	-	-	$\begin{array}{\|l} \hline .4 \\ \text { (9) } \\ \hline \end{array}$

Figure 40-90. HVX9000 Dimensions, NEMA Type 1 and NEMA Type 12, FR9
Table 40-283. HVX9000 Drive Dimensions, FR9

Frame Size	Voltage	hp ($\mathrm{l}_{\text {L }}$)	Approximate Dimensions in Inches (mm)								
			H1	H2	H3	D1	D2	W1	W2	R1 dia.	R2 dia.
FR9	480	200-250	$\begin{array}{\|l\|} \hline 45.3 \\ (1150) \end{array}$	$\begin{array}{\|l\|} \hline 44.1 \\ (1120) \end{array}$	$\begin{array}{\|l\|} \hline 42.4 \\ (1076) \end{array}$	$\begin{aligned} & \hline 13.4 \\ & (340) \end{aligned}$	$\begin{aligned} & \hline 14.3 \\ & (362) \end{aligned}$	$\begin{aligned} & \hline 18.9 \\ & (480) \end{aligned}$	$\begin{aligned} & \hline 15.7 \\ & (400) \end{aligned}$	$\begin{array}{\|l\|} \hline .8 \\ (20) \end{array}$	$\begin{aligned} & \hline .4 \\ & (9) \end{aligned}$
	575	125-200									

Figure 40-91. HVX9000 Dimensions, NEMA Type 1 and NEMA Type 12 FR9
Table 40-284. Dimensions for HVX9000, FR9

Frame	Approximate Dimensions in Inches (mm)														
Size	W1	W2	W3	W4	W5	H1	H2	H3	H4	H5	H6 ${ }^{1}$	D1	D2	D3	Dia.
FR9	$\begin{aligned} & \hline 18.9 \\ & (480) \end{aligned}$	$\begin{aligned} & \hline 15.7 \\ & (400) \end{aligned}$	$\begin{array}{\|l\|} \hline 6.5 \\ (165) \end{array}$	$\begin{aligned} & \hline .4 \\ & (9) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2.1 \\ & (54) \end{aligned}$	$\begin{aligned} & \hline 45.3 \\ & (1150) \end{aligned}$	$\begin{aligned} & \hline 44.1 \\ & (1120) \end{aligned}$	$\begin{aligned} & \hline 28.3 \\ & (721) \end{aligned}$	$\begin{aligned} & \hline 8.0 \\ & (205) \end{aligned}$	$\begin{aligned} & \hline .6 \\ & (16) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7.4 \\ & (188) \end{aligned}$	$\begin{aligned} & \hline 14.2 \\ & (361.5) \end{aligned}$	$\begin{array}{\|l\|} \hline 13.4 \\ (340) \end{array}$	$\begin{array}{\|l} \hline 11.2 \\ (285) \end{array}$	$\begin{aligned} & \hline .8 \\ & (21) \end{aligned}$

[^30]

Figure 40-92. HVX9000 Dimensions, NEMA Type 1 and NEMA Type 12 FR9 with Flange Kit
Table 40-285. Dimensions for HVX9000, FR9 with Flange Kit

Frame Size	Approximate Dimensions in Inches (mm)															
	W1	W2	W3	W4	W5	H1	H2	H3	H4	H5	H6	H7	D1	D2	D3	Dia.
FR9	$\begin{aligned} & 20.9 \\ & (530) \end{aligned}$	$\begin{aligned} & 20.0 \\ & (510) \end{aligned}$	$\begin{aligned} & \hline 19.1 \\ & (485) \end{aligned}$	$\begin{array}{\|l\|} \hline 7.9 \\ (200) \end{array}$	$\begin{aligned} & \hline .2 \\ & (5.5) \end{aligned}$	$\begin{array}{\|l} \hline 51.7 \\ (1312) \end{array}$	$\begin{array}{\|l\|} \hline 45.3 \\ (1150) \end{array}$	$\begin{aligned} & \hline 16.5 \\ & (420) \end{aligned}$	$\begin{aligned} & \hline 3.9 \\ & (100) \end{aligned}$	$\begin{array}{\|l\|} \hline 1.4 \\ \text { (35) } \end{array}$	$\begin{aligned} & .4 \\ & .4 \end{aligned}$	$.$ (2)	$\begin{aligned} & 24.9 \\ & (362) \end{aligned}$	$\begin{array}{\|l\|} \hline 13.4 \\ (340) \\ \hline \end{array}$	$\begin{aligned} & \hline 4.3 \\ & (109) \end{aligned}$	$\begin{array}{\|l\|} \hline .8 \\ (21) \end{array}$

Open Drives

Figure 40-93. 9000X Dimensions, NEMA Type 1 and NEMA Type 12 FR10 Freestanding Drive
Table 40-286. Dimensions for 9000X, FR10 Freestanding Drive

Frame Size	Approximate Dimensions in Inches (mm)																				Weight lbs. (kg)
	W1	W2	W3	W4	W5	W6	W7	H1	H2	H3	D1	D2	D3	D4	D5	D6	D7	Dia. 1	Dia. 2	Dia. 3	
FR10	$\begin{aligned} & 23.43 \\ & (595) \end{aligned}$	$\begin{aligned} & \hline 2.46 \\ & (62.5) \end{aligned}$	$\begin{aligned} & 4.53 \\ & (115) \end{aligned}$	$\begin{array}{\|l\|} \hline .79 \\ (20) \end{array}$	$\begin{aligned} & 5.95 \\ & (151) \end{aligned}$	$\begin{aligned} & 2.95 \\ & (75) \end{aligned}$	$\begin{array}{\|l\|} \hline 3.11 \\ (79) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 79.45 \\ (2018) \end{array}$	$\begin{array}{\|l\|} \hline 74.80 \\ (1900) \end{array}$	$\begin{array}{\|l\|} \hline 20.18 \\ (512.5) \end{array}$	$\begin{aligned} & 23.70 \\ & (602) \end{aligned}$	$\begin{aligned} & \hline 17.44 \\ & (443) \end{aligned}$	$\begin{aligned} & \hline 19.02 \\ & (483) \end{aligned}$	$\begin{array}{\|l\|} \hline .47 \\ \hline(12) \end{array}$	$\begin{aligned} & \hline 11.22 \\ & (285) \end{aligned}$	$\begin{aligned} & 17.60 \\ & (447) \end{aligned}$	$\begin{aligned} & \hline 20.08 \\ & (510) \end{aligned}$	$\begin{array}{\|l\|} \hline .83 \\ (21) \end{array}$	$\begin{array}{\|l\|} \hline 1.89 \\ (48) \end{array}$	$\begin{array}{\|l\|} \hline .43 \\ (11) \end{array}$	$\begin{array}{\|l\|} \hline 857 \\ (389) \end{array}$

Figure 40-94. HVX9000 Dimensions, FR10 Open Chassis
Table 40-287. Dimensions for HVX9000, FR10 Open Chassis

Frame Size	Voltage	hp ($\mathrm{l}_{\text {L }}$)	Approximate Dimensions in Inches (mm)															
			W1	W2	W3	W4	W5	H1	H2	H3	H4	H5	H6	H7	D1	D2	D3	D4
FR10	480 V	300-400	$\begin{array}{\|l\|} \hline 19.7 \\ (500) \end{array}$	$\begin{aligned} & \hline 16.7 \\ & (425) \end{aligned}$	$\begin{array}{\|l\|} \hline 1.2 \\ (30) \end{array}$	$\begin{aligned} & \hline 2.6 \\ & \text { (67) } \end{aligned}$	$\begin{aligned} & 12.8 \\ & (325) \end{aligned}$	$\begin{aligned} & \hline 45.9 \\ & (1165) \end{aligned}$	$\begin{aligned} & \hline 44.1 \\ & (1121) \end{aligned}$	$\begin{aligned} & \hline 34.6 \\ & (879) \end{aligned}$	$\begin{aligned} & \hline 33.5 \\ & (850) \end{aligned}$	$\begin{aligned} & \hline .7 \\ & (17) \end{aligned}$	$\begin{aligned} & \hline 24.7 \\ & (627) \end{aligned}$	$\begin{aligned} & 10.8 \\ & (275) \end{aligned}$	$\begin{aligned} & 19.9 \\ & (506) \end{aligned}$	$\begin{aligned} & \hline 17.9 \\ & (455) \end{aligned}$	$\begin{aligned} & \hline 16.7 \\ & (423) \end{aligned}$	$\begin{aligned} & \hline 16.6 \\ & (421) \end{aligned}$

Figure 40-95. HVX9000 Dimensions, NEMA Type 1 FR11 Freestanding Drive
Table 40-288. Dimensions for HVX9000, NEMA Type 1 FR11 Freestanding Drive

Frame Size	Voltage	hp (l_{L})	Approximate Dimensions in Inches (mm)																			Weight Lbs. (kg)
			W1	W2	W3	W4	W5	W6	W7	W8	H1	H2	H3	D1	D2	D3	D4	D5	Dia. 1	Dia. 2	Dia. 3	
FR11	480 V	500-600	$\begin{array}{\|l\|} \hline 31.26 \\ (794) \end{array}$	$\begin{aligned} & 2.40 \\ & (61) \end{aligned}$	$\begin{aligned} & \hline 6.50 \\ & (165) \end{aligned}$	$\begin{aligned} & \hline .79 \\ & (20) \end{aligned}$	$\begin{array}{\|l\|} \hline 3.43 \\ (87) \end{array}$	$\begin{aligned} & 2.95 \\ & (75) \end{aligned}$	$\begin{array}{\|l\|} \hline 2.52 \\ (64) \end{array}$	$\begin{array}{\|l\|} \hline 1.18 \\ (30) \\ \hline \end{array}$	$\begin{aligned} & \hline 79.45 \\ & (2018) \end{aligned}$	$\begin{aligned} & \hline 74.80 \\ & (1900) \end{aligned}$	$\begin{array}{\|l\|} \hline 20.18 \\ (512.5) \end{array}$	$\begin{aligned} & 23.70 \\ & (602) \end{aligned}$	$\begin{aligned} & \hline 11.22 \\ & (285) \end{aligned}$	$\begin{aligned} & \hline 19.09 \\ & (485) \end{aligned}$	$\begin{aligned} & \hline .47 \\ & (12) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 17.60 \\ (447) \end{array}$	$\begin{array}{\|l\|} \hline .83 \\ (21) \end{array}$	$\begin{array}{\|l\|} \hline 1.89 \\ (48) \end{array}$	$\begin{array}{\|l\|} \hline .35 \times .43 \\ (9 \times 11) \end{array}$	$\begin{aligned} & \hline 526 \\ & (239) \end{aligned}$

Figure 40-96. HVX9000 Dimensions, FR11 Open Chassis
Table 40-289. Dimensions for HVX9000, FR11 Open Chassis

Frame Size	Voltage	hp (ll)	Approximate Dimensions in Inches (mm)							Weight Lbs. (kg)
			W1	W2	W3	H1	H2	D1	D2	
FR11	480 V	500-600	$\begin{aligned} & \hline 27.9 \\ & (709) \end{aligned}$	$\begin{array}{\|l\|} \hline 8.6 \\ (225) \end{array}$	$\begin{aligned} & 2.6 \\ & (67) \end{aligned}$	$\begin{aligned} & \hline 45.5 \\ & (1155) \end{aligned}$	$\begin{aligned} & \hline 33.5 \\ & (850) \end{aligned}$	$\begin{aligned} & \hline 19.8 \\ & (503) \end{aligned}$	$\begin{array}{\|l\|} \hline 18.4 \\ (468) \end{array}$	$\begin{array}{\|l\|} \hline 833 \\ (378) \end{array}$

Adjustable Frequency Drives
HVX9000

Table 40-290. Choke Types

Catalog Number	Frame Size	Choke Type ${ }^{1}$
Voltage Range 380-500V		
HVX 300 4 FR10 CHK0400 HVX 350 4 FR10 CHK0520 HVX 400 4 FR10 CHK0520 HVX 500 4 FR11 $2 \times$ CHK0400 HVX 550 4 FR11 $2 \times$ CHK0400 HVX 600 4 FR11 $2 \times$ CHK0400		

(1) Chokes are provided with all FR10 and FR11 drives.

Figure 40-97. Dimensions of AC Choke СНК0520 in Inches (mm)

Figure 40-98. Dimensions of AC Choke CHKO400 in Inches (mm)

Replacement Parts

Table 40-291. 9000X Spare Units - HVX9000, 208 - 690V, Frames 4 - 11

Description	Catalog Number	Price U.S. \$
Control Unit - Includes the control board, blue base housing, installed HVX9000 software program and blue flip cover. Does not include any OPT boards or keypad. See Figure 40-84 and Table 40-266 (Page 40-172) for standard and option boards and keypad.	CSBH0000000000	

Table 40-292. 9000X Series Replacement Parts - HVX9000 Drives, 208 - 240V

Frame:	4				5			6		7			8			Delivery Code	Catalog Number	$\begin{aligned} & \hline \text { Price } \\ & \text { U.S. \$ } \end{aligned}$
hp ($\mathrm{IL}_{\text {L }}$:	1	1-1/2	2	3	5	7-1/2	10	15	20	25	30	40	50	60	75			
	Control Board																	
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	W	VB00252	
	Power Boards																	
	1															FB	VB00308-0004-2	
		1														FB	VB00308-0007-2	
			1													FB	VB00308-0008-2	
				1												FB	VB00310-0011-2	
					1											FB	VB00313-0017-2	
						1										FB	VB00313-0025-2	
							1									FB	VB00313-0031-2	
								1								FB	VB00316-0048-2	
									1							FB	VB00316-0061-2	
										1						FB	VB00319-0075-2	
											1					FB	VB00319-0088-2	
												1				FB	VB00319-0114-2	
													1			FB	VB00322-0140-2	
														1		FB	VB00322-0170-2	
															1	FB	VB00322-0205-2	
	Electrolytic Capacitors																	
	2	2	2													W	PP01000	
				2												W	PP01001	
					2	2										W	PP01002	
							2									W	PP01003	
								2	2							W	PP01004	
										2	2	2	4	4		W	PP01005	
															4	W	PP01099	
	Cooling Fans																	
	1	1	1	1												W	PP01060	
					1	1	1									W	PP01061	
								1	1							W	PP01062	
										1	1	1				W	PP01063	
													1	1	1	FC	PP01123 ${ }^{(1)}$	
	1	1	1	1												W	PP01086	
					1	1	1	1	1							FC	PP01088	
										1	1	1				W	PP01049	
													1	2	2	FC	CP01180	
													1	1	1	FC	PP08037	

[^31]
Open Drives

Table 40-292. 9000X Series Replacement Parts — HVX9000 Drives, 208 - 240V (Continued)

Frame:	4				5			6		7			8			Delivery Code	Catalog Number	$\begin{array}{\|l\|} \hline \text { Price } \\ \text { U.S. \$ } \end{array}$
hp (ll):	1	1-1/2	2	3	5	7-1/2	10	15	20	25	30	40	50	60	75			
IGBT Modules																		
	1	1														W	CP01304	
			1													W	CP01305	
				1	1											W	CP01306	
						1										W	CP01307	
							1									W	CP01308	
								1								W	PP01022	
									1							W	PP01023	
										1						W	PP01024	
											1					W	PP01025	
												1				W	PP01029	
													1			W	PP01026	
														1	1	W	PP01027	
Choppers/Rectifiers																		
								1								W	CP01367	
									1							W	CP01368	
Diode/Thyristor Modules																		
										3	3	3				W	PP01035	
													3	3	3	W	CP01268	
	Rectifying Boards																	
										1	1	1				W	VB00242	
													1	1	1	W	VB00227	

Table 40-293. 9000X Series Replacement Parts - FR4 - FR9 HVX9000 Drives, 380 - 500V

Frame:	4					5			6			7			8			9	Delivery Code	Catalog Number	Price U.S. \$
hp ($\mathrm{IL}_{\text {L }}$:	1-1/2	2	3	5	7-1/2	10	15	20	25	30	40	50	60	75	100	125	150				

 Power Boards

Electrolytic Capacitors

2	2	2	2																	W	PP01000		
				2																W	PP01001		
					2	2														W	PP01002		
							2													W	PP01003		
								2	2	2										W	PP01004		
											2	2	2		4	4	4	8	8	W	PP01005		

Open Drives

Table 40-293. 9000X Series Replacement Parts - FR4 - FR9 HVX9000 Drives, 380 - 500V (Continued)

Frame:	4					5			6			7			8			9		Delivery Code	Catalog Number	Price U.S. \$
hp (ll):	1-1/2	2	3	5	7-1/2	10	15	20	25	30	40	50	60	75	100	125	150	200	250			
Cooling Fans																						
	1	1	1	1	1															W	PP01060	
						1	1	1												W	PP01061	
									1	1	1									W	PP01062	
												1	1	1						W	PP01063	
															1	1	1			FC	PP01123 ${ }^{1}$	
																		1	1	FC	PP01080 ${ }^{(2)}$	
	1	1	1	1	1															W	PP01086	
						1	1	1												FC	PP01088	
									1	1	1	1	1	1						W	PP01049	
															1	1	1			FC	CP01180	
																		$1{ }^{(3)}$	2	W	PP01068	
																		1	1	FC	PP09051	
IGBT Modules																						
	1	1	1																	W	CP01304	
				1																W	CP01305	
					1	1														W	CP01306	
							1													W	CP01307	
								1												W	CP01308	
									1											W	PP01020	
										1										W	PP01022	
											1									W	PP01023	
												1								W	PP01024	
													1							W	PP01025	
														1						W	PP01029	
															1					W	PP01026	
																1	1			W	PP01027	

Chopper/Rectifiers

Diode/Thyristor Modules

										3	3	3	3							W	PP01035		
														3		3	3			W	CP01268		
																		3	3	W	PP01037		

Rectifying Boards

(1) PP00061 capacitor not included in main fan; please order separately.
${ }^{(2)}$ PP00011 capacitor not included in main fan; please order separately.
(3) For FR9 NEMA Type 12 you need two PP01068 internal fans.
(4) See Table 40-297 for details.

Table 40-294. 9000X Series Replacement Parts - FR10 and FR11 HVX9000 Drives, 380-500V

Frame:	10			11			Delivery Code	Catalog Number	PriceU.S. S
hp (lL):	300	350	400	500	550	600			
Control Board									
	1	1	1	1	1	1	W	VB00561 ${ }^{1}$	
Shunt Boards									
	6						FC	VB00537	
		6					FC	VB00497	
			6				FC	VB00498	
				9			FC	VB00538	
					9		FC	VB00513	
						9	FC	VB00514	
Driver Boards									
				3	3	3	FC	VB00489	
	1	1	1				FC	VB00487	
Driver Adapter Board									
	1	1	1				FC	VB00330	
ASIC Board									
	1	1	1	1	1	1	FC	VB00451	
Feedback Interface Board									
							FC	VB00448	
Star Coupler Board									
							FC	VB00336	
Power Modules									
	1	1	1	2	2	2	FC	FR10820 (2)	
	2	2	2				FC	FR10828	
	1						FC	FR10-250-4-ANS ${ }^{(3)}$	
		1					FC	FR10-300-4-ANS ${ }^{(3)}$	
			1				FC	FR10-350-4-ANS ${ }^{(3)}$	
				3			FC	FR11-400-4-ANS ${ }^{(3)}$	
					3		FC	FR11-500-4-ANS (3)	
						3	FC	FR11-550-4-ANS (3)	
Electrolytic Capacitors									
	2	2	2	3	3	3	FC	PP00060	
	12	12	12	18	18	18	FC	PP01005	
Fuses									
	1	1	1	1	1	1	FC	PP01094	
	2	2	2	2	2	2	FC	PP01095	
Cooling Fans and Isolation Transformers									
	2	2	2	3	3	3	FC	VB00299	
	2	2	2	3	3	3	FC	PP01080 (4)	
	2	2	2				FC	PP01068	
	1	1	1	1	1	1	FC	PP01096	
	1	1	1				FC	FR10844	
	1	1	1	3	3	3	FC	FR10845	
	1	1	1				FC	FR10846	
	1	1	1	3	3	3	FC	FR10847	
	Rectifying Board								
	1	1	1	2	2	2	FC	VB00459	

(1) FR10 and larger drives only.
(2) Rectifying board not included.
(3) See Table 40-297 for details.
(4) PP00060 capacitor not included in main fan; please order separately.

Open Drives

Table 40-295. 9000X Series Replacement Parts - FR6 - FR9 HVX9000 Drives, 525 - 690V

Frame:	6								7		8			9			Delivery Code	Catalog Number	Price U.S. $\$$
hp (IL):	3	5	7-1/2	10	15	20	25	30	40	50	60	75	100	125	150	200			
Control Board																			
	1	1	1	1	1	1	1	1	1	1					1	1	W	VB00252	
Driver Board																			
	1																FB	VB00404-0004-6	
																	FB	VB00404-0005-6	
		1															FB	VB00404-0007-6	
			1														FB	VB00404-0010-6	
				1													FB	VB00404-0013-6	
					1												FB	VB00404-0018-6	
						1											FB	VB00404-0022-6	
							1										FB	VB00404-0027-6	
								1									FB	VB00404-0034-6	
Power Boards																			
									1								FB	VB00419-0041-6	
										1							FB	VB00419-0052-6	
											1						FB	VB00422-0062-6	
												1					FB	VB00422-0080-6	
													1				FB	VB00422-0100-6	

2	2	2	2	2	2	2	2										FC	PP01093		
								2		2	4	4		8	8	8	FC	PP01041		
													4				FC	PP01040		

IGBT/Diode (Brake)

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 FC PP01040 Diode Module 1 1 1 1 1 1 1 1 FC PP01092

Diode/Thyristor Modules

								3		3										FC	PP01071		
															3			3	3	FC	PP01072		
Rectifying Boards																							
								1		1										FC	VB00442		
															1			1	1	FC	VB00460		
Rectifying Module Sub-assemblies																							
																		1	1	W	FR09810		
																		1	1	FC	FR09811		

(1) See Table 40-297 for details.
(2) For NEMA Type 12, two PP01068 internal fans are needed.

Open Drives

Table 40-296. 9000X Series Replacement Parts — FR10 and FR11 HVX9000 Drives, 525-690V

Frame:	10			11			Delivery Code	$\begin{array}{\|l\|} \hline \text { Catalog } \\ \text { Number } \end{array}$	$\begin{aligned} & \hline \text { Price } \\ & \text { U.S. } \$ \end{aligned}$
hp (l_{L}):	250	300	400	450	500	550			
Component Boards									
	1	1	1	1	1	1	W	VB00561 ${ }^{1}$	
	1	1	1	1	1	1	FC	VB00451	
	6						FC	VB00545	
		6					FC	VB00510	
			6				FC	VB00511	
	1	1	1				FC	VB00330	
	1	1	1				FC	VB00487	
				3	3	3	FC	VB00489	
				9			FC	VB00546	
					9		FC	VB00547	
						9	FC	VB00512	
							FC	VB00448	
							FC	VB00336	
Power Modules									
	1	1	1	2	2	2	FC	FR10821 ${ }^{(2)}$	
	2	2	2				FC	FR10829	
	1						FC	FR10-200-5-ANS ${ }^{(3)}$	
		1					FC	FR10-250-5-ANS (3)	
			1				FC	FR10-300-5-ANS ${ }^{(3)}$	
				3			FC	FR11-400-5-ANS (3)	
					3		FC	FR11-450-5-ANS ${ }^{(3)}$	
						3	FC	FR11-500-5-ANS ${ }^{(3)}$	
Electrolytic Capacitors									
	2	2	2	3	3	3	FC	PP00060	
	12	12	12	18	18	18	FC	PP01099	
Fuses									
	1	1	1	1	1	1	FC	PP01094	
	2	2	2	2	2	2	FC	PP01095	
Cooling Fans and Isolation Transformers									
	2	2	2	3	3	3	FC	VB00299	
	2	2	2	3	3	3	FC	PP01080 ${ }^{(4)}$	
	2	2	2				FC	PP01068	
	1	1	1	1	1	1	FC	PP01096	
	1	1	1				FC	FR10844	
	1	1	1	3	3	3	FC	FR10845	
	1	1	1				FC	FR10846	
	1	1	1	3	3	3	FC	FR10847	
	Fan Power Supply								
							FC	VB00299	
	Rectifying Boards								
	1	1	1	2	2	2	FC	VB00460	

(1) FR10 and larger drives only.
(2) Rectifying board not included.
(3) See Table 40-297 for details.
(4) PP00060 capacitor not included in main fan; please order separately.

Table 40-297. Power Module Catalog Number Matrix

June 2008

Contents

Description	Page
HVX9000 IntelliPass and IntelliDisconnect Drives	
Product Description	40-195
Features and Benefits	40-195
Technical Data and	
Specifications	40-196
Catalog Number	
Selection	40-197
Product Selection	40-198
Accessories	40-201
Dimensions	40-201
Wiring Diagrams	40-208

Product Description

The Cutler-Hammer ${ }^{\circledR}$ IntelliDisconnect Drive from Eaton's electrical business combines a premier quality drive with a circuit breaker disconnect integrated into the design. Eaton's IntelliPass Drive continues the Cutler-Hammer tradition of providing a premier intelligent drive integrated with a reliable bypass configuration, by taking advantage of the Cutler-Hammer Intelligent Technologies (IT.), enclosed control and circuit breaker expertise.

The IntelliPass bypass is a two- or three-contactor design utilizing the 24V DC IT. series of contactors and power supplies. The IT. features, function and form allow the drive and bypass to become an integrated design, enabling Eaton to manufacture the world's smallest drive and bypass package. The IntelliPass comes standard with a Cutler-Hammer circuit breaker integrated into the drive and bypass design.

Features and Benefits

IntelliPass/IntelliDisconnect

- Circuit breaker provides flexible drive isolation configurations to meet customers' needs
- Reliable drive with over 500,000 hours MTBF
- Weighs up to 70% less than other designs which simplifies and speeds up the installation process, lowering contractors' costs
■ Serial communication interface enables control of the motor operated by the drive or bypass
■ Plenum rated
- Designed and tested to UL 508C specifications
- Standard 3% line reactors for enhanced transient and harmonic distortion protection
■ EMI/RFI Filters standard on all drives
- Top and bottom conduit entry for installation ease
- Standard drive current with standard rating of 100 kAIC
■ Upgradeable software extends product life
- Pass-through I/O capability
- Additional I/O and communication cards provide plug and play functionality
- Copy/Paste keypad function allows transfer of parameter settings from one drive to the next
■ Optional Fusing -
- Fuse rating 200 kAIC
- Keypad can display up to three monitored parameters simultaneously
■ Hand-held Power Supply option allows programming/monitoring of control module without applying power to the drive
- NEMA Type 1, 12 or 3R
- Standard NEMA Type 12 keypad on all drives
- Simplified operating menu allows for typical programming changes
- Accommodates a wide selection of expander boards and adapter boards
- Control logic can be powered from an external auxiliary control panel
■ Standard I/O boards include 6 DI, 2AI, 1 DO, 1 AO, 2 form C RO and a bypass control board installed in slots A, B and C

IntelliPass

- Fully rated, mechanically and electrically interlocked contacts
- Solid-state motor overload relay provides motor protection while in bypass
- HAND/OFF/AUTO and DRIVE/ BYPASS selector on keypad simplifies control
■ Two power sources for control ensure redundancy and provide additional ride-through capability
■ Self-healing power supplies
- Bypass circuit current interrupting rating up to 65 kAIC

Technical Data and Specifications

Table 40-298. HVX9000 Specifications

Description	Specification
Power Connections	
Input Voltage ($\mathrm{V}_{\text {in }}$)	+10\% / -15\%
Input Frequency ($\mathrm{f}_{\text {in }}$)	$50 / 60 \mathrm{~Hz}$ (variation up to $45-66 \mathrm{~Hz}$)
Connection to Power	Once per minute or less (typical operation)
Short Circuit Withstand Rating	65 k AIC (1)
Motor Connections	
Output Voltage	0 to $\mathrm{V}_{\text {in }}$
Continuous Output Current	Ambient temperature max. $+104^{\circ} \mathrm{F}\left(+40^{\circ} \mathrm{C}\right)$
Overload Current	110\% (1 min./10 min.)
Output Frequency	0 to 320 Hz
Frequency Resolution	. 01 Hz

Description	Specification
Control Connections	
Analog Input Voltage	0 to $10 \mathrm{~V}, \mathrm{R}=200 \Omega$ differential (-10 to 10 V joystick control) Resolution .1\%; accuracy $\pm 1 \%$
Analog Input Current	0(4) to 20 mA ; $\mathrm{R}_{\mathrm{i}}-250 \Omega$ differential
Digital Inputs (6)	Positive or negative logic; 18 to 24V DC
Auxiliary Voltage	+24V $\pm 15 \%$, max. 250 mA
Output Reference Voltage	+10V +3\%, max. load 10 mA
Analog Output	0 (4) to 20 mA ; R_{L} max. 500Ω; Resolution 10 bit; Accuracy $\pm 2 \%$
Digital Outputs	Open collector output, $50 \mathrm{~mA} / 48 \mathrm{~V}$
Relay Outputs	2 programmable Form C relay outputs Switching capacity: 24V DC / 8A, 250V AC / 8A, 125 V DC / .4A

Overcurrent Protection	Trip limit 4.0 x IH instantaneously
Overvoltage Protection	Yes
Undervoltage Protection	Yes
Earth Fault Protection	In case of earth fault in motor or motor cable, only the frequency converter is protected
Input Phase Supervision	Trips if any of the input phases are missing
Motor Phase Supervision	Trips if any of the output phases are missing
Overtemperature Protection	Yes
Motor Overload Protection	Yes
Motor Stall Protection	Yes
Motor Underload Protection	Yes
Short Circuit Protection	Yes (Of the +24 V and +10 V Reference Voltages)

General

Line Voltage	$208 / 230 / 480 \mathrm{~V}$
Drive Efficiency	$>95 \%$
Power Factor (Displacement)	.96
Ratings	UL Listed, File No. E134360
Warranty	Standard Terms

Control Method	Frequency Control (V/f) Open Loop Sensorless Vector Control
Switching Frequency	Adjustable Parameter 1 - 40 hp : 1 to 16 kHz ; default 10 kHz $50-75 \mathrm{hp}: 1$ to 10 kHz ; default 3.6 kHz
Frequency Reference	Analog Input: Resolution .1\% (10-bit), accuracy $\pm 1 \%$ Panel Reference: Resolution .01 Hz
Field Weakening Point	30 to 320 Hz
Acceleration Time	0 to 3000 sec .
Deceleration Time	0 to 3000 sec .
Braking Torque	DC brake: $30 \% \times \mathrm{T}_{\mathrm{n}}$ (without brake option)
Ambient Conditions	
Ambient Operating Temperature	$14^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right)$, no frost to $104^{\circ} \mathrm{F}\left(+40^{\circ} \mathrm{C}\right)$
Storage Temperature	$-40^{\circ} \mathrm{F}\left(-40^{\circ} \mathrm{C}\right)$ to $158^{\circ} \mathrm{F}\left(70^{\circ} \mathrm{C}\right)$
Relative Humidity	0 to $95 \% \mathrm{RH}$, noncondensing, non-corrosive, no dripping water
Air Quality	Chemical vapors: IEC 721-3-3, unit in operation, class 3C2; Mechanical particles: IEC 721-3-3, unit in operation, class 3S2
Altitude	100% load capacity (no derating) up to 3280 ft . (1000 m); 1\% derating for each 328 ft . $(100 \mathrm{~m})$ above 3280 ft . (1000 m); max. 9842 ft . (3000 m)
Enclosure Class	NEMA Type 1/IP21; NEMA Type 12, NEMA Type 3R
Standards	
EMC (at default settings)	Immunity: Fulfills all EMC immunity requirements; Emissions: EN 61800-3, LEVEL H
Safety	UL 508C
Product	IEC 61800-2

(1) 65kAIC on Type 1 units operating at a line input voltage of 480 V or less.
(1)

Catalog Number Selection

Table 40-299. HVX9000 IntelliPass/IntelliDisconnect Drive Catalog Numbering System

(1) 480V Drives, 1 - 40 hp are only available with Brake Chopper Option B

480V Drives, $50-150 \mathrm{hp}$ are only available with Brake Chopper Option N.
208/230V Drives, $1-20 \mathrm{hp}$ are only available with Brake Chopper Option B.
208/230V Drives, 25 - 75 hp are only available with Brake Chopper Option N.
(2) Two slots (D, E) available for expansion cards.
(3) Only one communication card can be installed at a time.
(4) Fused Drive Isolation (P3) and 3rd Contactor Drive Isolation (P6) cannot be installed together in NEMA Type 1 Design.
(5) Space Heater (SA) option only applicable in NEMA Type 12/3R enclosures.

6 IntelliPass Only.
(7) IntelliDisconnect Only.

Product Selection

Table 40-300. HVX9000 IntelliPass Base Unit Pricing

Frame Size	Delivery Code	Voltage	$\begin{aligned} & \mathrm{hp} \\ & \left(\mathrm{I}_{\mathrm{L}}\right) \end{aligned}$	Current (NEC)	NEMA Type 1		NEMA Type 12		NEMA Type 3R	
					Catalog Number	Price U.S. \$	Catalog Number	Price U.S. \$	Catalog Number	Price U.S. \$
FR4	FB10	208V AC	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{array}{r} 4.6 \\ 7.5 \\ 10.6 \end{array}$	$\begin{aligned} & \text { HVX00111B1 } \\ & \text { HVX00211B1 } \\ & \text { HVX00311B1 } \end{aligned}$		HVX00121B1 HVX00221B1 HVX00321B1		$\begin{aligned} & \text { HVX00131B1 } \\ & \text { HVX00231B1 } \\ & \text { HVX00331B1 } \end{aligned}$	
		230 V AC	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 4.2 \\ & 6.8 \\ & 9.6 \end{aligned}$	$\begin{aligned} & \text { HVX00112B1 } \\ & \text { HVX00212B1 } \\ & \text { HVX00312B1 } \end{aligned}$		$\begin{aligned} & \hline \text { HVX00122B1 } \\ & \text { HVX00222B1 } \\ & \text { HVX00322B1 } \end{aligned}$		$\begin{aligned} & \hline \text { HVX00132B1 } \\ & \text { HVX00232B1 } \\ & \text { HVX00332B1 } \end{aligned}$	
		480 V AC	$\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \\ & 5 \\ & 7-1 / 2 \end{aligned}$	$\begin{gathered} \hline 3 \\ 3.4 \\ 4.8 \\ 7.6 \\ 11 \end{gathered}$	HVX00114B1 HVX00214B1 HVX00314B1 HVX00514B1 HVX00714B1		HVX00124B1 HVX00224B1 HVX00324B1 HVX00524B1 HVX00724B1		HVX00134B1 HVX00234B1 HVX00334B1 HVX00534B1 HVX00734B1	
FR5	FB10	208 V AC	$\begin{aligned} & \hline 5 \\ & 7-1 / 2 \\ & 10 \end{aligned}$	$\begin{aligned} & 16.7 \\ & 24.2 \\ & 30.8 \end{aligned}$	$\begin{aligned} & \text { HVX00511B1 } \\ & \text { HVX00711B1 } \\ & \text { HVX01011B1 } \end{aligned}$		HVX00521B1 HVX00721B1 HVX01021B1		$\begin{aligned} & \text { HVX00531B1 } \\ & \text { HVX00731B1 } \\ & \text { HVX01031B1 } \end{aligned}$	
		230 V AC	$\begin{aligned} & \hline 5 \\ & 7-1 / 2 \\ & 10 \end{aligned}$	$\begin{aligned} & 15.2 \\ & 22 \\ & 28 \end{aligned}$	$\begin{aligned} & \text { HVX00512B1 } \\ & \text { HVX00712B1 } \\ & \text { HVX01012B1 } \end{aligned}$		HVX00522B1 HVX00722B1 HVX01022B1		HVX00532B1 HVX00732B1 HVX01032B1	
		480V AC	$\begin{aligned} & 10 \\ & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & 14 \\ & 21 \\ & 27 \end{aligned}$	HVX01014B1 HVX01514B1 HVX02014B1		HVX01024B1 HVX01524B1 HVX02024B1		HVX01034B1 HVX01534B1 HVX02034B1	
FR6	FB10	208V AC	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & 46.2 \\ & 59.4 \end{aligned}$	HVX01511B1 HVX02011B1		HVX01521B1 HVX02021B1		$\begin{aligned} & \text { HVX01531B1 } \\ & \text { HVX02031B1 } \end{aligned}$	
		230 V AC	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & 42 \\ & 51 \end{aligned}$	HVX01512B1 HVX02012B1		$\begin{aligned} & \text { HVX01522B1 } \\ & \text { HVX02022B1 } \end{aligned}$		HVX01532B1 HVX02032B1	
		480 V AC	$\begin{aligned} & 25 \\ & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & 34 \\ & 40 \\ & 52 \end{aligned}$	HVX02514B1 HVX03014B1 HVX04014B1		HVX02524B1 HVX03024B1 HVX04024B1		HVX02534B1 HVX03034B1 HVX04034B1	
FR7	FB10	208V AC	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	$\begin{aligned} & 74.8 \\ & 88 \end{aligned}$	$\begin{aligned} & \text { HVX02511N1 } \\ & \text { HVX03011N1 } \end{aligned}$		$\begin{aligned} & \hline \text { HVX02521N1 } \\ & \text { HVX03021N1 } \end{aligned}$		$\begin{aligned} & \text { HVX02531N1 } \\ & \text { HVX03031N1 } \end{aligned}$	
		230 V AC	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	$\begin{aligned} & \hline 68 \\ & 80 \end{aligned}$	$\begin{aligned} & \text { HVX02512N1 } \\ & \text { HVX03012N1 } \end{aligned}$		$\begin{aligned} & \hline \text { HVX02522N1 } \\ & \text { HVX03022N1 } \end{aligned}$		$\begin{aligned} & \text { HVX02532N1 } \\ & \text { HVX03032N1 } \end{aligned}$	
		480 V AC	$\begin{aligned} & 50 \\ & 60 \\ & 75 \end{aligned}$	$\begin{aligned} & 65 \\ & 77 \\ & 96 \end{aligned}$	$\begin{aligned} & \text { HVX05014N1 } \\ & \text { HVX06014N1 } \\ & \text { HVX07514N1 } \end{aligned}$		$\begin{aligned} & \text { HVX05024N1 } \\ & \text { HVX06024N1 } \\ & \text { HVX07524N1 } \end{aligned}$		$\begin{aligned} & \text { HVX05034N1 } \\ & \text { HVX06034N1 } \\ & \text { HVX07534N1 } \end{aligned}$	
FR8	FB10	208V AC	$\begin{aligned} & 40 \\ & 50 \\ & 60 \end{aligned}$	$\begin{array}{\|l\|} \hline 114 \\ 140 \\ 170 \end{array}$	一		HVX04021N1 HVX05021N1 HVX06021N1		$\begin{aligned} & \text { HVX04031N1 } \\ & \text { HVX05031N1 } \\ & \text { HVX06031N1 } \end{aligned}$	
		230 V AC	$\begin{aligned} & 40 \\ & 50 \\ & 60 \\ & 75 \end{aligned}$	$\begin{array}{\|l\|} \hline 104 \\ 130 \\ 154 \\ 192 \\ \hline \end{array}$	一		$\begin{aligned} & \hline \text { HVX04022N1 } 1 \text { 1 } \\ & \text { HVX05022N1 } \\ & \text { HVX06022N1 } \\ & \text { HVX07522N1 } \end{aligned}$		HVX04032N1 1 1 HVX05032N1 HVX06032N1 HVX07532N1	
		480V AC	$\begin{array}{\|l\|} \hline 100 \\ 125 \\ 150 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 124 \\ 156 \\ 180 \\ \hline \end{array}$	-		$\begin{aligned} & \text { HVX10024N1 } \\ & \text { HVX12524N1 } \\ & \text { HVX15024N1 } \end{aligned}$		$\begin{aligned} & \text { HVX10034N1 } \\ & \text { HVX12534N1 } \\ & \text { HVX15034N1 } \end{aligned}$	

[^32]IntelliPass and IntelliDisconnect Drives

Table 40-301. HVX9000 IntelliDisconnect Base Unit Pricing

Frame Size	Delivery Code	Voltage		Current	NEMA Type 1		NEMA Type 12		NEMA Type 3R	
					Catalog Number	Price U.S. \$	Catalog Number	Price U.S. \$	Catalog Number	Price U.S. \$
FR4	FB10	208V AC	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{gathered} 4.8 \\ 7.8 \\ 11 \end{gathered}$	$\begin{aligned} & \text { HVX00111B2 } \\ & \text { HVX00211B2 } \\ & \text { HVX00311B2 } \end{aligned}$		$\begin{aligned} & \text { HVX00121B2 } \\ & \text { HVX00221B2 } \\ & \text { HVX00321B2 } \end{aligned}$		$\begin{aligned} & \text { HVX00131B2 } \\ & \text { HVX00231B2 } \\ & \text { HVX00331B2 } \end{aligned}$	
		230 V AC	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{gathered} 4.8 \\ 7.8 \\ 11 \end{gathered}$	HVX00112B2 HVX00212B2 HVX00312B2		$\begin{aligned} & \hline \text { HVX00122B2 } \\ & \text { HVX00222B2 } \\ & \text { HVX00322B2 } \end{aligned}$		$\begin{aligned} & \text { HVX00132B2 } \\ & \text { HVX00232B2 } \\ & \text { HVX00332B2 } \end{aligned}$	
		480 V AC	$\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \\ & 5 \\ & 7-1 / 2 \end{aligned}$	$\begin{array}{r} 3.3 \\ 4.3 \\ 5.6 \\ 7.6 \\ 12 \end{array}$	HVX00114B2 HVX00214B2 HVX00314B2 HVX00514B2 HVX00714B2		HVX00124B2 HVX00224B2 HVX00324B2 HVX00524B2 HVX00724B2		HVX00134B2 HVX00234B2 HVX00334B2 HVX00534B2 HVX00734B2	
FR5	FB10	208V AC	$\begin{aligned} & 5 \\ & 7-1 / 2 \\ & 10 \end{aligned}$	$\begin{aligned} & 17.5 \\ & 25 \\ & 31 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { HVX00511B2 } \\ & \text { HVX00711B2 } \\ & \text { HVX01011B2 } \end{aligned}$		$\begin{aligned} & \text { HVX00521B2 } \\ & \text { HVX00721B2 } \\ & \text { HVX01021B2 } \end{aligned}$		$\begin{aligned} & \text { HVX00531B2 } \\ & \text { HVX00731B2 } \\ & \text { HVX01031B2 } \end{aligned}$	
		230 V AC	$\begin{aligned} & 5 \\ & 7-1 / 2 \\ & 10 \end{aligned}$	$\begin{aligned} & 17.5 \\ & 25 \\ & 31 \end{aligned}$	$\begin{aligned} & \text { HVX00512B2 } \\ & \text { HVX00712B2 } \\ & \text { HVX01012B2 } \end{aligned}$		$\begin{aligned} & \text { HVX00522B2 } \\ & \text { HVX00722B2 } \\ & \text { HVX01022B2 } \end{aligned}$		$\begin{aligned} & \text { HVX00532B2 } \\ & \text { HVX00732B2 } \\ & \text { HVX01032B2 } \end{aligned}$	
		480 V AC	$\begin{aligned} & 10 \\ & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & 16 \\ & 23 \\ & 31 \end{aligned}$	HVX01014B2 HVX01514B2 HVX02014B2		HVX01024B2 HVX01524B2 HVX02024B2		HVX01034B2 HVX01534B2 HVX02034B2	
FR6	FB10	208V AC	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & 48 \\ & 61 \end{aligned}$	HVX01511B2 HVX02011B2		$\begin{array}{\|l\|} \hline \text { HVX01521B2 } \\ \text { HVX02021B2 } \end{array}$		$\begin{aligned} & \text { HVX01531B2 } \\ & \text { HVX02031B2 } \end{aligned}$	
		230 V AC	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & \hline 48 \\ & 61 \end{aligned}$	HVX01512B2 HVX02012B2		HVX01522B2 HVX02022B2		HVX01532B2 HVX02032B2	
		480 V AC	$\begin{aligned} & 25 \\ & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & 38 \\ & 46 \\ & 61 \end{aligned}$	$\begin{aligned} & \text { HVX02514B2 } \\ & \text { HVX03014B2 } \\ & \text { HVX04014B2 } \end{aligned}$		$\begin{aligned} & \hline \text { HVX02524B2 } \\ & \text { HVX03024B2 } \\ & \text { HVX04024B2 } \end{aligned}$		HVX02534B2 HVX03034B2 HVX04034B2	
FR7	FB10	208V AC	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	$\begin{aligned} & 75 \\ & 88 \end{aligned}$	$\begin{aligned} & \text { HVX02511N2 } \\ & \text { HVX03011N2 } \end{aligned}$		$\begin{aligned} & \text { HVX02521N2 } \\ & \text { HVX03021N2 } \end{aligned}$		$\begin{aligned} & \text { HVX02531N2 } \\ & \text { HVX03031N2 } \end{aligned}$	
		230 V AC	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	$\begin{aligned} & 75 \\ & 88 \end{aligned}$	$\begin{aligned} & \text { HVX02512N2 } \\ & \text { HVX03012N2 } \end{aligned}$		$\begin{aligned} & \text { HVX02522N2 } \\ & \text { HVX03022N2 } \end{aligned}$		$\begin{aligned} & \text { HVX02532N2 } \\ & \text { HVX03032N2 } \end{aligned}$	
		480 V AC	$\begin{aligned} & 50 \\ & 60 \\ & 75 \end{aligned}$	$\begin{array}{\|r\|} \hline 72 \\ 87 \\ 105 \\ \hline \end{array}$	HVX05014N2 HVX06014N2 HVX07514N2		HVX05024N2 HVX06024N2 HVX07524N2		HVX05034N2 HVX06034N2 HVX07534N2	
FR8	FB10	208V AC	$\begin{aligned} & 40 \\ & 50 \\ & 60 \end{aligned}$	$\begin{array}{\|l\|} \hline 114 \\ 143 \\ 169 \end{array}$	-		HVX04021N2 HVX05021N2 HVX06021N2		HVX04031N2 HVX05031N2 HVX06031N2	
		230 V AC	$\begin{aligned} & 40 \\ & 50 \\ & 60 \\ & 75 \end{aligned}$	$\begin{array}{\|l\|} \hline 104 \\ 130 \\ 154 \\ 192 \\ \hline \end{array}$	—		$\begin{aligned} & \hline \text { HVX04022N2 }{ }^{1} \\ & \text { HVX05022N2 } \\ & \text { HVX06022N2 } \\ & \text { HVX07522N2 } \end{aligned}$		$\begin{aligned} & \hline \text { HVX04032N2 }{ }^{1} \\ & \text { HVX05032N2 } \\ & \text { HVX06032N2 } \\ & \text { HVX07532N2 } \end{aligned}$	
		480 V AC	$\begin{array}{\|l\|} \hline 100 \\ 125 \\ 150 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 124 \\ 156 \\ 180 \end{array}$	一		HVX10024N2 HVX12524N2 HVX15024N2		HVX10034N2 HVX12534N2 HVX15034N2	

(1) 40 hp 208 V and 230 V supplied as a FR7 drive, but in a C-Box.

June 2008
IntelliPass and IntelliDisconnect Drives

Table 40-302. Option Pricing

Voltage	hp (l_{L})	Description	Suffix Number	Adder U.S. S
208 V	$\begin{aligned} & 1-7-1 / 2 \\ & 10 \\ & 15 \\ & 20 \\ & 30 \text { (1) } \\ & 40 \\ & 50 \\ & 60 \end{aligned}$	Drive Isolation Fusing	P3 (2)	
230 V	$\begin{aligned} & 1-7-1 / 2 \\ & 10 \\ & 15 \\ & 20 \\ & 30 \\ & 40 \\ & 50 \\ & 60 \\ & 75 \end{aligned}$	Drive Isolation Fusing	P3 2 ${ }^{\text {2 }}$	
480 V	$1-15$ 20 25 30 40 50 60 75 100 125 150	Drive Isolation Fusing	P3 2)	
208/230V AC	$\begin{aligned} & 1-3 \\ & 5-7-1 / 2 \\ & 10 \\ & 15 \\ & 20 \\ & 25 \\ & 30 \end{aligned}$	3rd Contactor Drive Isolation	P6 (2) 3	
	$\begin{aligned} & \hline 40 \\ & 50 \\ & 60 \\ & 75 \text { © } \end{aligned}$			
480 V AC	$\begin{aligned} & 1-7-1 / 2 \\ & 10-15 \\ & 20 \\ & 25 \\ & 30 \end{aligned}$	3rd Contactor Drive Isolation	P6 (2) 3)	
	$\begin{aligned} & 40 \\ & 50 \\ & 60 \\ & 75 \end{aligned}$			
	$\begin{aligned} & \hline 100 \\ & 125 \\ & 150 \end{aligned}$			

Table 40-302. Option Pricing (Continued)

(5) 75 hp only available on 230 V units.
(6) Catalog Number EMA13.
(7) PE option only available with IntelliDisconnect Drives.
(8) K9 option only available with IntelliPass Drives.

Table 40-303. Enclosure Option

Description	Factory Installed		
	Suffix Number	Adder U.S. \$	
Space Heater © ${ }^{(8)}$	SA		
Floor Stand 22" (1)	S5		

(9) Space Heater (SA) only applicable in NEMA Type 12/3R enclosures.
(10) S5 option only available in enclosure size C in Type 12/3R enclosures.

[^33]
HVX9000 IntelliPass Option Boards

Figure 40-99. HVX9000 IntelliPass Option Boards
The HVX9000 IntelliPass Series drives can accommodate a wide selection of expander and adapter option boards to customize the drive for your application needs. The drive's control unit is designed to accept a total of five option boards. See Figure 40-99.
The HVX9000 IntelliPass factory installed standard option board configuration includes an A91/O board, A2 relay output board and a B5 output board which are installed in slots A, B and C respectively. Two slots (D, E) for extended I/O and communication cards.

Table 40-304. Option Board Kits

Option Kit Description	Allowed (2) Slot Locations	Catalog Number	Kit Price U.S. \$	Factory Installed	
				Suffix Number	Adder U.S. S
Basic I/O Cards					
2 RO 6 DI, 1 DO 2 AI, 1 AO small terminal block $3 \mathrm{RO}$	$\begin{aligned} & \hline \mathrm{B} \\ & \mathrm{~A} \\ & \mathrm{C} \end{aligned}$	OPTA2 OPTA9 OPTB5		Standard Standard Standard	
Extended I/O Cards					
$\begin{aligned} & 1 \mathrm{Al}, 2 \mathrm{AO} \\ & 3 \mathrm{RO} \end{aligned}$	$\begin{aligned} & \text { C, D } \\ & \text { C, D } \end{aligned}$	OPTB4 OPTB5		$\begin{array}{\|l\|} \hline \text { B4 } \\ \text { B5 } \end{array}$	
Communication Cards ${ }^{(3)}$					
Modbus Lonworks Johnson Controls N2 Siemens Apogee FLN BacNet	D, E	OPTC2 OPTC4 OPTC2 OPTCB OPTCJ		C2 C4 CA CB CJ	

(1) $\mathrm{Al}=$ Analog Input; $\mathrm{AO}=$ Analog Output; DI = Digital Input;

DO = Digital Output; RO = Relay Output.
(2) Option card must be installed in one of the slots listed for that card. Slot indicated in bold is the preferred location.
${ }^{3}$ Only one communication card can be installed.

Dimensions

Figure 40-100. NEMA Type 1 IntelliPass/IntelliDisconnect Drive Dimensions

Table 40-306. NEMA Type 1 IntelliPass/IntelliDisconnect Drive Dimensions

Frame Size	Voltage AC	$\begin{aligned} & \mathrm{hp} \\ & \left(\mathrm{IL}_{\mathrm{L}}\right) \end{aligned}$	Approximate Dimensions in Inches (mm)			Weight Lbs. (kg)
			H	W	D	
4	$\begin{array}{\|l\|} \hline 208 \\ 230 \\ 480 \end{array}$	$\begin{aligned} & 1-3 \\ & 1-3 \\ & 1-7-1 / 2 \end{aligned}$	$\begin{aligned} & 18.32 \\ & (465) \end{aligned}$	$\begin{aligned} & 5.05 \\ & (128) \end{aligned}$	$\begin{aligned} & 12.45 \\ & (316) \end{aligned}$	$\begin{aligned} & 21.0 \\ & (10.0) \end{aligned}$
5	$\begin{aligned} & 208 \\ & 230 \\ & 480 \end{aligned}$	$\begin{array}{r} 5-10 \\ 5-10 \\ 10-20 \end{array}$	$\begin{aligned} & 23.68 \\ & (601) \end{aligned}$	$\begin{aligned} & 5.40 \\ & (137) \end{aligned}$	$\begin{aligned} & 15.34 \\ & (390) \end{aligned}$	$\begin{aligned} & 35.0 \\ & (16.0) \end{aligned}$
6	$\begin{aligned} & 208 \\ & 230 \\ & 480 \end{aligned}$	$\begin{aligned} & 15,20 \\ & 15,20 \\ & 25-40 \end{aligned}$	$\begin{aligned} & 30.25 \\ & (768) \end{aligned}$	$\begin{aligned} & \hline 7.5 \\ & (191) \end{aligned}$	$\begin{aligned} & 15.02 \\ & (382) \end{aligned}$	$\begin{array}{\|l} 67.0 \\ (30.0) \end{array}$
7	$\begin{array}{\|l} 208 \\ 230 \\ 480 \end{array}$	$\begin{aligned} & 25,30 \\ & 25,30 \\ & 50-75 \end{aligned}$	$\begin{aligned} & 38.27 \\ & (972) \end{aligned}$	$\begin{array}{\|l\|} \hline 9.1 \\ (231) \end{array}$	$\begin{aligned} & 15.02 \\ & (382) \end{aligned}$	$\begin{array}{\|l\|} \hline 108 \\ (49) \end{array}$

Accessories

Table 40-305. HVX9000 Drive Accessories

Description	Catalog Number	Price U.S. \$
9000X Drive Demo	9000XDEMO	
Hand Held 24V Auxiliary Power Supply - used to supply power to the control module in order to perform keypad programming before the drive is connected to line voltage	9000XAUX24V	

Enclosure Box A NEMA Type 12

Figure 40-101. NEMA Type 12 IntelliPass/IntelliDisconnect Drive Dimensions
Table 40-307. NEMA Type 12 IntelliPass/IntelliDisconnect Drive Dimensions

Voltage AC	$\begin{aligned} & \hline \text { hp } \\ & (\mathrm{l}, \mathrm{l} \end{aligned}$	Approximate Dimensions in Inches (mm)							Approx. Weight Lbs. (kg)	Approx. Ship Weight Lbs. (kg)
		H	H1	H2	W	W1	D	D1		
208V	1-15	$\begin{array}{\|l\|} \hline 29.00 \\ (736.6) \end{array}$	$\begin{array}{\|l\|} \hline 27.00 \\ (685.8) \end{array}$	$\begin{array}{\|l\|} \hline 25.35 \\ (643.9) \end{array}$	$\begin{array}{\|l\|} 16.92 \\ (429.8) \end{array}$	$\begin{array}{\|l\|} \hline 15.30 \\ (388.6) \end{array}$	$\begin{aligned} & 16.26 \\ & (413.0) \end{aligned}$	$\begin{aligned} & 2.34 \\ & (59.4) \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 120 \\ (54) \end{array}$	$\begin{aligned} & 160 \\ & (73) \end{aligned}$
230 V	1-15									
480 V	1-30									

Enclosure Box B NEMA Type 12

Figure 40-102. NEMA Type 12 IntelliPass/IntelliDisconnect Drive Dimensions
Table 40-308. NEMA Type 12 IntelliPass/IntelliDisconnect Drive Dimensions

Voltage AC	$\begin{aligned} & \mathrm{hp} \\ & \left(\mathrm{IL}_{\mathrm{L}}\right) \end{aligned}$	Approximate Dimensions in Inches (mm)							Approx. Weight Lbs. (kg)	Approx. Ship Weight Lbs. (kg)
		H	H1	H2	W	W1	D	D1		
208V	20-30	$\begin{array}{\|l\|} \hline 40.00 \\ (1016.0) \end{array}$	$\begin{array}{\|l\|} \hline 38.00 \\ (965.2) \end{array}$	$\begin{array}{\|l\|} \hline 36.35 \\ (923.3) \end{array}$	$\begin{array}{\|l\|} \hline 20.92 \\ (531.4) \end{array}$	$\begin{aligned} & \hline 19.30 \\ & (490.2) \end{aligned}$	$\begin{array}{\|l\|} \hline 16.76 \\ (425.7) \end{array}$	$\begin{aligned} & \hline 2.34 \\ & (59.4) \end{aligned}$	$\begin{array}{\|l\|} \hline 185 \\ (84) \end{array}$	$\begin{aligned} & \hline 229 \\ & (104) \end{aligned}$
230 V	20-30									
480 V	40-75									

Enclosure Box C NEMA Type 12

Figure 40-103. NEMA Type 12 IntelliPass/IntelliDisconnect Drive Dimensions
Table 40-309. NEMA Type 12 IntelliPass/IntelliDisconnect Drive Dimensions

Voltage AC	$\begin{aligned} & \mathrm{hp} \\ & \left(\mathrm{IL}_{\mathrm{L}}\right) \end{aligned}$	Approximate Dimensions in Inches (mm)									Approx. Weight Lbs. (kg)
		H	H1	H2	H3	H4	W	W1	D	D1	
208V	40-60	$\begin{aligned} & \hline 52.00 \\ & (1320.8) \end{aligned}$	$\begin{array}{\|l\|} \hline 50.00 \\ (1270.0) \end{array}$	$\begin{aligned} & \hline 48.35 \\ & (1228.1) \end{aligned}$	$\begin{aligned} & \hline 72.00 \\ & (1828.8) \end{aligned}$	$\begin{array}{\|l\|} \hline 71.19 \\ (1808.2) \end{array}$	$\begin{aligned} & \hline 30.92 \\ & (785.4) \end{aligned}$	$\begin{aligned} & \hline 29.30 \\ & (744.2) \end{aligned}$	$\begin{array}{\|l\|} \hline 16.78 \\ (426.2) \end{array}$	$\begin{aligned} & \hline 2.34 \\ & (59.4) \end{aligned}$	(1)
230 V	40-75										
480 V	100-150										

(1) Consult Factory.

Enclosure Box A NEMA Type 3R

Figure 40-104. NEMA Type 3R IntelliPass/IntelliDisconnect Drive Dimensions
Table 40-310. NEMA Type 3R IntelliPass/IntelliDisconnect Drive Dimensions

Voltage AC	$\begin{aligned} & \mathrm{hp} \\ & \left(\mathrm{I}_{\mathrm{L}}\right) \end{aligned}$	Approximate Dimensions in Inches (mm)											Approx. Weight Lbs. (kg)	Approx. Ship Weight Lbs. (kg)
		H	H1	H2	H3	W	W1	W2	W3	D	D1	D2		
208V	1-15	$\begin{array}{\|l\|} \hline 33.00 \\ (838.2) \end{array}$	$\begin{array}{\|l\|} \hline 31.36 \\ (796.5) \end{array}$	$\begin{array}{\|l\|} \hline 29.67 \\ (753.6) \end{array}$	$\begin{aligned} & \hline 25.35 \\ & (643.9) \end{aligned}$	$\begin{array}{\|l\|} \hline 21.05 \\ (534.7) \end{array}$	$\begin{array}{\|l\|} \hline 16.92 \\ (429.8) \end{array}$	$\begin{array}{\|l\|} \hline 15.30 \\ (388.6) \end{array}$	$\begin{aligned} & \hline 2.07 \\ & (52.6) \end{aligned}$	$\begin{array}{\|l\|} \hline 17.24 \\ (437.9) \end{array}$	$\begin{aligned} & \hline 16.26 \\ & (413.0) \end{aligned}$	$\begin{aligned} & 3.31 \\ & (84.1) \end{aligned}$	$\begin{aligned} & 170 \\ & \text { (77) } \end{aligned}$	$\begin{aligned} & 215 \\ & \text { (98) } \end{aligned}$
230 V	1-15													
480 V	1-30													

Enclosure Box B NEMA Type 3R

Figure 40-105. NEMA Type 3R IntelliPass/IntelliDisconnect Drive Dimensions
Table 40-311. NEMA Type 3R IntelliPass/IntelliDisconnect Drive Dimensions

Voltage AC	$\begin{aligned} & \mathrm{hp} \\ & \left(\mathrm{I}_{\mathrm{L}}\right) \end{aligned}$	Approximate Dimensions in Inches (mm)											Approx. Weight Lbs. (kg)	Approx. Ship Weight Lbs. (kg)
		H	H1	H2	H3	W	W1	W2	W3	D	D1	D2		
208V	20-30	$\begin{array}{\|l\|} \hline 46.09 \\ (1170.7) \end{array}$	$\begin{array}{\|l\|} \hline 44.45 \\ (1129.0) \end{array}$	$\begin{array}{\|l\|} \hline 42.77 \\ (1086.4) \end{array}$	$\begin{array}{\|l\|} \hline \begin{array}{l} 36.35 \\ (923.3) \end{array} \end{array}$	$\begin{array}{\|l\|} \hline 26.31 \\ (668.3) \end{array}$	$\begin{array}{\|l\|} \hline 20.92 \\ (531.4) \end{array}$	$\begin{aligned} & \hline 19.30 \\ & (490.2) \end{aligned}$	$\begin{array}{\|l\|} \hline 2.69 \\ (68.3) \end{array}$	$\begin{array}{\|l\|} \hline 17.74 \\ (450.6) \end{array}$	$\begin{aligned} & \hline 16.76 \\ & (425.7) \end{aligned}$	$\begin{aligned} & \hline 3.31 \\ & (84.1) \end{aligned}$	$\begin{aligned} & \hline 235 \\ & (107) \end{aligned}$	$\begin{array}{\|l\|} \hline 290 \\ (132) \end{array}$
230 V	20-30													
480 V	40-75													

Enclosure Box C NEMA Type 3R

Figure 40-106. NEMA Type 3R IntelliPass/IntelliDisconnect Drive Dimensions
Table 40-312. NEMA Type 3R IntelliPass/IntelliDisconnect Drive Dimensions

Voltage AC	$\begin{aligned} & \mathrm{hp} \\ & \left(\mathrm{I}_{\mathrm{L}}\right) \end{aligned}$	Approximate Dimensions in Inches (mm)													Approx. Weight Lbs. (kg)
		H	H1	H2	H3	H4	H5	W	W1	W2	W3	D	D1	D2	
208 V	40-60	$\begin{aligned} & 58.09 \\ & (1475.5) \end{aligned}$	56.45(1433.8)	$\begin{array}{\|l\|} \hline 54.77 \\ (1391.2) \end{array}$	$\begin{array}{\|l\|} \hline 48.35 \\ (1228.1) \end{array}$	$\begin{array}{\|l\|} \hline 78.09 \\ (1983.5) \end{array}$	$\begin{aligned} & \hline 77.64 \\ & (1972.1) \end{aligned}$	$\begin{array}{\|l} \hline 37.73 \\ (958.3) \end{array}$	$\begin{aligned} & \hline 30.92 \\ & (785.4) \end{aligned}$	$\begin{array}{\|l\|} \hline 29.30 \\ (744.2) \end{array}$	$\begin{array}{\|l} \hline 3.34 \\ \text { (84.8) } \end{array}$	$\begin{array}{\|l\|} \hline 17.74 \\ (450.6) \end{array}$	$\begin{array}{\|l\|} \hline 16.77 \\ (426.0) \end{array}$	$\begin{array}{\|l\|} \hline 3.31 \\ (84.1) \end{array}$	${ }^{1}$
230 V	40-75														
480 V	100-150														

(1) Consult Factory.

Wiring Diagrams

Figure 40-107. A2 Board Control Wiring

Figure 40-108. A9 Board Control Wiring

Figure 40-109. B5 Board Control Wiring

Figure 40-110. HVX9000 IntelliPass Power Wiring

Figure 40-111. HVX9000 IntelliDisconnect Power Wiring

Contents	
Description	Page
CFX9000 Enclosed Drives	
Product Description	40-210
Features and Benefits	40-210
Application Description	40-211
Technical Data and Specifications	40-217
Catalog Number	
Selection	40-218
Product Selection	40-219
Options	40-224
Dimensions	40-231
Wiring Diagram	40-239

Product Description

The Cutler-Hammer ${ }^{\circledR}$ CFX9000 Clean Power Drives from Eaton's electrical business use tuned passive filters to significantly reduce line harmonics at the drive input terminals.
The CFX9000 drive also delivers True Power Factor - in addition to reducing harmonic distortion, the CFX9000 drive prevents transformer overheating and overloading of breakers and feeders, which enables the application of adjustable frequency drives on generators and other high impedance power systems.
The 9000X Family of Drives includes HVX9000, SVX9000, SLX9000 and SPX9000. 9000X Series drive ratings are rated for either high overload (I_{H}) or low overload (I_{L}). I_{L} indicates 110% overload capacity for 1 minute out of 10 minutes. I_{H} indicates 150% overload capacity for 1 minute out of 10 minutes.

CFX9000 Enclosed Products Program

■ Standard Enclosed - covers a wide range of the most commonly ordered options. Pre-engineering eliminates the lead time normally associated with customer specific options. Available configurations are listed on Pages 40-219-40-228.

- Modified Standard Enclosed applies to specific customer requirements that vary from the Standard Enclosed offering, such as the need for an additional indicating light or minor modifications to drawings. Contact your local sales office for assistance in pricing and lead time.
■ Custom Engineered - for those applications with more unique or complex requirements, these are individually engineered to the customer's needs. Contact your local sales office for pricing and lead time.

Features and Benefits

New CFX9000 Integrated Filter Clean Power Drive features include (at 480V):

- 7-1/2 - $40 \mathrm{hp} \mathrm{l}_{\mathrm{L}}$ drives available in 21" (W) x 40" (H) enclosure
- 50-75 hp l_{L} drives available in 31" (W) x 52" (H) enclosure
- 100 - $150 \mathrm{hp} \mathrm{I}_{\mathrm{L}}$ drives available in $30^{\prime \prime}(\mathrm{W}) \times 90^{\prime \prime}(\mathrm{H})$ enclosure
- 200 and $250 \mathrm{hp} \mathrm{I}_{\mathrm{L}}$ drives available in 48" (W) x 90" (H) enclosure
■ 300 - $400 \mathrm{hp} \mathrm{I}_{\mathrm{L}}$ drives available in 60" (W) x 90" (H) enclosure
■ UL Type 1, UL Type 12, UL Type 3R and NEMA 12 with Gaskets and Filters
■ Input Voltage: 480V, 230V, 575V
■ Complete range of control, network and power options
■ Horsepower range:
- $480 \mathrm{~V}, 7-1 / 2-400 \mathrm{hp} \mathrm{I}_{\mathrm{L}}$
- 230V, 7-1/2 - 100 hp I_{L}; consult factory for details
- 575V, $15-400 \mathrm{hp} \mathrm{I}_{\mathrm{L}}$; consult factory for details
- Single enclosure for both drive and filter reduces field wiring and enables convenient bypass installation
- Packaged solution ensures optimal coordination of drive and filter

Application Description

Designed to meet the IEEE 519-1992 requirements for harmonic distortion, the CFX9000 is an excellent choice for small and midsize drives applications where harmonics are a concern.

What Are Harmonics?

Take a perfect wave with a fundamental frequency of 60 Hz , which is close to what is supplied by the power company.

Figure 40-112. Perfect Wave
Add a second wave that is five times the fundamental frequency - 300 Hz (Typical of frequency added to the line by a fluorescent light).

Figure 40-113. Second Wave
Combine the two waves. The result is a 60 Hz supply rich in fifth harmonics.

Figure 40-114. Resulting Supply

What Causes Harmonics?

Harmonics are the result of nonlinear loads that convert AC line voltage to DC. Examples of equipment that are non-linear loads are listed below:

- AC variable frequency drives
- DC drives

■ Fluorescence lighting, computers, UPS systems
■ Industrial washing machines, punch presses, welders, etc.

How Can Harmonics Due to VFDs Be Diminished?

By applying drives from the Eaton Clean Power Drives Family; The HCX9000, CFX9000 and CPX9000.

What Are Linear Loads?

Linear loads are primarily devices that run across the line and do not add harmonics. Motors are prime examples. The downside to having large motor linear loads is that they draw more energy than a VFD, because of their inability to control motor speed. In most applications there is a turn down valve used with the motor which will reduce the flow of the material, without significantly reducing the load to the motor. While this provides some measure of speed control, it is extremely inefficient.

Why Be Concerned About Harmonics?

1. Installation and utility costs increase. Harmonics cause damage to transformers and lower efficiencies due to the IR loss. These losses can become significant (from $16.6-21.6 \%$) which can have a dramatic effect on the HVAC systems that are controlling the temperatures of the building where the transformer and drive equipment reside.
2. Downtime and loss of productivity. Telephones and data transmissions links may not be guaranteed to work on the same power grids polluted with harmonics.
3. Downtime and nuisance trips of drives and other equipment. Emergency generators have up to (3) three times the impedance that is found in a conventional utility source. Thus the harmonic voltage can be up to three times as large, causing risk of operation problems.
4. Larger motors must be used. Motors running across the line that are connected on polluted power distribution grids can overheat or operate at lower efficiency due to harmonics.
5. Higher installation costs. Transformers and power equipment must be oversized to accommodate the loss of efficiencies. This is due to the harmonic currents circulating through the distribution without performing useful work.

How Does a VFD Convert 3-Phase AC to a Variable Output Voltage and Frequency?

The 6-pulse VFD: The majority of all conventional drives that are built consist of a 6-pulse configuration. Figure 40-115 represents a 6 -diode rectifier design that converts three-phase utility power to DC. The inverter section uses IGBTs to convert DC power to a simulated AC sine wave that can vary in frequency from $0-400 \mathrm{~Hz}$.

Figure 40-115. 6-Diode Rectifier Design

The 6-Pulse VFD drive creates harmonic current distortion. The harmonic current that is created is energy that can not be used by customers and causes external heat and losses to all components including other drives that are on the same power distribution. Figure 40-116 is a 100 hp drive with 45A of damaging harmonic current.

Figure 40-116. 6-Pulse Nonproductive Harmonic Current
Table 40-313. 6-Pulse Nonproductive Harmonic Current

6-Pulse Circuit		
Current Harmonics		
$\mathrm{I}_{1}=100 \%$	$\mathrm{I}_{11}=6.10 \%$	$\mathrm{I}_{19}=1.77 \%$
$\mathrm{I}_{5}=22.5 \%$	$\mathrm{I}_{13}=4.06 \%$	$\mathrm{I}_{23}=1.12 \%$
$\mathrm{I}_{7}=9.38 \%$	$\mathrm{I}_{17}=2.26 \%$	$\mathrm{I}_{25}=0.86 \%$
Power = 100 hp		
Harmonic	mps	

Guidelines of Meeting IEEE Std. 519-1992 Harmonic Distortion Limits

The IEEE 519-1992 Specification is a standard that provides guidelines for commercial and industrial users that are implementing medium and low voltage equipment.
Table 40-314. Maximum Harmonic Current Distortion in \% of the Fundamental (120 V through 69,000V)

$\mathbf{I s c} / \mathbf{L} \mathbf{L}$	Harmonic Order (Odd Harmonics)				TDD	
	$\mathbf{h}<\mathbf{1 1}$	$\mathbf{1 1} \mathbf{\leq h} \mathbf{1 7}$	$\mathbf{1 7} \mathbf{h}<\mathbf{2 3}$	$\mathbf{2 3} \leq \mathbf{h}<\mathbf{3 5}$		
20	4.0	2.0	1.5	0.6	0.3	5.0
$20<50$	7.0	3.5	2.5	1.0	0.5	8.0
$50<100$	10.0	4.5	4.0	1.5	0.7	12.0
$100<1000$	12.0	5.5	5.0	2.0	1.0	15.0
>1000	15.0	7.0	6.0	2.5	1.4	20.0

The ratio ISC/IL is the ratio of the short-circuit current available at the point of common coupling (PCC), to the maximum fundamental load current. Consequently, as the size of the user load decreases with respect to the size of the system, the percentage of harmonic current that the user is allowed to inject into the utility system increases.

Notes:
TDD = Total demand distortion is the harmonic current distortion in percent of the maximum demand load current (15 or 30 minute demand).
ISC = Maximum short circuit current at the PCC not counting motor contribution.
$I_{L}=$ Maximum demand load current for all of the connected loads (fundamental frequency component) at the PCC.
All of the limits are measured at a point of common coupling.

Figure 40-117. Oneline Diagram for Harmonic Analysis
The best way to estimate AFD harmonic contribution to an electrical system is to perform a harmonic analysis based on known system characteristics. The oneline in this Figure would provide the data to complete the calculations.

Terms

- PCC (Point of Common Coupling) is defined as the electrical connecting point between the utility and multiple customers per the specifications in IEEE 519.
- POA (Point of Analysis) is defined as where the harmonic calculations are taken.
An oscilloscope can make all measurements at the PCC or POA to do an on-site harmonic evaluation.

Harmonic Reduction Methods to Meet IEEE 519

1. Line Reactor

A line reactor is a 3 -phase series inductance on the line side of an AFD. If a line reactor is applied on all AFDs, it is possible to meet IEEE guidelines where $10-25 \%$ of system loads are AFDs, depending on the stiffness of the line and the value of line reactance. Line reactors are available in various values of percent impedance, most typically $1-1.5 \%$, 3% and 5%. (Note: the 9000X drives come standard with a nominal 3\% input impedance.)

Figure 40-118. Line Reactor

Advantages

■ Low cost

- Can provide moderate reduction in voltage and current harmonics
- Available in various values of percent impedance
- Provides increased input protection for AFD and its semiconductors from line transients

Disadvantages

■ May not reduce harmonic levels to below IEEE 519-1992 guidelines

- Voltage drop due to IR loss

Enclosed Drives

2. Passive Filters

Tuned harmonic filters involve the series connection of an inductor with the shunt connection of an inductor and capacitor to form a low impedance path to ground for a specific
range of frequencies. This path presents an alternative to the flow of harmonic currents back into the utility source.

Figure 40-119. CFX9000 Drive with Integrated Passive Filter

Advantages

- Low cost for smaller horsepower applications
- More effective harmonic attenuation than 12-pulse drives
- Provides increased input protection for AFD from line transients

Disadvantages

■ Capacitors age over time, unlike magnetics

- Not as effective as 18-pulse drives
- Challenging to retrofit with bypass applications

Figure 40-120. 100 hp CFX9000 480V Drive with Integrated Passive Filter
Table 40-315. 100 hp CFX9000 480V Drive with Integrated Passive Filter

Passive Filter		
Current Harmonics		
$\mathrm{I}_{1}=100 \%$	$\mathrm{I}_{11}=.24 \%$	$\mathrm{I}_{19}=.50 \%$
$\mathrm{I}_{5}=3.76 \%$	$\mathrm{l}_{13}=1.1 \%$	$\mathrm{I}_{23}=.55 \%$
$\mathrm{I}_{7}=1.65 \%$	$\mathrm{I}_{17}=.80 \%$	$\mathrm{I}_{25}=0.8 \%$
Power = 74.6 kW		
$\mathrm{H}_{\mathrm{C}}=8.6$ Amps		

Enclosed Drives

3. 12-Pulse Converters

A 12-pulse converter incorporates two separate AFD input semiconductor bridges, which are fed from 30° phase shifted power sources with identical impedance. The sources may be two isolation transformers, where one is a delta/wye design (which provides the phase shift) and the second a delta/delta design (which does not phase shift). The 12-pulse arrangement allows the harmonics from the first converter to cancel the harmonics of the second. Up to approximately
85% reduction of harmonic current and voltage distortion may be achieved (over standard 6-pulse converter). This permits a facility to use a larger percentage of AFD loads under IEEE 519-1992 guidelines than allowable using line reactors or DC chokes. A harmonic analysis is required to guarantee compliance with guidelines.

Figure 40-121. Basic 12-Pulse Rectifier with "Phase Shifting" Transformer

Advantages

■ Reasonable cost, although significantly more than reactors or chokes
■ Substantial reduction (up to approx. 85\%) in voltage and current harmonics

- Provides increased input protection for AFD and its semiconductors from line transients

Disadvantages

- Impedance matching of phase shifted sources is critical to performance
■ Transformers often require separate mounting or larger AFD enclosures
- May not reduce distribution harmonic levels to below IEEE 519-1992 guidelines
- Cannot retrofit for most AFDs

Figure 40-122. 100 hp 480V Drive with 12-Pulse Rectifier
Table 40-316. 100 hp 480 V Drive with 12-Pulse Rectifier

$\left\lvert\,$| $\|l\|$ | | |
| :--- | :---: | :---: |
| 12-Pulse Circuit | | |
| Current Harmonics
 $\mathrm{I}_{1}=100 \%$ $\mathrm{I}_{11}=4.19 \%$ $\mathrm{I}_{19}=0.06 \%$
 $\mathrm{I}_{5}=1.25 \%$ $\mathrm{I}_{13}=2.95 \%$ $\mathrm{I}_{23}=0.87 \%$
 $\mathrm{I}_{7}=0.48 \%$ $\mathrm{I}_{17}=0.21 \%$ $\mathrm{I}_{25}=0.73 \%$
 Power $=100 \mathrm{hp}$
 $\mathrm{H}_{\mathrm{C}}=20$ Amps | | | | |
| :--- |\right.

4. Clean Power 18-Pulse Drives

When the total load is comprised of non-linear load such as drives and the ratio is Isc/L, the greatest harmonic mitigation is required. Under these conditions, the currents drawn from the supply need to be sinusoidal and "clean" such that system interference and additional losses are negligible. The Cutler-Hammer CPX9000 Clean Power Drive uses a phaseshifting auto transformer with delta-connected winding that carries only the ampere-turns caused by the difference in load currents. This results in nine separate phases. In this type of configuration, the total KVA rating of the transformer
magnetic system was only 48% that of the motor load.
A traditional isolated transformer system, with multipulse windings, would require the full KVA rating to be supported, which is more common in a MV step-down transformer.

The integrated 18 -pulse clean power drive, with near sine wave input current and low harmonics will meet the requirements of IEEE 519-1992 under all practical operating conditions. The comparisons with 6 -pulse, passive filter and 12 -pulse, systems are shown in Figures 40-116, 40-120, 40-122 and 40-124.

Figure 40-123. Basic 18-Pulse Rectifier with Phase-Shifting Auto-Transformer

Advantages

■ Effectively guarantees compliance with IEEE 519-1992

- Provides increased input protection for AFD and its semiconductors from line transients
- Up to 4 times the harmonic reduction of 12-pulse methods
- Smaller transformer than isolation transformer used in 12-pulse converter
- Minimizes ripple current in capacitors, doubling expected capacitor life

Disadvantages

■ Larger and heavier magnetics than some other methods

Figure 40-124. 100 hp 480 V Drive with 18 -Pulse Rectifiers
Table 40-317. 100 hp 480V Drive with 18-Pulse Rectifiers

$\left\lvert\,$| $\|l\|$ | | |
| :--- | :---: | :---: |
| 18-Pulse Clean Power | | |
| Current Harmonics
 $\mathrm{I}_{1}=100 \%$ $\mathrm{I}_{11}=0.24 \%$ $\mathrm{I}_{19}=1.00 \%$
 $\mathrm{I}_{5}=0.16 \%$ $\mathrm{I}_{13}=0.10 \%$ $\mathrm{I}_{23}=0.01 \%$
 $\mathrm{I}_{7}=0.03 \%$ $\mathrm{I}_{17}=0.86 \%$ $\mathrm{I}_{25}=0.01 \%$
 Power $=100 \mathrm{hp}$
 $\mathrm{H}_{\mathrm{C}}=5.9 \mathrm{Amps}$ | | |$.$| |
| :--- |\right.

Enclosed Drives

Technical Data and Specifications

Table 40-318. Specifications

Feature Description	CFX9000 Enclosed Products UL Type 1, UL Type 12, UL Type 3R and NEMA 12 Filtered
Primary Design Features	
$45-66$ Hz Input Frequency	Standard
Output: AC Volts Maximum	Input Voltage Base
Output Frequency Range: Hz	0-320
Initial Output Current (l_{H})	250\% for 2 seconds
Overload: 1 Minute ($\mathrm{l}_{\mathrm{H}} / \mathrm{l}_{\mathrm{L}}$)	150\%/110\%
Enclosure Space Heater	Optional
Oversize Enclosure	Standard
Output Contactor	Optional
Bypass Motor Starter	Optional
Listings	UL, cUL
Protection Features	
Incoming Line Fuses	Optional
AC Input Circuit Disconnect	Optional
Phase Rotation Insensitive	Standard
EMI Filter	FR6-FR9 (1)
Input Phase Loss Protection	Standard
Input Overvoltage Protection	Standard
Line Surge Protection	Standard
Output Short Circuit Protection	Standard
Output Ground Fault Protection	Standard
Output Phase Protection	Standard
Overtemperature Protection	Standard
DC Overvoltage Protection	Standard
Drive Overload Protection	Standard
Motor Overload Protection	Standard
Programmer Software	Optional
Local/Remote Keypad	Standard
Keypad Lockout	Standard
Fault Alarm Output	Standard
Built-In Diagnostics	Standard
MOV	Optional
Input/Output Interface Features	
Setup Adjustment Provisions: Remote Keypad/Display Personal Computer	Standard Standard
Operator Control Provisions: Drive Mounted Keypad/Display Remote Keypad/Display Conventional Control Elements Serial Communications 115V AC Control Circuit	Standard Standard Standard Optional Optional
Speed Setting Inputs: Keypad 0 - 10V DC Potentiometer/Voltage Signal 4-20 mA Isolated 4-20 mA Differential 3-15 psig	Standard Standard Configurable Configurable Optional
Analog Outputs: Speed/Frequency Torque/Load/Current Motor Voltage Kilowatts 0 - 10V DC Signals 4-20 mA DC Signals Isolated Signals	Standard Programmable Programmable Programmable Configurable w/Jumpers Standard Optional

(1) The EMI filter is optional in FR10.

Feature Description	CFX9000 Enclosed Products - UL Type 1, UL Type 12, UL Type 3R and NEMA 12 Filtered
Disput/Output Interface Features (Continued) Fault Alarm Drive Running Standard Drive at Set Speed Standard Optional Parameters Programmable Dry Contacts 14 Open Collector Outputs 2 Relays Form C Additional Discrete Outputs 1 Communications: Optional RS-232 RS-422/485 Standard DeviceNet Optional Modbus RTU Optional CanOpen (Slave) Optional Profibus-DP Optional Lonworks ${ }^{\circledR}$ Optional Johnson Controls Metasys ${ }^{\text {TM }}$ N N2 Ethernet IP Optional BACnet Optional	

Performance Features

Sensorless Vector Control	Standard
Volts/Hertz Control	Standard
IR and Slip Compensation	Standard
Electronic Reversing	Standard
Dynamic Braking	Optional
DC Braking	Standard
PID Setpoint Controller	Programmable
Critical Speed Lockout	Standard
Current (Torque) Limit	Standard
Adjustable Acceleration/Deceleration	Standard
Linear or S Curve Accel/Decel	Standard
Jog at Preset Speed	Standard
Thread/Preset Speeds	7
Automatic Restart	Selectable
Coasting Motor Start	Standard
Coast or Ramp Stop Selection	Standard
Elapsed Time Meter	Optional

Standard Conditions for Application and Service

Maximum Operating Ambient Temperature	$0-50^{\circ} \mathrm{C}$ (2)				
Storage Temperature	$-40-60^{\circ} \mathrm{C}$				
Humidity (Maximum), Non-condensing	95%				
Altitude	100% load capacity (no derating) up to $3280 \mathrm{ft} .(1000 \mathrm{~m}) ; ~ 1 \% ~ d e r a t i n g ~ f o r ~$ each $328 \mathrm{ft} .(100 \mathrm{~m})$ above 3280 ft. $(1000 \mathrm{~m}) ; ~ m a x . ~$ $842 \mathrm{ft} .(3000 \mathrm{~m})$	$	$	Line Voltage Variation	$45-66 \mathrm{~Hz}$
:---	:---				
Line Frequency Variation	$>96 \%$				
Efficiency	.99				
Power Factor (Displacement)	15%				

${ }^{(2)}$ See Table 40-321 for specific ratings.
Table 40-319. Standard I/O Specifications

Description	Specification
6 - Digital Input Programmable	$24 \mathrm{~V}:$ " 0 " $\leq 10 \mathrm{~V}, " 1 " \geq 18 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}>5 \mathrm{k} \Omega$
2 - Analog Input Configurable w/Jumpers	Voltage: $0- \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}>200 \mathrm{k} \Omega$ Current: $0(4)-20 \mathrm{~mA}, \mathrm{R}_{\mathrm{i}}=250 \mathrm{k} \Omega$
2 - Digital Output Programmable	Form C Relays 250 V AC 2 Amp or 30 V DC2 Amp resistive
1 - Digital Output Programmable	Open collector 48V DC 50 mA
1- Analog Output Programmable Configurable w/Jumper	$0-20 \mathrm{~mA}$, impedance 500 ohms, resolution $106 \pm 3 \%$

Catalog Number Selection

Table 40-320. CFX9000 Enclosed Drive Catalog Numbering System

[^34]
Enclosed Drives

Product Selection

Figure 40-125. UL Type 12, 40 hp

When Ordering

- Select a Base Catalog Number that meets the application requirements - nominal horsepower, voltage and enclosure rating. (The enclosed drive's continuous output amp rating should be equal to or greater than the motor's full load amp rating.) The base enclosed package includes a standard drive, door-mounted alphanumeric panel and enclosure.
■ The CFX9000 product uses the term High Overload (I_{H}) in place of the term Constant Torque (CT). Likewise, Low Overload (I_{L}) is used in place of the term Variable Torque (VT). The new terms are a more precise description of the rating.

The older terms included ambient temperature ratings in addition to overload ratings. In order to minimize enclosure size and offer the highest ambient temperature rating, overload and temperature ratings are now treated separately. Ambient temperature ratings are shown in Table 40-321.

Table 40-321. Ambient Temperature Ratings

Enclosure Size	$\mathbf{I}_{\mathbf{H}}$	\mathbf{I}_{L}
B, C, 9 ${ }^{(1)}$	$40^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$
7,8	$50^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$

(1) For high temperature rating, select HT option code and consult factory for pricing.

■ If Dynamic Brake Chopper or Control/Communication option is desired, change the appropriate code in the Base Catalog Number
■ Note: All of the programming is exactly the same as the standard SVX9000 drive.
■ Select Enclosed Options. Add the codes as suffixes to the Base Catalog Number in alphabetical and numeric order.

Table 40-322. 208V — UL Type 1, UL Type 12, UL Type 3R and NEMA 12 Filtered Product Selection

hp	NEC Current (A)	Chassis Frame	UL Type 1		UL Type 12 and NEMA 12 Filtered		UL Type 3R	
			Base Catalog Number	$\begin{aligned} & \text { Price } \\ & \text { U.S. \$ } \end{aligned}$	Base Catalog Number	$\begin{aligned} & \text { Price } \\ & \text { U.S. } \end{aligned}$	Base Catalog Number	Price U.S. \$
Low Overload Drive								
$\begin{gathered} \hline 7-1 / 2 \\ 10 \\ 15 \\ 20 \end{gathered}$	$\begin{aligned} & 24.2 \\ & 30.8 \\ & 46.2 \\ & 59.4 \end{aligned}$	$\begin{aligned} & \text { FR5 } \\ & \text { FR5 } \\ & \text { FR6 } \\ & \text { FR6 } \end{aligned}$	$\begin{aligned} & \hline(1) \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$		$\begin{array}{\|l\|} \hline \text { CFX00721BA } \\ \text { CFX01021BA } \\ \text { CFX01521BA } \\ \text { CFX02021BA } \end{array}$		$\begin{aligned} & \text { CFX00731BA } \\ & \text { CFX01031BA } \\ & \text { CFX01531BA } \\ & \text { CFX02031BA } \end{aligned}$	
$\begin{aligned} & 25 \\ & 30 \\ & 40 \\ & 50 \end{aligned}$	$\begin{gathered} \hline 74.8 \\ 88 \\ 114 \\ 143 \end{gathered}$	$\begin{aligned} & \hline \text { FR7 } \\ & \text { FR7 } \\ & \text { FR7 } \\ & \text { FR8 } \end{aligned}$	(1) (1) (1) CFX05011AA		$\begin{array}{\|l\|} \hline \text { CFX02521AA } \\ \text { CFX03021AA } \\ \text { CFX04021AA } \\ \text { CFX05061AA } \end{array}$		$\begin{aligned} & \text { CFX02531AA } \\ & \text { CFX03031AA } \\ & \text { CFX04031AA } \\ & \text { CFX05031AA } \end{aligned}$	
$\begin{array}{r} 60 \\ 75 \\ 100 \end{array}$	$\begin{array}{\|l\|} \hline 169 \\ 211 \\ 273 \end{array}$	$\begin{aligned} & \hline \text { FR8 } \\ & \text { FR8 } \\ & \text { FR9 } \end{aligned}$	$\begin{aligned} & \text { CFX06011AA } \\ & \text { CFX07511AA } \\ & \text { CFX10011AA } \end{aligned}$		$\begin{aligned} & \text { CFX06061AA } \\ & \text { CFX07561AA } \\ & \text { CFX10061AA } \end{aligned}$		$\begin{aligned} & \text { CFX06031AA } \\ & \text { CFX07531AA } \\ & \text { CFX10031AA } \end{aligned}$	
High Overload Drive								
$\begin{gathered} 7-1 / 2 \\ 10 \end{gathered}$	$\begin{aligned} & 24.2 \\ & 30.8 \end{aligned}$	$\begin{aligned} & \hline \text { FR5 } \\ & \text { FR6 } \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \\ (1) \end{array}$		$\begin{array}{\|l} \hline \text { CFX00721EA } \\ \text { CFX01201F } \end{array}$		$\begin{aligned} & \text { CFX00731EA } \\ & \text { CFX01031EA } \end{aligned}$	
$\begin{aligned} & 15 \\ & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 46.2 \\ & 59.4 \\ & 74.8 \end{aligned}$	$\begin{aligned} & \hline \text { FR6 } \\ & \text { FR7 } \\ & \text { FR7 } \end{aligned}$	$\begin{aligned} & \hline 1 \\ & \hline 1 \\ & (1) \\ & 1 \end{aligned}$		$\begin{aligned} & \hline \text { CFX01521EA } \\ & \text { CFX02021DA } \\ & \text { CFX02521DA } \end{aligned}$		$\begin{aligned} & \text { CFX01531EA } \\ & \text { CFX02031DA } \\ & \text { CFX02531DA } \end{aligned}$	
$\begin{aligned} & 30 \\ & 40 \\ & 50 \end{aligned}$	$\begin{array}{\|r\|} \hline 88 \\ 114 \\ 143 \end{array}$	$\begin{array}{\|l\|} \hline \text { FR7 } \\ \text { FR8 } \\ \text { FR8 } \end{array}$	CFX04011DA CFX05011DA		$\begin{array}{\|l} \hline \text { CFX03021DA } \\ \text { CFX04061DA } \\ \text { CFX05061DA } \end{array}$		$\begin{aligned} & \text { CFX03031DA } \\ & \text { CFX04031DA } \\ & \text { CFX05031DA } \end{aligned}$	
$\begin{array}{\|r} \hline 60 \\ 75 \\ 100 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 169 \\ 211 \\ 273 \end{array}$	$\begin{aligned} & \hline \text { FR8 } \\ & \text { FR9 } \\ & \text { FR9 } \end{aligned}$	$\begin{aligned} & \hline \text { CFX06011DA } \\ & \text { CFX07511DA } \\ & \text { CFX10011DA } \end{aligned}$		$\begin{array}{\|l\|} \hline \text { CFX06061DA } \\ \text { CFX07561DA } \\ \text { CFX10061DA } \end{array}$		$\begin{aligned} & \text { CFX06031DA } \\ & \text { CFX07531DA } \\ & \text { CFX10031DA } \end{aligned}$	

(1) FR5 - FR7 drives not available in UL Type 1.

Table 40-323. CFX9000 Enclosure Selection

Chassis Frame	UL Type 1			UL Type 12		UL Type 3R
	Disconnect Only	With Power Options	Disconnect Only	With Power Options	Disconnect Only	With Power Options
FR4	N/A	B	B	C		
FR5	N/A	B	C	B	C	
FR6	N/A	B	C	B	C	
FR7	N/A	C	C	C	E	
FR8	7	7	E			
FR9	8		E			

Table 40-324. Enclosure Dimension Drawings

Enclosure Size	UL Type 1 \& UL Type 12 Drawings	UL Type 3R Drawings
B	Page 40-231	Page 40-233
C	Page 40-232	Page 40-234
E	N/A	Page 40-235
7	Page 40-236	(2)
8	Page 40-237	${ }^{2}$
9	Page 40-238	${ }^{2}$

[^35]Note: Enclosures 7 and 8 are NEMA 12 Filtered.

Enclosed Drives

Table 40-325. 230V — UL Type 1, UL Type 12, UL Type 3R and NEMA 12 Filtered Product Selection

| hp | NEC
 Current
 (A) | Chassis
 Frame | | UL Type 1 | | UL Type 12 and NEMA 12 Filtered | UL Type 3R |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | Base Catalog
 Number | Price
 U.S. $\$$ | Base Catalog
 Number | Price
 U.S. $\$$ | Base Catalog
 Number | |

Low Overload Drive

| $7-1 / 2$ | 22 | FR5 | (1) | CFX00722BA | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 10 | 28 | FR5 | (1) | CFX01022BA | CFX00732BA | |
| 15 | 42 | FR6 | (1) | CFX01522BA | CFX01032BA | |
| 20 | 54 | FR6 | (1) | CFX02022BA | CFX01532BA | |
| 25 | 68 | FR7 | (1) | CFX02522AA | CFX02032BA | |
| 30 | 80 | FR7 | (1) | CFX03022AA | CFX02532AA | |
| 40 | 104 | FR7 | (1) | CFX03032AA | | |
| 50 | 130 | FR8 | CFX05012AA | | CFX04032AA | |
| 60 | 154 | FR8 | CFXX06012AA | | CFX05032AA | |
| 75 | 192 | FR8 | CFX07512AA | | CFX05062AA | CFX06032AA |
| 100 | 248 | FR9 | CFX10012AA | CFX07562AA | CFX07532AA | |
| CFX10032AA | | | | | | |

High Overload Drive

| $7-1 / 2$ | 22 | FR5 | (1) | CFX00722EA | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 10 | 28 | FR6 | (1) | CFX01022EA | |
| 15 | 42 | FR6 | (1) | CFX01522EA | |
| 20 | 54 | FR7 | CFX02022DA | CFX00732EA | |
| 25 | 68 | FR7 | (1) | CFX02522DA | CFX01532EA |
| 30 | 80 | FR7 | (1) | CFX02032DA | |
| 40 | 104 | FR8 | CFX04012DA | CFX03022DA | |
| 50 | 130 | FR8 | CFX05012DA | | CFX02532DA |
| 60 | 154 | FR8 | CFX06012DA | CFX04062DA | CFX03032DA |
| 75 | 192 | FR9 | CFX07512DA | | CFX05032DA |
| 100 | 248 | FR9 | CFX10012DA | CFX06062DA | |

(1) FR5 - FR7 drives not available in UL Type 1.

Table 40-326. CFX9000 Enclosure Selection

Chassis Frame	UL Type 1		UL Type 12		UL Type 3R	
	Disconnect Only	With Power Options	Disconnect Only	With Power Options	Disconnect Only	With Power Options
FR4	N/A		B		B	C
FR5	N/A		B	C	B	C
FR6	N/A		B	C	B	C
FR7	N/A	7	C	7	C	E
FR8	7				E	
FR9	8				E	

Table 40-327. Enclosure Dimension Drawings

Enclosure Size	UL Type 1 \& UL Type 12 Drawings	UL Type 3R Drawings
B	Page 40-231	Page 40-233
C	Page 40-232	Page 40-234
E	N/A	Page 40-235
7	Page 40-236	${ }^{2} 2$
8	Page 40-237	${ }^{2}$
9	Page 40-238	(2)

(2) Not available for UL Type 3R.

Note: Enclosures 7 and 8 are NEMA 12 Filtered.

Table 40-328. 480V AC CFX9000 Base Drive Product Selection

hp	NECCurrent (A)	Chassis Frame	UL Type 1		UL Type 12 and NEMA 12 Filtered		UL Type 3R	
			Base Catalog Number	Price U.S. $\$$	Base Catalog Number	Price U.S. \$	Base Catalog Number	Price U.S. \$
Low Overload Drive								
$\begin{aligned} & 7-1 / 2 \\ & 10 \\ & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & 11 \\ & 14 \\ & 21 \\ & 27 \end{aligned}$	$\begin{aligned} & \hline \text { FR4 } \\ & \text { FR5 } \\ & \text { FR5 } \\ & \text { FR5 } \end{aligned}$	$\begin{array}{\|l\|l} \hline(3) \\ (3) \\ (3) \\ (3) \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline \text { CFX00724BA } \\ \text { CFX01024BA } \\ \text { CFX01524BA } \\ \text { CFX02024BA } \end{array}$		$\begin{aligned} & \text { CFX00734BA } \\ & \text { CFX01034BA } \\ & \text { CFX01534BA } \\ & \text { CFX02034BA } \end{aligned}$	
$\begin{aligned} & 25 \\ & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & 34 \\ & 40 \\ & 52 \end{aligned}$	$\begin{aligned} & \hline \text { FR6 } \\ & \text { FR6 } \\ & \text { FR6 } \end{aligned}$	$\begin{array}{\|l\|} \hline(3) \\ \hline 3 \\ \hline 3 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline \text { CFX02524BA } \\ \text { CFX03024BA } \\ \text { CFX04024BA } \end{array}$		CFX02534BA CFX03034BA CFX04034BA	
$\begin{aligned} & 50 \\ & 60 \\ & 75 \end{aligned}$	$\begin{aligned} & 65 \\ & 77 \\ & 96 \end{aligned}$	$\begin{aligned} & \hline \text { FR7 } \\ & \text { FR7 } \\ & \text { FR7 } \end{aligned}$	$\begin{aligned} & \text { CFX05014AA (4) } \\ & \text { CFX06014AA } \\ & \text { CFX07514AA (4) } \end{aligned}$		$\begin{aligned} & \text { CFX05024AA } \\ & \text { CFX06024AA } \\ & \text { CFX07524AA } \end{aligned}$		$\begin{aligned} & \text { CFX05034AA } \\ & \text { CFX06034AA } \\ & \text { CFX07534AA } \end{aligned}$	
$\begin{aligned} & 100 \\ & 125 \\ & 150 \end{aligned}$	$\begin{array}{\|l} \hline 124 \\ 156 \\ 180 \end{array}$	$\begin{aligned} & \text { FR8 } \\ & \text { FR8 } \\ & \text { FR8 } \end{aligned}$	$\begin{aligned} & \text { CFX10014AA } \\ & \text { CFX12514AA } \\ & \text { CFX15014AA } \end{aligned}$		$\begin{aligned} & \text { CFX10064AA } \\ & \text { CFX12564AA } \\ & \text { CFX15064AA } \end{aligned}$		$\begin{aligned} & \text { CFX10034AA } \\ & \text { CFX12534AA } \\ & \text { CFX15034AA } \end{aligned}$	
$\begin{array}{r} 200 \\ 250 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 240 \\ 302 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { FR9 } \\ & \text { FR9 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { CFX20014AA } \\ \text { CFX25014AA } \end{array}$		$\begin{aligned} & \text { CFX20064AA } \\ & \text { CFX25064AA } \end{aligned}$		$\begin{aligned} & \hline \text { CFX20034AA } \\ & \text { CFX25034AA } \end{aligned}$	
$\begin{aligned} & 300 \\ & 350 \\ & 400 \end{aligned}$	$\begin{array}{\|l\|} \hline 361 \\ 414 \\ 477 \end{array}$	$\begin{aligned} & \hline \text { FR10 } \\ & \text { FR10 } \\ & \text { FR10 } \end{aligned}$	CFX30014AA CFX35014AA CFX40014AA		$\begin{array}{\|l\|} \hline \text { CFX30064AA } \\ \text { CFX35064AA } \\ \text { CFX40064AA } \end{array}$		$\begin{array}{\|l\|l} \hline(2) \\ 2 \\ 2 \\ 2 \end{array}$	

7-1/2	11	FR5	(3)	CFX00724EA	CFX00734EA	
$\begin{aligned} & 10 \\ & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & 14 \\ & 21 \\ & 27 \end{aligned}$	$\begin{aligned} & \text { FR5 } \\ & \text { FR5 } \\ & \text { FR6 } \end{aligned}$	$\begin{array}{\|l\|l} \hline(3) \\ (3) \\ (3) \\ \hline \end{array}$	$\begin{aligned} & \hline \text { CFX01024EA } \\ & \text { CFX01524EA } \\ & \text { CFX02024EA } \end{aligned}$	$\begin{aligned} & \text { CFX01034EA } \\ & \text { CFX01534EA } \\ & \text { CFX02034EA } \end{aligned}$	
$\begin{aligned} & 25 \\ & 30 \\ & 40 \\ & \hline \end{aligned}$	$\begin{aligned} & 34 \\ & 40 \\ & 52 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { FR6 } \\ & \text { FR6 } \\ & \text { FR7 } \end{aligned}$	(3) (3) CFX04014DA © ${ }^{4}$	$\begin{aligned} & \text { CFX02524EA } \\ & \text { CFX03024EA } \\ & \text { CFX04024DA } \end{aligned}$	$\begin{aligned} & \text { CFX02534EA } \\ & \text { CFX03034EA } \\ & \text { CFX04034DA } \end{aligned}$	
$\begin{aligned} & 50 \\ & 60 \\ & 75 \end{aligned}$	65 77 96	$\begin{aligned} & \text { FR7 } \\ & \text { FR7 } \\ & \text { FR8 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { CFX05014DA }{ }^{4} \\ \text { CFX06014DA }{ }^{4} \text {) } \\ \text { CFX07514DA } \end{array}$	$\begin{aligned} & \text { CFX05024DA } \\ & \text { CFX06024DA } \\ & \text { CFX07564DA } \end{aligned}$	$\begin{aligned} & \text { CFX05034DA } \\ & \text { CFX06034DA } \\ & \text { CFX07534DA } \end{aligned}$	
$\begin{aligned} & 100 \\ & 125 \end{aligned}$	$\begin{aligned} & 124 \\ & 156 \end{aligned}$	$\begin{aligned} & \hline \text { FR8 } \\ & \text { FR8 } \end{aligned}$	$\begin{aligned} & \text { CFX10014DA } \\ & \text { CFX12514DA } \end{aligned}$	$\begin{aligned} & \text { CFX10064DA } \\ & \text { CFX12564DA } \end{aligned}$	$\begin{aligned} & \text { CFX10034DA } \\ & \text { CFX12534DA } \end{aligned}$	
$\begin{array}{\|l\|} \hline 150 \\ 200 \\ \hline \end{array}$	$\begin{aligned} & 180 \\ & 240 \end{aligned}$	$\begin{aligned} & \text { FR9 } \\ & \text { FR9 } \end{aligned}$	$\begin{aligned} & \text { CFX15014DA } \\ & \text { CFX20014DA } \end{aligned}$	$\begin{aligned} & \text { CFX15064DA } \\ & \text { CFX20064DA } \end{aligned}$	$\begin{aligned} & \text { CFX15034DA } \\ & \text { CFX20034DA } \end{aligned}$	
$\begin{array}{\|l\|} \hline 250 \\ 300 \\ 350 \\ \hline \end{array}$	$\begin{aligned} & 302 \\ & 361 \\ & 414 \end{aligned}$	FR10 FR10 FR10	$\begin{aligned} & \text { CFX25014DA } \\ & \text { CFX30014DA } \\ & \text { CFX35014DA } \end{aligned}$	$\begin{aligned} & \text { CFX25064DA } \\ & \text { CFX30064DA } \\ & \text { CFX35064DA } \end{aligned}$	$\begin{aligned} & \hline(2) \\ & (2) \\ & (2) \end{aligned}$	

(1) The Integrated Filter Clean Power assembly includes a standard drive, door-mounted local/ remote keypad and enclosure.
(2) Consult factory.
(3) FR4 - FR6 drives not available in UL Type 1.
${ }^{4}$ This catalog number is used only with power options.
Table 40-329. CFX9000 Enclosure Selection

Chassis Frame	UL Type 1			UL Type 12		
	Disconnect Only	With Power Options	Disconnect Only	With Power Options	UL Type 3R Only	With Power Options
FR4	N/A	B	B	C		
FR5	N/A	B	C	B	C	
FR6	N/A	B	C	C		
FR7	N/A	C	C	E		
FR8	7	7	E			
FR9	8		E			
FR10	9		5			

(5) Consult factory.

Table 40-330. Enclosure Dimension Drawings

Enclosure Size	UL Type 1 \& UL Type 12 Drawings	UL Type 3R Drawings
B	Page 40-231	Page 40-233
C	Page 40-232	Page 40-234
E	N/A	Page 40-235
7	Page 40-236	${ }^{6}$
8	Page 40-237	6^{6}
9	Page 40-238	${ }^{6}$

(6) Not available for UL Type 3R.

Note: Enclosures 7 and 8 are NEMA 12 Filtered.

Enclosed Drives

Table 40-331. 575V — UL Type 1, UL Type 12, UL Type 3R and NEMA 12 Filtered Product Selection

| hp | NEC
 Current
 (A) | Chassis
 Frame | UL Type 1 | | | UL Type 12 and NEMA 12 Filtered | UL Type 3R |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | Base Catalog
 Number | Price
 U.S. $\$$ | Base Catalog
 Number | Price
 U.S. $\$$ | Base Catalog
 Number | |

(1) FR6 - FR7 drives not available in UL Type 1.
(2) Consult factory.

Table 40-332. CFX9000 Enclosure Selection

Chassis Frame	UL Type 1		UL Type 12		UL Type 3R	
	Disconnect Only	With Power Options	Disconnect Only	With Power Options	Disconnect Only	With Power Options
FR4	N/A		B		B	C
FR5	N/A		B	C	B	C
FR6	N/A		B	C	B	C
FR7	N/A	7	C	7	C	E
FR8	7					E
FR9	8					E
FR10	9					(3)

${ }^{(3)}$ Consult factory.
Table 40-333. Enclosure Dimension Drawings

Enclosure Size	UL Type 1 \& UL Type 12 Drawings	UL Type 3R Drawings
B	Page 40-231	Page 40-233
C	Page 40-232	Page 40-234
E	N/A	Page 40-235
7	Page 40-236	(4)
8	Page 40-237	(4)
9	Page 40-238	(4)

(4) Not available for UL Type 3R.

Note: Enclosures 7 and 8 are NEMA 12 Filtered.

Options

Control/Communication Option Descriptions

Table 40-334. Available Control/Communications Options

Option	Description	Option Type
K1	Door-Mounted Speed Potentiometer - Provides the DRIVE with the ability to adjust the frequency reference using a doormounted potentiometer. This option uses the 10 V DC reference to generate a $0-10 \mathrm{~V}$ signal at the analog voltage input signal terminal. When the HOA bypass option is added, the speed is controlled when the HOA switch is in the hand position. Without the HOA bypass option, a 2-position switch (labeled local/remote) is provided on the keypad to select speed reference from the Speed Potentiometer or a remote speed signal.	Control
K2	Door-Mounted Speed Potentiometer with HOA Selector Switch - Provides the DRIVE with the ability to start/stop and adjust the speed reference from door-mounted control devices or remotely from customer supplied inputs. In HAND position, the drive will start and the speed is controlled by the door-mounted speed potentiometer. The drive will be disabled in the OFF position. When AUTO is selected, the drive run and speed control commands are via user-supplied dry contact and $4-20 \mathrm{~mA}$ signal.	Control
K3	3-15 psig Follower - Provides a pneumatic transducer which converts a $3-15$ psig pneumatic signal to either 0-8V DC or a $1-9 V$ DC signal interface with the DRIVE. The circuit board is mounted on the inside of the front enclosure panel and connects to the user's pneumatic control system via 6 ft . $(1.8 \mathrm{~m})$ of flexible tubing and a $1 / 4$ inch (6.4 mm) brass tube union.	Control
K4	HAND/OFF/AUTO Switch for Non-bypass Configurations - Provides a three-position selector switch that allows the user to select either a Hand or Auto mode of operation. Hand mode is defaulted to keypad operation, and Auto mode is defaulted to control from an external terminal source. These modes of operation can be configured via drive programming to allow for alternate combinations of start and speed sources. Start and speed sources include Keypad, I/O and Fieldbus.	Control
K5	MANUAL/AUTO Speed Reference Switch - Provides door-mounted selector switch for Manual/Auto speed reference.	Control
K6	START/STOP Pushbuttons - Provides door-mounted START and STOP pushbuttons for either bypass or non-bypass configurations.	Control
KF	Bypass Test Switch for RB and RA - Allows the user to energize the AF drive for testing while operating the motor on the bypass controller. The Test Switch is mounted on the inside of the enclosure door.	Addl. Bypass
KO	Standard Elapsed Time Meter - Provides a door-mounted elapsed run time meter.	Control
L1	Power On and Fault Power Lights - Provides a white power on light that indicates power to the enclosed cabinet and a red fault light that indicates a drive fault has occurred.	Light
L2	Bypass Pilot Lights for RB, RA Bypass Options - A green light indicates when the motor is running in inverter mode and an amber light indicates when the motor is running in bypass mode. The lights are mounted on the enclosure door, above the switches.	Addl. Bypass
LE	Red Run Pilot Light ($\mathbf{2 2} \mathbf{~ m m}$) - Provides a red run pilot light that indicates the drive is running.	Light
P1	Input Disconnect Assembly Rated to $\mathbf{1 0 0}$ kAIC - High Interrupting Motor Circuit Protector (HMCP) or Circuit Breaker that provides a means of short circuit protection for the power cables between it and the DRIVE, and protection from high-level ground faults on the power cable. Allows a convenient means of disconnecting the DRIVE from the line and the operating mechanism can be padlocked in the OFF position. This is factory mounted in the enclosure.	Input
P3	Input Line Fuses Rated to $\mathbf{2 0 0}$ kAIC - Provides high-level fault protection of the DRIVE input power circuit from the load side of the fuses to the input side of the power transistors. This option consists of three 200 kA fuses, which are factory mounted in the enclosure.	Input
P7	MOV Surge Suppressor — Provides a Metal Oxide Varistor (MOV) connected to the line side terminals and is designed to clip line side transients.	Input
P8	TVSS Transient Voltage Surge Suppressor — Provides transient voltage surge suppression of the unit. Consult factory for ratings.	Input
PE	Output Contactor - Provides a means for positive disconnection of the drive output from the motor terminals. The contactor coil is controlled by the drive's run or permissive logic. NC and NO auxiliary contacts rated at 10A, 600V AC are provided for customer use. Bypass Options RB and RA include an Output Contactor as standard. This option includes a low VA 115V AC fused Control Power Transformer and is factory mounted in the enclosure.	Output
PF	Output Filter - Used to reduce the transient voltage (DV/DT) at the motor terminals. The Output Filter is recommended for cable lengths exceeding 100 ft (30 m) or for a drive rated at $525-690 \mathrm{~V}$. This option is mounted in the enclosure, and may be used in conjunction with a Brake Chopper Circuit.	Output
PG	MotoRx ($\mathbf{3 0 0} \mathbf{- 6 0 0}$ Ft.) $1000 \mathrm{~V} / \mu \mathrm{S}$ DV/DT Filter - Used to reduce transient voltage (DV/DT) and peak voltages at the motor terminals. This option is comprised of a $.5 \%$ line reactor, followed by capacitive filtering and an energy recovery/clamping circuit. Unlike the Output Filter (See option PF), the MotoRx recovers most of the energy from the voltage peaks, resulting in a lower voltage drop to the motor, and therefore conserving power. This option is used when the distance between a single motor and the drive is $300-600$ feet (91 - 183m). This option can not be used with the Brake Chopper Circuit. The Output Filter (option PF) should be investigated as an alternative.	Output
PH	Single Overload Relay - Uses a bimetallic overload relay to provide additional overload current protection to the motor on configurations without bypass options. It is included with the Bypass Configurations for overload current protection in the bypass mode. The Overload Relay is mounted within the enclosure, and is manually resettable. Heater pack included.	Output
PI	Dual Overload Relays - This option is recommended when a single drive is operating 2 motors and overload current protection is needed for each of the motors. The standard configuration includes two bimetallic overload relays, each sized to protect a motor with 50% of the drive hp rating. For example, a 100 hp drive would include two overload relays sized to protect two 50 hp motors. The relays are mounted within the enclosure, and are manually resettable. Heater packs not included.	Output
PN	Dual Overloads for Bypass - This option is recommended when a single drive is operating 2 motors in the bypass mode and overload current protection is needed for each of the motors. The standard configuration includes two bimetallic overload relays, each sized to protect a motor with 50% of the drive hp rating. For example, a 100 hp drive would include two overload relays sized to protect two 50 hp motors. The relays are mounted within the enclosure, and are manually resettable.	Addl. Bypass

Table 40-334. Available Control/Communications Options (Continued)

Option	Description	Option Type
RA	Manual HOA Bypass Controller - The Manual HAND/OFF/AUTO (HOA) - 3-contactor - bypass option provides a means of bypassing the DRIVE, allowing the AC motor to be operated at full speed directly from the AC supply line. This option consists of an input disconnect, a fused control power transformer, and a full voltage bypass starter with a door mounted HOA selector switch and an INVERTER/BYPASS switch. The HOA switch provides the ability to start and stop the drive in the inverter mode. For applications up to 250 hp , an IT. Series IEC input contactor, an IT. Series IEC output contactor, and an IT. Series IEC starter with an electronic overload relay is included. For applications above 250 hp , an Advantage input contactor, an Advantage output contactor and an Advantage starter with electronic overload protection is included. The contactors are mechanically and electrically interlocked (see power diagram on Page 40-239).	Bypass
RB	Manual IOB Bypass Controller - The Manual INVERTER/OFF/BYPASS (IOB) - 3-contactor - bypass option provides a means of bypassing the DRIVE, allowing the AC motor to be operated at full speed directly from the AC supply line. This option consists of an input disconnect, a fused control power transformer, and a full voltage bypass starter with a door mounted IOB selector switch. For applications up to 250 hp , an IT. Series IEC input contactor, an IT. Series IEC output contactor, and an IT. Series IEC starter with an electronic overload relay is included. For applications above 250 hp , an Advantage input contactor, an Advantage output contactor and an Advantage starter with electronic overload protection is included. The contactors are mechanically and electrically interlocked (see power diagram on Page 40-239).	Bypass
RC	Auto Transfer HOA Bypass Controller - The Manual HAND/OFF/AUTO (HOA) - 3-contactor - bypass option provides a means of bypassing the DRIVE, allowing the AC motor to be operated at full speed directly from the AC supply line. The circuitry provides an automatic transfer of the load to "across the line" operation after a drive trip. This option consists of an input disconnect, a fused control power transformer, and a full voltage bypass starter with a door mounted HOA selector switch and an INVERTER/BYPASS switch. The HOA switch provides the ability to start and stop the drive in either mode. For applications up to 250 hp , an IT. Series IEC input contactor, an IT. Series IEC output contactor, and an IT. Series IEC starter with an electronic overload relay is included. For applications above 250 hp , an Advantage input contactor, an Advantage output contactor and an Advantage starter with electronic overload protection is included. The contactors are mechanically and electrically interlocked (see power diagram on Page 40-239). Door mounted pilot lights are provided which indicate bypass or inverter operation. A green light indicates when the motor is running in inverter mode and an amber light indicates when the motor is running in bypass mode. WARNING: The motor may restart when the overcurrent relay is reset when operating in bypass, unless the IOB selector switch is turned to the OFF position.	Bypass
RD	Auto Transfer IOB Bypass Controller - The Auto INVERTER/OFF/BYPASS (IOB) - 3-contactor - bypass option provides a means of bypassing the DRIVE, allowing the AC motor to be operated at full speed directly from the AC supply line. The circuitry provides an automatic transfer of the load to "across the line" operation after a drive trip. This option consists of an input disconnect, a fused control power transformer, and a full voltage bypass starter with a door mounted IOB selector switch. For applications up to 250 hp , an IT. Series IEC input contactor, an IT. Series IEC output contactor, and an IT. Series IEC starter with an electronic overload relay is included. For applications above 250 hp , an Advantage input contactor, an Advantage output contactor and an Advantage starter with electronic overload protection is included. The contactors are mechanically and electrically interlocked (see power diagram on Page 40-239). Door mounted pilot lights are provided which indicate bypass or inverter operation. A green light indicates when the motor is running in inverter mode and an amber light indicates when the motor is running in bypass mode. WARNING: The motor may restart when the overcurrent relay is reset when operating in bypass, unless the IOB selector switch is turned to the OFF position.	Bypass
RG	Reduced Voltage Starter for Bypass - Used in conjunction with bypass option RA, RB, RC or RD. This option adds IT. Series reduced voltage soft starter to bypass assembly for soft starting in bypass mode.	Bypass
S4	Floor Stand 6" - Raises "E" box off the ground 6" (152.4 mm). Recommended when box is not installed on an appropriate concrete pad.	Enclosure
S5	Floor Stand 22" - Converts a Size B or C, normally wall mounted enclosure to a floor standing enclosure with a height of 22" (558.8 mm).	Enclosure
S6	Floor Stand 12" - Converts a Size C, normally wall mounted enclosure to a floor standing enclosure with a height of 12" (304.8 mm).	Enclosure
S9	Space Heater - Prevents condensation from forming in the enclosure when the drive is inactive or in storage. Includes a thermostat for variable temperature control. Heater requires a customer supplied 115 V remote supply source.	Enclosure

CFX9000 Series Option Board Kits

The 9000X Series drives can accommodate a wide selection of expander and adapter option boards to customize the drive for your application needs. The drive's control unit is designed to accept a total of five option boards (see Figure 40-126).

The 9000X Series factory installed standard board configuration includes an A9 I/O board and an A2 relay output board, which are installed in slots A and B.

Figure 40-126. 9000X Series Option Boards

Table 40-335. Option Board Kits

Option Kit Description	Allowed Slot Locations	Field Installed		Factory Installed		SVX Ready Programs						
		Catalog Number	$\begin{aligned} & \text { Price } \\ & \text { U.S.\$ } \end{aligned}$	Option Designator	Adder U.S.S	Basic	Local/ Remote	Standard	MSS	PID	Multi-P.	PFC
Standard I/O Cards (See Figure 40-126)												
2 RO (NC/NO)	B	OPTA2		-		X	X	X	X	X	X	X
6 DI, 1 DO, 2 AI, 1AO, 1 +10V DC ref, 2 ext +24V DC/ EXT +24V DC	A	OPTA9		-		X	X	X	X	X	X	X
Extended I/O Card Options												
$\begin{aligned} & \hline 6 \mathrm{DI}, 1 \mathrm{ext} \\ & +24 \mathrm{~V} \text { DC/EXT +24V DC } \\ & \hline \end{aligned}$	B, C, D, E	OPTB1		B1		-	-	-	-	-	X	X
$\begin{array}{\|l} \hline 1 \text { RO (NC/NO), } 1 \text { RO (NO), } \\ 1 \text { Therm } \end{array}$	B, C, D, E	OPTB2		B2		-	-	-	-	-	X	X
1 Al (mA isolated), 2 AO (mA isolated), 1 ext +24 V DC/EXT +24V DC	B, C, D, E	OPTB4		B4		X	X	X	X	X	X	X
3 RO (NO)	B, C, D, E	OPTB5		B5		-	-	-	-	-	X	X
$\begin{aligned} & 1 \text { ext +24V DC/EXT +24V } \\ & \text { DC, } 3 \text { Pt100 } \\ & \hline \end{aligned}$	B, C, D, E	OPTB8		B8		-	-	-	-	-	-	-
$\begin{aligned} & 1 \mathrm{RO}(\mathrm{NO}), 5 \mathrm{DI} \\ & 42-240 \mathrm{~V} \text { AC Input } \end{aligned}$	B,C, D, E	OPTB9		B9		-	-	-	-	-	X	X
Communication Cards ${ }^{(3)}$												
Modbus	D, E	OPTC2		C2		X	X	X	X	X	X	X
Johnson Controls N2	D, E	OPTC2		CA		-	-	-	-	-	-	-
Profibus DP	D, E	OPTC3		C3		X	X	X	X	X	X	X
LonWorks	D, E	OPTC4		C4		X	X	X	X	X	X	X
$\begin{aligned} & \text { Profibus DP } \\ & \text { (D9 Connector) } \end{aligned}$	D, E	OPTC5		C5		X	X	X	X	X	X	X
CanOpen (Slave)	D, E	OPTC6		C6		X	X	X	X	X	X	X
DeviceNet	D, E	OPTC7		C7		X	X	X	X	X	X	X
Modbus (D9 Type Connector)	D, E	OPTC8		C8		X	X	X	X	X	X	X
Modbus TCP	D, E	OPTCI		CI		X	X	X	X	X	X	X
BACnet	D, E	OPTCJ		CJ		X	X	X	X	X	X	X
Ethernet IP	D, E	OPTCK		CK		X	X	X	X	X	X	X
RS-232 with D9 Connection	D, E	OPTD3		D3		X	X	X	X	X	X	X

${ }^{(1)}$ Option card must be installed in one of the slots listed for that card. Slot indicated in Bold is the preferred location.
(2) $\mathrm{AI}=$ Analog Input; $\mathrm{AO}=$ Analog Output, $\mathrm{DI}=$ Digital Input, $\mathrm{DO}=$ Digital Output, RO = Relay Output
(3) OPTC2 is a multi-protocol option card.

Modbus RTU Network Communications

The Modbus Network Card OPTC2 is used for connecting the 9000X Drive as a slave on a Modbus network. The interface is connected by a 9-pin DSUB connector (female) and the baud rate ranges from 300 to 19200 baud. Other communication parameters include an address range from 1 to 247; a parity of None, Odd or Even; and the stop bit is 1 .

Profibus Network Communications

The Profibus Network Card OPTC3 is used for connecting the 9000X Drive as a slave on a Profibus-DP network. The interface is connected by a 9-pin DSUB connector (female). The baud rates range from 9.6 K baud to 12 M baud, and the addresses range from 1 to 127.

LonWorks Network Communications

The LonWorks Network Card OPTC4 is used for connecting the 9000X Drive on a LonWorks network. This interface uses Standard Network Variable Types (SNVT) as data types. The channel connection is achieved using a FTT-10A Free Topology transceiver via a single twisted transfer cable. The communication speed with LonWorks is $78 \mathrm{kBits} / \mathrm{s}$.

Enclosed Drives

CanOpen (Slave) Communications

The CanOpen (Slave) Network Card OPTC6 is used for connecting the 9000X Drive to a host system. According to ISO11898 standard cables to be chosen for CAN bus should have a nominal impedance of 120Ω, and specific line delay of nominal $5 \mathrm{nS} / \mathrm{m} .120 \Omega$ line termination resistors required for installation.

DeviceNet Network Communications

The DeviceNet Network Card OPTC7 is used for connecting the 9000X Drive on a DeviceNet Network. It includes a 5.08 mm pluggable connector. Transfer method is via CAN using a 2 -wire twisted shielded cable with 2 -wire bus power cable and drain. The baud rates used for communication include 125 K baud, 250 K baud and 500 K baud.

Johnson Controls Metasys ${ }^{\text {TM }}$ N2 Network Communications

The OPTC2 fieldbus board provides communication between the 9000X Drive and a Johnson Controls Metasys ${ }^{\text {TM }}$ N2 network. With this connection, the drive can be controlled, monitored and programmed from the Metasys system. The N2 fieldbus is available as a factory installed option and as a field installable kit.

Modbus/TCP Network Communications

The Modbus/TCP Network Card OPTCI is used for connecting the 9000X Drive to Ethernet networks utilizing Modbus protocol. It includes an RJ-45 pluggable connector. This interface provides a selection of standard and custom register values to communicate drive parameters. The board supports 10 Mbps and 100 Mbps communication speeds. The IP address of the board is configurable over Ethernet using a supplied software tool.

BACnet Network Communications

The BACnet Network Card OPTCJ is used for connecting the $9000 \times$ Drive to BACnet networks. It includes a 5.08 mm pluggable connector. Data transfer is Master-Slave/Token Passing (MS/TP) RS-485. This interface uses a collection of

30 Binary Value Objects (BVOs) and 35 Analog Value Objects (AVOs) to communicate drive parameters. The card supports 9.6, 19.2 and 38.4 Kbaud communication speeds and supports network addresses 1-127.

Ethernet/IP Network Communications

The Ethernet/IP Network Card OPTCK is used for connecting the 9000X Drive to Ethernet/Industrial Protocol networks. It includes an RJ-45 pluggable connector. The interface uses CIP objects to communicate drive parameters (CIP is "Common Industrial Protocol", the same protocol used by DeviceNet). The board supports 10 Mbps and 100 Mbps communication speeds. The IP address of the board is configurable by Static, BOOTP and DHCP methods.

Table 40-336. I/O Specifications for the Control/Communication Options

Description	Specifications
Analog voltage, input	$0- \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{i}} \geq 200 \mathrm{k} \Omega$
Analog current, input	0 (4) $-20 \mathrm{~mA}, \mathrm{R}_{\mathrm{i}}=250 \Omega$
Digital Input	24 V : "0" $\leq 10 \mathrm{~V}$, " 1 " $\geq 18 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}>5 \mathrm{k} \Omega$
Aux. voltage	24 V ($\pm 20 \%$), max. 50 mA
Reference voltage	$10 \mathrm{~V} \pm 3 \%$, max. 10 mA
Analog current, output Analog voltage, output	0 (4) - $20 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=500 \mathrm{k} \Omega$, resolution 10 bit, accuracy $\leq \pm 2 \%$ 0 (2) - $10 \mathrm{~V}, R_{L} \geq 1 \mathrm{k} \Omega$, resolution 10 bit, accuracy $\leq \pm 2 \%$
Relay output Max. switching voltage Max. switching load Max. continuous load	300 V DC, 250V AC 8A/24V DC, .4A/300V DC, $2 \mathrm{kVA} / 250 \mathrm{~V}$ AC 2A rms
Thermistor input	Rtrip $=4.7 \mathrm{k} \Omega$

Table 40-337. Conformal (Varnished) Coating Adder - VB Option 208V, 230V, 480V and 575V (1)

Chassis Frame	Delivery Code	Adder U.S. \$	Chassis Frame	Delivery Code	Adder U.S. \$
FR6	FP		FR9	FP	
FR7	FP		FR10	FP	
FR8	FP				

(1) See catalog number description to order.

Enclosed Options

Table 40-338. 208V and 230V Light Options

Catalog Number Suffix $\mathrm{II} \mathrm{\prime}$	Power On/Fault Pilot Lights (22 mm)	Red RUN Light (22 mm)
	L1	LE
hp	Adder U.S. $\$$	Adder U.S. \$
$7-1 / 2-100$		

Table 40-339. 208V and 230V Control Options

Catalog Number Suffix ${ }^{\text {III }}$	Door-Mounted Speed Potentiometer	Door-Mounted Speed Potentiometer with HOA Selector Switch	$\begin{array}{\|l\|} \hline 3-15 \\ \text { psig } \\ \text { Follower } \end{array}$	HAND/ OFF/ AUTO Switch (22 mm)	MANUAL/ AUTO Ref Switch (22 mm)	START/ STOP Pushbuttons (22 mm)	Standard Elapsed Time Meter	Input Power Surge Protection MOV	TVSS Transient Voltage Surge Suppressor
	K1	K2	K3	K4	K5	K6	KO	P7	P8
hp	Adder U.S. \$	Adder U.S. \$	Adder U.S. \$	Adder U.S. S	Adder U.S. \$	Adder U.S. \$	Adder U.S. \$	Adder U.S. \$	Adder U.S. \$
7-1/2-100									

Table 40-340. 208V and 230V Bypass Options (1)

Catalog Number	Bypass Test Switch for RA, RB, RC, RD	Bypass Pilot Lights for RA, RB Options	Dual Overloads for Bypass	Manual HOA Bypass Controller	Manual IOB Bypass Controller	Auto Transfer HOA Bypass Controller	Auto Transfer IOB Bypass Controller	Reduced Volt Starter for Bypass
Suffix ${ }^{\text {IIIL}}$	KF	L2	PN	RA	RB	RC	RD	RG
hp	Adder U.S. \$	Adder U.S. \$	Adder U.S. \$					
$\begin{gathered} \hline 7-1 / 2 \\ 10 \\ 15 \\ 20 \\ \hline \end{gathered}$								
$\begin{aligned} & 25 \\ & 30 \\ & 40 \\ & 50 \end{aligned}$								
$\begin{array}{\|r\|} \hline 60 \\ 75 \\ 100 \end{array}$								

(1) See Pages 40-224 and 40-225 for details.

Table 40-341. 208V and 230V Enclosure Options

Catalog Number	Floor Stand 6" (152.4 mm)	Floor Stand 22" (558.8 mm)	$\begin{aligned} & \text { Floor Stand } \\ & 12^{\prime \prime}(304.8 \mathrm{~mm}) \end{aligned}$	Space Heater ${ }^{2}$
Suffix ${ }^{\text {IIm }}$	S4	S5	S6	S9
$\begin{aligned} & \hline \text { Enclosure } \\ & \text { Size } \\ & \hline \end{aligned}$	Adder U.S. \$	$\begin{aligned} & \text { Adder } \\ & \text { U.S. \$ } \end{aligned}$	Adder U.S. \$	$\begin{aligned} & \text { Adder } \\ & \text { U.S. \$ } \end{aligned}$
$\begin{array}{\|l\|} \hline 7 \\ 8 \\ 9 \end{array}$				
B				
C				
E				

${ }^{(2)}$ Requires customer supplied 115 V AC supply.
Table 40-342. 208V and 230V Power Options

Catalog Number Suffix III	Input		Output		
	Input Disconnect (HMCP) 65 kAIC	Input Line Fuses 200 kAIC	Output Contactor	Single Overload Relay ${ }^{(3)}$	Dual Overload Relays ${ }^{3}$
	P1	P3	PE	PH	PI
hp	$\begin{array}{\|l\|} \hline \text { Adder } \\ \text { U.S. \$ } \end{array}$	Adder U.S. \$	Adder U.S. \$	Adder U.S. \$	Adder U.S. \$
$\begin{aligned} & \hline 7-1 / 2 \\ & 10 \\ & 15 \\ & 20 \end{aligned}$					
$\begin{aligned} & 25 \\ & 30 \\ & 40 \\ & 50 \end{aligned}$					
$\begin{array}{\|r\|} \hline 60 \\ 75 \\ 100 \end{array}$					

[^36]
Enclosed Drives

Table 40-343. 480V and 575V Light Options

Catalog Number Suffix $\mathrm{III} \Rightarrow$	Power On/Fault Pilot Lights (22 mm)	Red RUN Light (22 mm)
	L1	LE
hp	Adder U.S. \$	Adder U.S. \$
$7-1 / 2-400$		

Table 40-344. 480V and 575V Control Options

Catalog Number	Door-Mounted Speed Potentiometer	Door-Mounted Speed Potentiometer with HOA Selector Switch	$\begin{array}{\|l\|} \hline 3-15 \\ \text { psig } \\ \text { Follower } \end{array}$	HAND/ OFF/ AUTO Switch (22 mm)	MANUAL/ AUTO Ref Switch (22 mm)	START/ STOP Pushbuttons (22 mm)	Standard Elapsed Time Meter	Input Power Surge Protection MOV	TVSS Transient Voltage Surge Suppressor
Suffix ${ }^{\text {"II }}$,	K1	K2	K3	K4	K5	K6	KO	P7	P8
hp	Adder U.S. \$	Adder U.S. S	Adder U.S. \$	Adder U.S. S	Adder U.S. \$				
7-1/2-400									

Table 40-345. 480V and 575V Bypass Options (1)

Catalog Number	Bypass Test Switch for RA, RB, RC, RD	Bypass Pilot Lights for RA, RB Options	Dual Overloads for Bypass	Manual HOA Bypass Controller	Manual IOB Bypass Controller	Auto Transfer HOA Bypass Controller	Auto Transfer IOB Bypass Controller	Reduced Volt Starter for Bypass
Suffix ${ }^{\text {III }}$	KF	L2	PN	RA	RB	RC	RD	RG
hp	Adder U.S. \$	Adder U.S. S	Adder U.S. S	Adder U.S. \$				
$\begin{gathered} \hline 7-1 / 2 \\ 10 \\ 15 \\ 20 \\ \hline \end{gathered}$								
$\begin{aligned} & 25 \\ & 30 \\ & 40 \\ & 50 \\ & 60 \end{aligned}$								
$\begin{array}{r} \hline 75 \\ 100 \\ 125 \\ 150 \\ 200 \\ \hline \end{array}$								
250 300 350 400								

(1) See Pages 40-224 and 40-225 for details.

Table 40-346. 480V and 575V Enclosure Options

Catalog Number Suffix "II \rightarrow	Floor Stand 6" (152.4 mm)	$\begin{array}{\|l\|} \hline \text { Floor Stand } \\ 22^{\prime \prime}(558.8 \mathrm{~mm}) \end{array}$	$\begin{aligned} & \hline \text { Floor Stand } \\ & 12^{\prime \prime}(304.8 \mathrm{~mm}) \end{aligned}$	Space Heater ${ }^{(2)}$
	S4	S5	S6	S9
Enclosure Size	Adder U.S. \$	Adder U.S. \$	Adder U.S. \$	Adder U.S. \$
$\begin{aligned} & 7 \\ & 8 \\ & 9 \end{aligned}$				
B				
C				
E				

[^37]
Adjustable Frequency Drives CFX9000

Table 40-347. 480V and 575V Power Options

Catalog Number Suffix ${ }^{\prime \prime \prime} \Rightarrow$	Input		Output				
	Input Disconnect Thermo-mag Breaker 65 kAIC	Input Line Fuses 200 kAIC	Output Contactor	Output Filter	$\begin{aligned} & \hline \text { MotoRx } \\ & (300-600 \mathrm{Ft} \text {) } \\ & 1000 \mathrm{~V} / \mu \mathrm{SV} \text { DVT } \\ & \text { Filter }{ }^{(1)} \end{aligned}$	Single Overload Relay ${ }^{2}$	Dual Overload Relays ${ }^{2}$
	P1	P3	PE	PF	PG	PH	PI
hp	$\begin{aligned} & \text { Adder } \\ & \text { U.S. \$ } \end{aligned}$	Adder U.S. \$	Adder U.S. \$	Adder U.S. S	Adder U.S. S	Adder U.S. S	Adder U.S. S
$\begin{aligned} & 7-1 / 2 \\ & 10 \\ & 15 \\ & 20 \end{aligned}$							
$\begin{aligned} & 25 \\ & 30 \\ & 40 \\ & 50 \\ & 60 \end{aligned}$							
$\begin{array}{r} \hline 75 \\ 100 \\ 125 \\ 150 \\ 200 \end{array}$							
$\begin{aligned} & 250 \\ & 300 \\ & 350 \\ & 400 \\ & \hline \end{aligned}$							

(1) Output filter may be required whenever the distance from the drive to the motor exceeds 100 feet (30 m). Refer to Application Notes for further details.
(2) Heater packs not included.

Dimensions

Enclosure Box B — UL Type 12

Figure 40-127. Enclosure Box B - UL Type 12 Dimensions
Table 40-348. Enclosure Box B - UL Type 12 Dimensions

| Approximate Dimensions in Inches (mm) | H2 | W | W1 | Approx.
 Weight
 Lbs. (kg) | Approx. Ship
 Weight
 Lbs. (kg) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| H | H1 | | D | D1 | 229
 (104) |

Adjustable Frequency Drives CFX9000

Enclosure Box C - UL Type 12

Figure 40-128. Enclosure Box C - UL Type 12 Dimensions
Table 40-349. Enclosure Box C - UL Type 12 Dimensions

Approximate Dimensions in Inches (mm)									Approx. Weight Lbs. (kg)	Approx. Ship Weight Lbs. (kg)
H	H1	H2	H3	H4	W	W1	D	D1		
$\begin{array}{\|l\|} \hline 52.00 \\ (1320.8) \end{array}$	$\begin{aligned} & \hline 50.00 \\ & (1270.0) \end{aligned}$	$\begin{aligned} & \hline 48.35 \\ & (1228.1) \end{aligned}$	$\begin{array}{\|l\|} \hline 72.00 \\ (1828.8) \end{array}$	$\begin{array}{\|l\|} \hline 71.19 \\ (1808.2) \end{array}$	$\begin{aligned} & \hline 30.92 \\ & (785.4) \end{aligned}$	$\begin{aligned} & 29.30 \\ & (744.2) \end{aligned}$	$\begin{array}{\|l\|} \hline 16.78 \\ (426.2) \end{array}$	$\begin{aligned} & \hline 2.34 \\ & (59.4) \end{aligned}$	$\begin{aligned} & \hline 320 \\ & (145) \end{aligned}$	$\begin{aligned} & 435 \\ & (197) \end{aligned}$

Enclosure Box B - UL Type 3R

Figure 40-129. Enclosure Box B - UL Type 3R Dimensions
Table 40-350. Enclosure Box B - UL Type 3R Dimensions

Approximate Dimensions in Inches (mm)											Approx. Weight Lbs. (kg)	Approx. Ship Weight Lbs. (kg)
H	H1	H2	H3	W	W1	W2	W3	D	D1	D2		
$\begin{aligned} & \hline 46.09 \\ & (1170.7) \end{aligned}$	$\begin{array}{\|l\|} \hline 44.45 \\ (1129.0) \end{array}$	$\begin{aligned} & \hline 42.77 \\ & (1086.4) \end{aligned}$	$\begin{array}{\|l\|} \hline 36.35 \\ (923.3) \end{array}$	$\begin{array}{\|l\|} \hline 26.31 \\ (668.3) \end{array}$	$\begin{aligned} & \hline 20.92 \\ & (531.4) \end{aligned}$	$\begin{aligned} & 19.30 \\ & (490.2) \end{aligned}$	$\begin{aligned} & \hline 2.69 \\ & (68.3) \end{aligned}$	$\begin{array}{\|l\|} \hline 17.74 \\ (450.6) \end{array}$	$\begin{aligned} & 16.76 \\ & (425.7) \end{aligned}$	$\begin{aligned} & \hline 3.31 \\ & (84.1) \end{aligned}$	$\begin{aligned} & \hline 235 \\ & (107) \end{aligned}$	$\begin{aligned} & \hline 290 \\ & (132) \end{aligned}$

Enclosure Type C - UL Type 3R

Figure 40-130. Enclosure Box C - UL Type 3R Dimensions
Table 40-351. Enclosure Box C - UL Type 3R Dimensions

Approximate Dimensions in Inches (mm)													Approx. Weight Lbs. (kg)	Approx. Ship Weight Lbs. (kg)
H	H1	H2	H3	H4	H5	W	W1	W2	W3	D	D1	D2		
$\begin{array}{\|l\|} \hline 58.09 \\ (1475.5) \end{array}$	$\begin{array}{\|l\|} \hline 56.45 \\ (1433.8) \end{array}$	$\begin{aligned} & \hline 54.77 \\ & (1391.2) \end{aligned}$	$\begin{array}{\|l\|} \hline 48.35 \\ (1228.1) \end{array}$	$\begin{aligned} & \hline 78.09 \\ & (1983.5) \end{aligned}$	$\begin{aligned} & \hline 77.64 \\ & (1972.1) \end{aligned}$	$\begin{array}{\|l\|} \hline 37.73 \\ (958.3) \end{array}$	$\begin{array}{\|l\|} \hline 30.92 \\ (785.4) \end{array}$	$\begin{aligned} & \hline 29.30 \\ & (744.2) \end{aligned}$	$\begin{aligned} & \hline 3.34 \\ & (84.8) \end{aligned}$	$\begin{aligned} & 17.74 \\ & (450.6) \end{aligned}$	$\begin{array}{\|l\|} \hline 16.77 \\ (426.0) \end{array}$	$\begin{array}{\|l\|} \hline 3.31 \\ (84.1) \end{array}$	$\begin{aligned} & \hline 370 \\ & (168) \end{aligned}$	$\begin{aligned} & \hline 485 \\ & (220) \end{aligned}$

Enclosure Size E

Figure 40-131. Enclosure Box E - UL Type 3R Dimensions
Table 40-352. Enclosure Box E-UL Type 3R Dimensions

Approximate Dimensions in Inches (mm)							Approx. Weight Lbs. (kg)	Approx. Ship Weight Lbs. (kg)
H	H1	H2	W	W1	D	D1		
$\begin{array}{\|l\|} \hline 99.58 \\ (2529.3) \end{array}$	$\begin{aligned} & 93.58 \\ & (2376.9) \end{aligned}$	$\begin{aligned} & \hline 69.51 \\ & (1765.6) \end{aligned}$	$\begin{array}{\|l\|} \hline 60.00 \\ (1524.0) \end{array}$	$\begin{aligned} & \hline 48.00 \\ & (1219.2) \end{aligned}$	$\begin{array}{\|l\|} \hline 37.50 \\ (952.5) \end{array}$	$\begin{aligned} & \hline 26.00 \\ & (660.4) \end{aligned}$	$\begin{aligned} & \hline 1,700 \\ & (771) \end{aligned}$	$\begin{array}{\|l\|} \hline 1,850 \\ (839) \end{array}$

Enclosure Size 7

Figure 40-132. Approximate Dimensions in Inches (mm)

Enclosed Drives

Enclosure Size 8

Figure 40-133. Approximate Dimensions in Inches (mm)

Enclosure Size 9

Figure 40-134. Approximate Dimensions in Inches (mm)

Enclosed Drives

Wiring Diagram

Control Input/Output

Table 40-353. Basic Application Default I/O Configuration

Reference potentiometer

Contents	
Description	Page
CPX9000 Enclosed Drives	
Product Description	40-240
Features and Benefits	40-240
Application Description	40-241
Technical Data and Specifications	40-246
Catalog Number	
Selection	40-247
Product Selection	40-248
Options	40-251
Dimensions	40-256
Wiring Diagrams	40-261

Product Description

The Cutler-Hammer ${ }^{\circledR}$ CPX9000 Clean Power Drives from Eaton's electrical business use advanced 18 -pulse, clean power technology that significantly reduces line harmonics at the drive input terminals, resulting in one of the purest sinusoidal waveforms available.

Enhancements to the CPX9000 Clean Power Drives include smaller enclosures and higher temperature ratings than CP9000 for selected drives.

The CPX9000 drive also delivers True Power Factor - in addition to reducing harmonic distortion, the CPX9000 drive prevents transformer overheating and overloading of breakers and feeders, which enables the application of adjustable frequency drives on generators and other high impedance power systems.

The 9000X Family of Drives includes HVX9000, SVX9000, SLX9000 and SPX9000. 9000X Series drive ratings are rated for either high overload (l_{H}) or low overload (I_{L}). I_{L} indicates 110% overload capacity for 1 minute out of 10 minutes. I_{H} indicates 150% overload capacity for 1 minute out of 10 minutes.

CPX9000 Enclosed Products Program

■ Standard Enclosed - covers a wide range of the most commonly ordered options. Pre-engineering eliminates the lead time normally associated with customer specific options. Available configurations are listed on Pages 40-248-40-255.
■ Modified Standard Enclosed applies to specific customer requirements that vary from the Standard Enclosed offering, such as the need for an additional indicating light or minor modifications to drawings. Contact your local sales office for assistance in pricing and lead time.

- Custom Engineered - for those applications with more unique or complex requirements, these are individually engineered to the customer's needs. Contact your local sales office for pricing and lead time.

Features and Benefits

New CPX9000 Clean Power Drive features include:

■ Space optimized enclosure

- Simple layout for power options
- NEMA Type 1, NEMA 12 with Gaskets and Filters, NEMA Type 3R
■ Input Voltage: 480V, 208/230V, 575 V
■ Complete range of control, network and power options
■ Horsepower range:
- $480 \mathrm{~V}, 25-700 \mathrm{hp} \mathrm{I}_{\mathrm{H}}$; $25-800 \mathrm{hp} \mathrm{L}_{\mathrm{L}}$; consult factory for larger sizes
- 208/230V, $25-100 \mathrm{hp} \mathrm{I}_{\mathrm{L}:}$ consult factory for details and pricing
- 575V, 25-500 hp IL; consult factory for larger sizes

■ Over ten years of 18-pulse Clean Power experience
■ UL 508C tested, listed and approved
■ 65 KAIC Standard at 480V and 208V
■ 100 KAIC optional

Application Description

Designed to exceed the IEEE 519-1992 requirements for harmonic distortion, the CPX9000 is the clear choice for applications in the water, wastewater, HVAC, industrial and process industries where harmonics are a concern.

What Are Harmonics?

Take a perfect wave with a fundamental frequency of 60 Hz , which is close to what is supplied by the power company.

Figure 40-135. Perfect Wave
Add a second wave that is five times the fundamental frequency - 300 Hz (Typical of frequency added to the line by a fluorescent light).

Figure 40-136. Second Wave
Combine the two waves. The result is a 60 Hz supply rich in fifth harmonics.

Figure 40-137. Resulting Supply

What Causes Harmonics?

Harmonics are the result of nonlinear loads that convert AC line voltage to DC. Examples of equipment that are non-linear loads are listed below:

- AC variable frequency drives
- DC drives

■ Fluorescence lighting, computers, UPS systems
■ Industrial washing machines, punch presses, welders, etc.

How Can Harmonics Due to VFDs Be Diminished?

By purchasing Eaton's patented 18-Pulse Cutler-Hammer drive that is guaranteed to meet IEEE Std. 519-1992 Harmonic Distortion Limits.

What Are Linear Loads?

Linear loads are primarily devices that run across the line and do not add harmonics. Motors are prime examples. The downside to having large motor linear loads is that they draw more energy than a VFD, because of their inability to control motor speed. In most applications there is a turn down valve used with the motor which will reduce the flow of the material, without significantly reducing the load to the motor. While this provides some measure of speed control, it is extremely inefficient.

Why Be Concerned About Harmonics?

1. Installation and utility costs increase. Harmonics cause damage to transformers and lower efficiencies due to the IR loss. These losses can become significant (from $16.6-21.6 \%$) which can have a dramatic effect on the HVAC systems that are controlling the temperatures of the building where the transformer and drive equipment reside.
2. Downtime and loss of productivity. Telephones and data transmissions links may not be guaranteed to work on the same power grids polluted with harmonics.
3. Downtime and nuisance trips of drives and other equipment. Emergency generators have up to (3) three times the impedance that is found in a conventional utility source. Thus the harmonic voltage can be up to three times as large, causing risk of operation problems.
4. Larger motors must be used. Motors running across the line that are connected on polluted power distribution grids can overheat or operate at lower efficiency due to harmonics.
5. Higher installation costs. Transformers and power equipment must be oversized to accommodate the loss of efficiencies. This is due to the harmonic currents circulating through the distribution without performing useful work.

How Does a VFD Convert 3-Phase AC to a Variable Output Voltage and Frequency?

The 6-pulse VFD: The majority of all conventional drives that are built consist of a 6-pulse configuration. Figure 40-138 represents a 6 -diode rectifier design that converts three-phase utility power to DC. The inverter section uses IGBTs to convert DC power to a simulated AC sine wave that can vary in frequency from $0-400 \mathrm{~Hz}$.

Figure 40-138. 6-Diode Rectifier Design

The 6-Pulse VFD drive creates harmonic current distortion. The harmonic current that is created is energy that can not be used by customers and causes external heat and losses to all components including other drives that are on the same power distribution. Figure 40-139 is a 500 hp drive with 167A of damaging harmonic current.

Figure 40-139. 6-Pulse Nonproductive Harmonic Current
Table 40-354. 6-Pulse Nonproductive Harmonic Current

$\left\lvert\,$| $\|l\|$ | | |
| :--- | :---: | :---: |
| 6-Pulse Circuit | | |
| Current Harmonics
 $I_{1}=100 \%$ $I_{11}=6.10 \%$ $I_{19}=1.77 \%$
 $I_{5}=22.5 \%$ $I_{13}=4.06 \%$ $I_{23}=1.12 \%$
 $I_{7}=9.38 \%$ $I_{17}=2.26 \%$ $I_{25}=0.86 \%$
 Power $=500$ hp
 Harmonic Current $=167$ Amps | | |$.$| |
| :--- |\right.

Guidelines of Meeting IEEE Std. 519-1992 Harmonic Distortion Limits

The IEEE 519-1992 Specification is a standard that provides guidelines for commercial and industrial users that are implementing medium and low voltage equipment.
Table 40-355. Maximum Harmonic Current Distortion in \% of the Fundamental (120 V through 69,000V)

$\mathbf{I s c} / \mathbf{l} \mathbf{L}$	Harmonic Order (Odd Harmonics)					TDD
	$\mathbf{h}<\mathbf{1 1}$	$\mathbf{1 1} \mathbf{h}<\mathbf{1 7}$	$\mathbf{1 7} \mathbf{h}<\mathbf{2 3}$	$\mathbf{2 3} \leq \mathbf{h}<\mathbf{3 5}$	$\mathbf{3 5} \mathbf{h}$	
$\mathbf{2 0}$	4.0	2.0	1.5	0.6	0.3	5.0
$20<50$	7.0	3.5	2.5	1.0	0.5	8.0
$50<100$	10.0	4.5	4.0	1.5	0.7	12.0
$100<1000$	12.0	5.5	5.0	2.0	1.0	15.0
>1000	15.0	7.0	6.0	2.5	1.4	20.0

The ratio ISC/IL is the ratio of the short-circuit current available at the point of common coupling (PCC), to the maximum fundamental load current. Consequently, as the size of the user load decreases with respect to the size of the system, the percentage of harmonic current that the user is allowed to inject into the utility system increases.
Notes:
TDD = Total demand distortion is the harmonic current distortion in percent of the maximum demand load current (15 or 30 minute demand).
${ }^{\text {I }}$ SC $=$ Maximum short circuit current at the PCC not counting motor contribution.
$I_{L}=$ Maximum demand load current for all of the connected loads (fundamental frequency component) at the PCC.
All of the limits are measured at a point of common coupling.

Figure 40-140. Oneline Diagram for Harmonic Analysis
The best way to estimate AFD harmonic contribution to an electrical system is to perform a harmonic analysis based on known system characteristics. The oneline in this Figure would provide the data to complete the calculations.

Terms

- PCC (Point of Common Coupling) is defined as the electrical connecting point between the utility and multiple customers per the specifications in IEEE 519.
- POA (Point of Analysis) is defined as where the harmonic calculations are taken.
An oscilloscope can make all measurements at the PCC or POA to do an on-site harmonic evaluation.

Harmonic Reduction Methods to Meet IEEE 519

1. Line Reactor

A line reactor is a 3 -phase series inductance on the line side of an AFD. If a line reactor is applied on all AFDs, it is possible to meet IEEE guidelines where $10-25 \%$ of system loads are AFDs, depending on the stiffness of the line and the value of line reactance. Line reactors are available in various values of impedance, most typically $1-1.5 \%, 3 \%$ and 5\%.

Figure 40-141. Line Reactor

Advantages

- Low cost
- Can provide moderate reduction in voltage and current harmonics
- Available in various values of impedance
- Provides increased input protection for AFD and its semiconductors from line transients

Disadvantages

■ May not reduce harmonic levels to below IEEE 519-1992 guidelines

- Voltage drop due to IR loss

Enclosed Drives

2. 12-Pulse Converters

A 12-pulse converter incorporates two separate AFD input semiconductor bridges, which are fed from 30° phase shifted power sources with identical impedance. The sources may be two isolation transformers, where one is a delta/wye design (which provides the phase shift) and the second a delta/delta design (which does not phase shift). The 12-pulse arrangement allows the harmonics from the first converter to cancel the harmonics of the second. Up to approximately

85\% reduction of harmonic current and voltage distortion may be achieved (over standard 6-pulse converter). This permits a facility to use a larger percentage of AFD loads under IEEE 519-1992 guidelines than allowable using line reactors or DC chokes. A harmonic analysis is required to guarantee compliance with guidelines.

Figure 40-142. Basic 12-Pulse Rectifier with "Phase Shifting" Transformer

Advantages

- Moderate cost, although significantly more than reactors or chokes
■ Substantial reduction (up to approx. 85\%) in voltage and current harmonics
■ Provides increased input protection for AFD and its semiconductors from line transients

Disadvantages

- Impedance matching of phase shifted sources is critical to performance
■ Transformers often require separate mounting or larger AFD enclosures
- May not reduce distribution harmonic levels to below IEEE 519-1992 guidelines
- Cannot retrofit for most AFDs

Figure 40-143. 500 hp 480 V Drive with 12 -Pulse Rectifier
Table 40-356. 500 hp 480V Drive with 12-Pulse Rectifier

$\left\lvert\,$| $\|l\|$ | | |
| :--- | :---: | :---: |
| 12-Pulse Circuit | | |
| Current Harmonics
 $I_{1}=100 \%$ $I_{11}=4.19 \%$ $I_{19}=0.06 \%$
 $I_{5}=1.25 \%$ $I_{13}=2.95 \%$ $I_{23}=0.87 \%$
 $I_{7}=0.48 \%$ $I_{17}=0.21 \%$ $I_{25}=0.73 \%$
 Power $=500 \mathrm{hp}$
 $\mathrm{H}_{C}=66.2 \mathrm{Amps}$ | | | | |
| :--- |\right.

Enclosed Drives

3. Clean Power Drives

When the total load is of non-linear, the greatest harmonic mitigation is required. Under these conditions, the currents drawn from the supply need to be sinusoidal and "clean" such that system interference and additional losses are negligible. The Cutler-Hammer CPX9000 Clean Power Drive uses a phase-shifting auto transformer with delta-connected winding. Three of the output phases are advanced and three are retarded. The remaining three phases of this nine-phase supply are in phase with the incoming line. This results in nine separate phases. In this type of configuration, the total
required KVA rating of the transformer is only 48% of a drive rate isolation transformer. A traditional isolated transformer system, with multipulse windings, would require the full KVA rating to be supported, which is more common in an MV step-down transformer.
The integrated 18 -pulse clean power drive, with near sine wave input current and low harmonics will meet the requirements of IEEE 519-1992 under all practical operating conditions. The comparisons with 6 -pulse and 12 -pulse systems are shown in Figures 40-139, 40-143 and 40-145.

Figure 40-144. Basic 18-Pulse Rectifier with "Differential Delta" Transformer

Advantages

■ Virtually guarantees compliance with IEEE 519-1992
■ Provides increased input protection for AFD and its semiconductors from line transients

- Up to 4 times the harmonic reduction of 12-pulse methods

■ Smaller transformer than isolation transformer used in 12-pulse converter

Disadvantages

■ Larger and heavier magnetics than some other methods

Figure 40-145. 500 hp 480 V Drive with 18-Pulse Rectifiers
Table 40-357. 500 hp 480 V Drive with 18-Pulse Rectifiers

$\left\lvert\,$| $\|l\|$ | | |
| :--- | :---: | :---: |
| 18-Pulse Clean Power | | |
| Current Harmonics
 $\mathrm{I}_{1}=100 \%$ $\mathrm{I}_{11}=0.24 \%$ $\mathrm{I}_{19}=1.00 \%$
 $\mathrm{I}_{5}=0.16 \%$ $\mathrm{I}_{13}=0.10 \%$ $\mathrm{I}_{23}=0.01 \%$
 $\mathrm{I}_{7}=0.03 \%$ $\mathrm{I}_{17}=0.86 \%$ $\mathrm{I}_{25}=0.01 \%$
 Power $=500 \mathrm{hp}$
 $\mathrm{H}_{\mathrm{C}}=24 \mathrm{Amps}$ | | | | |
| :--- |\right.

Technical Data and Specifications

Table 40-358. Specifications

Feature Description	CPX9000 Enclosed Products - NEMA 12 Filtered
Primary Design Features	

$45-66$ Hz Input Frequency	Standard
Output: AC Volts Maximum	Input Voltage Base
Output Frequency Range: Hz	0-400
Initial Output Current (l_{H})	250\% for 2 seconds
Overload: 1 Minute ($\mathrm{l}_{\mathrm{H}} / \mathrm{l}_{\mathrm{L}}$)	150\%/110\%
Enclosure Space Heater	Optional
Oversize Enclosure	Standard
Output Contactor	Optional
Bypass Motor Starter	Optional
Listings	UL, cUL
Protection Features	
Incoming Line Fuses	Standard 200 KAIC Rating
AC Input Circuit Disconnect	Optional
Phase Rotation Insensitive	Standard
EMI Filter	FR6-FR9 (1)
Input Phase Loss Protection	Standard
Input Overvoltage Protection	Standard
Line Surge Protection	Standard
Output Short Circuit Protection	Standard
Output Ground Fault Protection	Standard
Output Phase Protection	Standard
Overtemperature Protection	Standard
DC Overvoltage Protection	Standard
Drive Overload Protection	Standard
Motor Overload Protection	Standard
Programmer Software	Optional
Local/Remote Keypad	Standard
Keypad Lockout	Standard
Fault Alarm Output	Standard
Built-In Diagnostics	Standard
MOV	Standard
Input/Output Interface Features	
Setup Adjustment Provisions: Remote Keypad/Display Personal Computer	Standard Standard
Operator Control Provisions: Drive Mounted Keypad/Display Remote Keypad/Display Conventional Control Elements Serial Communications 115V AC Control Circuit	Standard Standard Standard Optional Standard
Speed Setting Inputs: Keypad 0 - 10V DC Potentiometer/Noltage Signal 4-20 mA Isolated 4-20 mA Differential 3-15 psig	Standard Standard Configurable Configurable Optional
Analog Outputs: Speed/Frequency Torque/Load/Current Motor Voltage Kilowatts 0 - 10V DC Signals 4-20 mA DC Signals Isolated Signals	Standard Programmable Programmable Programmable Configurable w/Jumpers Standard Optional

[^38]| Feature Description | CPX9000 Enclosed Products -

 NEMA 12 Filtered |
| :--- | :--- |
| Input/Output Interface Features (Continued) | |
| Discrete Outputs: | |
| Fault Alarm | Standard |
| Drive Running | Standard |
| Drive at Set Speed | Programmable |
| Optional Parameters | 14 |
| Dry Contacts | 2 Form C Contacts Available |
| Open Collector Outputs | 1 |
| Additional Discrete Outputs | Optional |
| Communications: | |
| RS-232 | Standard |
| RS-422/485 | Optional |
| DeviceNet | Optional |
| Modbus RTU | Optional |
| CanOpen (Slave) | Optional |
| Profibus-DP | Optional |
| Lonworks ${ }^{\text {® }}$ | Optional |
| Johnson Controls Metasys ${ }^{\text {TM }}$ N2 | Optional |
| Ethernet IP | Optional |
| Performance Features | |

Performance Features

Sensorless Vector Control	Standard
Volts/Hertz Control	Standard
IR and Slip Compensation	Standard
Electronic Reversing	Standard
Dynamic Braking	Optional
DC Braking	Standard
PID Setpoint Controller	Programmable
Critical Speed Lockout	Standard
Current (Torque) Limit	Standard
Adjustable Acceleration/Deceleration	Standard
Linear or S Curve Accel/Decel	Standard
Jog at Preset Speed	Standard
Thread/Preset Speeds	7
Automatic Restart	Selectable
Coasting Motor Start	Standard
Coast or Ramp Stop Selection	Standard
Elapsed Time Meter	Optional
Carrier Frequency Adjustment	1 - 16 kHz

Standard Conditions for Application and Service

Maximum Operating Ambient Temperature	$0-50^{\circ} \mathrm{C}$ up to FR9 $0-40^{\circ} \mathrm{C}$ FR10 and larger, consult factory for $50^{\circ} \mathrm{C}$ rating above FR9
Storage Temperature	$-40-60^{\circ} \mathrm{C}$
Humidity (Maximum), Non-condensing	95%
Altitude (Maximum without Derate)	$3300 \mathrm{ft} .(1000 \mathrm{~m})$
Line Voltage Variation	$+10 /-15 \%$
Line Frequency Variation	$45-66 \mathrm{~Hz}$
Efficiency	$>95 \%$
Power Factor (Displacement)	0.99

Table 40-359. Standard I/O Specifications

Description	Specification
6 - Digital Input Programmable	$24 \mathrm{~V}:$ " 0 " $\leq 10 \mathrm{~V}, " 1 " \geq 18 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}>5 \mathrm{k} \Omega$
2 - Analog Input Configurable w/Jumpers	Voltage: $0- \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}>200 \mathrm{k} \Omega$ Current: $0(4)-20 \mathrm{~mA}, \mathrm{R}_{\mathrm{i}}=250 \mathrm{k} \Omega$
2 - Digital Output Programmable	Form C Relays 250 V AC 2 Amp or 30 V DC 2 Amp resistive
1 - Digital Output Programmable	Open collector 48V DC 50 mA
1 - Analog Output Programmable Configurable w/Jumper	$0-20 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}$ max. 500 ohms 10 bits $\pm 2 \%$

Enclosed Drives

Catalog Number Selection

Table 40-360. CPX9000 Enclosed NEMA Type 1 Drive Catalog Numbering System

[^39]
Product Selection

Figure 40-146. NEMA Type 1, 25-150 hp (30 x 90×21.5)

When Ordering

■ Select a Base Catalog Number that meets the application requirements - nominal horsepower, voltage and enclosure rating. (The enclosed drive's continuous output amp rating should be equal to or greater than the motor's full load amp rating.) The base enclosed package includes a standard drive, door-mounted alphanumeric panel and enclosure.

- The CPX9000 product uses the term High Overload (I_{H}) in place of the term Constant Torque (CT). Likewise, Low Overload (I_{L}) is used in place of the term Variable Torque (VT). The new terms are a more precise description of the rating. The
older terms included ambient temperature ratings in addition to overload ratings. In order to minimize enclosure size and offer the highest ambient temperature rating, overload and temperature ratings are now treated separately. Ambient temperature ratings are shown in Table 40-361. Consult the factory for $50^{\circ} \mathrm{C}$ ratings of FR10 and above.
Table 40-361. Ambient Temperature Ratings

Frame Size	$\mathbf{I}^{\mathbf{H}}$	\mathbf{I}_{L}
FR4 - FR9	$50^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$
FR10 and above	$40^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$

- If Dynamic Brake Chopper or Control/Communication option is desired, change the appropriate code in the Base Catalog Number.
- Note: All of the programming is exactly the same as the standard SVX9000 drive.
■ Select Enclosed Options. Add the codes as suffixes to the Base Catalog Number in alphabetical and numeric order.

Enclosed Drives

480V Drives

Table 40-362. 480V AC CPX9000 Base Drive Product Selection

Enclosure Size ${ }^{(1)}$	hp	Current (A)	Chassis Frame	NEMA Type 1		NEMA 12 Filtered		NEMA 3R ${ }^{3}$	
				Base Catalog Number ${ }^{2}$	Price U	Base Catalog Number ${ }^{(2)}$	$\begin{aligned} & \hline \text { Price } \\ & \text { U.S. \$ } \end{aligned}$	Base Catalog Number ${ }^{(2)}$	$\begin{array}{\|l\|} \hline \text { Price } \\ \text { U.S. \$ } \end{array}$

Low Overload Drive

7	$\begin{aligned} & 25 \\ & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & 38 \\ & 46 \\ & 61 \end{aligned}$	$\begin{array}{\|l} \hline \text { FR6 } \\ \text { FR6 } \\ \text { FR6 } \end{array}$	$\begin{aligned} & \text { CPX02514BA } \\ & \text { CPX03014BA } \\ & \text { CPX04014BA } \end{aligned}$	$\begin{aligned} & \hline \text { CPX02564BA } \\ & \text { CPX03064BA } \\ & \text { CPX04064BA } \end{aligned}$	$\begin{aligned} & \text { CPX02534AA } \\ & \text { CPX03034AA } \\ & \text { CPX04034AA } \end{aligned}$	
7	$\begin{aligned} & 50 \\ & 60 \\ & 75 \end{aligned}$	$\begin{array}{r} 72 \\ 87 \\ 105 \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { FR7 } \\ \text { FR7 } \\ \text { FR7 } \end{array}$	$\begin{aligned} & \text { CPX05014AA } \\ & \text { CPX06014AA } \\ & \text { CPX07514AA } \end{aligned}$	$\begin{aligned} & \text { CPX05064AA } \\ & \text { CPX06064AA } \\ & \text { CPX07564AA } \end{aligned}$	$\begin{aligned} & \text { CPX05034AA } \\ & \text { CPX06034AA } \\ & \text { CPX07534AA } \end{aligned}$	
7	$\begin{aligned} & 100 \\ & 125 \\ & 150 \end{aligned}$	$\begin{aligned} & 140 \\ & 170 \\ & 205 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { FR8 } \\ \text { FR8 } \\ \text { FR8 } \end{array}$	$\begin{aligned} & \text { CPX10014AA } \\ & \text { CPX12514AA } \\ & \text { CPX15014AA } \end{aligned}$	$\begin{aligned} & \text { CPX10064AA } \\ & \text { CPX12564AA } \\ & \text { CPX15064AA } \end{aligned}$	$\begin{aligned} & \text { CPX10034AA } \\ & \text { CPX12534AA } \\ & \text { CPX15034AA } \end{aligned}$	
8	$\begin{aligned} & 200 \\ & 250 \end{aligned}$	$\begin{aligned} & 261 \\ & 300 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { FR9 } \\ \text { FR9 } \end{array}$	$\begin{aligned} & \text { CPX20014AA } \\ & \text { CPX25014AA } \end{aligned}$	$\begin{aligned} & \hline \text { CPX20064AA } \\ & \text { CPX25064AA } \end{aligned}$	$\begin{aligned} & \text { CPX20034AA } \\ & \text { CPX25034AA } \end{aligned}$	
9	$\begin{aligned} & 300 \\ & 350 \\ & 400 \end{aligned}$	$\begin{aligned} & 385 \\ & 460 \\ & 520 \end{aligned}$	$\begin{aligned} & \text { FR10 } \\ & \text { FR10 } \\ & \text { FR10 } \end{aligned}$	$\begin{aligned} & \text { CPX30014AA } \\ & \text { CPX35014AA } \\ & \text { CPX40014AA } \end{aligned}$	$\begin{aligned} & \text { CPX30064AA } \\ & \text { CPX35064AA } \\ & \text { CPX40064AA } \end{aligned}$	-	
10	$\begin{aligned} & 500 \\ & 550 \\ & 600 \end{aligned}$	$\begin{aligned} & 590 \\ & 650 \\ & 730 \end{aligned}$	$\begin{array}{\|l} \hline \text { FR11 } \\ \text { FR11 } \\ \text { FR11 } \end{array}$	CPX50014AA CPX55014AA CPX60014AA	$\begin{aligned} & \text { CPX50064AA } \\ & \text { CPX55064AA } \\ & \text { CPX60064AA } \end{aligned}$	-	
11	$\begin{aligned} & 650 \\ & 700 \\ & 800 \end{aligned}$	$\begin{array}{r} 820 \\ 920 \\ 1030 \end{array}$	$\begin{aligned} & \hline \text { FR11 } \\ & \text { FR12 } \\ & \text { FR12 } \end{aligned}$	$\begin{aligned} & \text { CPX65014AA } \\ & \text { CPX70014AA } \\ & \text { CPX80014AA } \end{aligned}$	$\begin{aligned} & \text { CPX65064AA } \\ & \text { CPX70064AA } \\ & \text { CPX80064AA } \end{aligned}$	-	

7	$\begin{aligned} & 25 \\ & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & 38 \\ & 46 \\ & 61 \end{aligned}$	$\begin{array}{\|l\|l} \hline \text { FR6 } \\ \text { FR6 } \\ \text { FR7 } \end{array}$	CPX02514EA CPX03014EA CPX04014DA	CPX02564EA CPX03064EA CPX04064DA	CPX02534DA CPX03034DA CPX04034DA	
7	$\begin{aligned} & 50 \\ & 60 \\ & 75 \end{aligned}$	72 87 105	$\begin{array}{\|l\|} \hline \text { FR7 } \\ \text { FR7 } \\ \text { FR8 } \end{array}$	$\begin{array}{\|l\|} \hline \text { CPX05014DA } \\ \text { CPX06014DA } \\ \text { CPX07514DA } \end{array}$	$\begin{aligned} & \text { CPX05064DA } \\ & \text { CPX06064DA } \\ & \text { CPX07564DA } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { CPX05034DA } \\ \text { CPX06034DA } \\ \text { CPX07534DA } \end{array}$	
7	$\begin{array}{\|l\|} \hline 100 \\ 125 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 140 \\ 170 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { FR8 } \\ \text { FR8 } \end{array}$	$\begin{array}{\|l\|} \hline \text { CPX10014DA } \\ \text { CPX12514DA } \end{array}$	$\begin{aligned} & \text { CPX10064DA } \\ & \text { CPX12564DA } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { CPX10034DA } \\ \text { CPX12534DA } \end{array}$	
8	$\begin{array}{\|l\|} \hline 150 \\ 200 \\ \hline \end{array}$	$\begin{aligned} & \hline 205 \\ & 245 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { FR9 } \\ \text { FR9 } \end{array}$	$\begin{array}{\|l\|} \hline \text { CPX15014DA } \\ \text { CPX20014DA } \end{array}$	$\begin{aligned} & \text { CPX15064DA } \\ & \text { CPX20064DA } \end{aligned}$	$\begin{aligned} & \text { CPX15034DA } \\ & \text { CPX20034DA } \end{aligned}$	
9	$\begin{aligned} & 250 \\ & 300 \\ & 350 \end{aligned}$	$\begin{aligned} & \hline 300 \\ & 385 \\ & 460 \end{aligned}$	$\begin{aligned} & \hline \text { FR10 } \\ & \text { FR10 } \\ & \text { FR10 } \end{aligned}$	CPX25014DA CPX30014DA CPX35014DA	CPX25064DA CPX30064DA CPX35014DA	-	
10	$\begin{array}{\|l\|} \hline 400 \\ 500 \\ 550 \end{array}$	$\begin{array}{\|l\|} \hline 520 \\ 590 \\ 650 \end{array}$	$\begin{aligned} & \text { FR11 } \\ & \text { FR11 } \\ & \text { FR11 } \end{aligned}$	CPX40014DA CPX50014DA CPX55014DA	$\begin{aligned} & \text { CPX40064DA } \\ & \text { CPX50064DA } \\ & \text { CPX55064DA } \end{aligned}$	-	
11	$\begin{array}{\|l\|} \hline 600 \\ 650 \\ 700 \end{array}$	$\begin{array}{\|l\|} \hline 720 \\ 820 \\ 840 \end{array}$	$\begin{aligned} & \text { FR12 } \\ & \text { FR12 } \\ & \text { FR12 } \end{aligned}$	$\begin{aligned} & \text { CPX60014DA } \\ & \text { CPX65014DA } \\ & \text { CPX70014DA } \end{aligned}$	$\begin{aligned} & \text { CPX60064DA } \\ & \text { CPX65064DA } \\ & \text { CPX70064DA } \end{aligned}$	-	

[^40]2) The 18-pulse Clean Power assembly includes a standard drive, door-mounted local/remote keypad and enclosure.
${ }^{(3)}$ All NEMA 3R drives use the Box F Enclosure.

575V Drives

Table 40-363. 575V AC CPX9000 Base Drive Product Selection

Enclosure Size ${ }^{1}$	hp	Current (A)	Chassis Frame	NEMA Type 1		NEMA 12 Filtered		NEMA 3R ${ }^{3}$	
				Base Catalog Number ${ }^{(2)}$	$\begin{aligned} & \hline \text { Price } \\ & \text { U.S. \$ } \end{aligned}$	Base Catalog Number ${ }^{2}$)	Price 	Base Catalog Number ${ }^{(2)}$	$\begin{array}{\|l} \hline \text { Price } \\ \text { U.S. \$ } \end{array}$
Low Overload Drive									
7	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	$\begin{aligned} & 27 \\ & 34 \end{aligned}$	$\begin{array}{\|l\|l} \hline \text { FR6 } \\ \text { FR6 } \end{array}$	$\begin{array}{\|l\|} \hline \text { CPX02515BA } \\ \text { CPX03015BA } \end{array}$		$\begin{array}{\|l\|} \hline \text { CPX02565BA } \\ \text { CPX03065BA } \end{array}$		$\begin{aligned} & \text { CPX02535BA } \\ & \text { CPX03035BA } \end{aligned}$	
7	$\begin{aligned} & 40 \\ & 50 \end{aligned}$	$\begin{aligned} & 41 \\ & 52 \end{aligned}$	$\begin{aligned} & \hline \text { FR7 } \\ & \text { FR7 } \end{aligned}$	$\begin{aligned} & \text { CPX04015BA } \\ & \text { CPX05015AA } \end{aligned}$		$\begin{aligned} & \text { CPX04065BA } \\ & \text { CPX05065AA } \end{aligned}$		$\begin{aligned} & \text { CPX04035BA } \\ & \text { CPX05035AA } \end{aligned}$	
7	$\begin{array}{r} 60 \\ 75 \\ 100 \end{array}$	$\begin{array}{\|r\|} \hline 62 \\ 80 \\ 100 \end{array}$	$\begin{aligned} & \hline \text { FR8 } \\ & \text { FR8 } \\ & \text { FR8 } \end{aligned}$	$\begin{array}{\|l} \text { CPX06015AA } \\ \text { CPX07515AA } \\ \text { CPX10015AA } \end{array}$		$\begin{aligned} & \text { CPX06065AA } \\ & \text { CPX07565AA } \\ & \text { CPX10065AA } \end{aligned}$		$\begin{array}{\|l\|} \hline \text { CPX06035AA } \\ \text { CPX07535AA } \\ \text { CPX10035AA } \end{array}$	
8	$\begin{aligned} & \hline 125 \\ & 150 \\ & 200 \end{aligned}$	$\begin{array}{\|l\|} \hline 125 \\ 144 \\ 208 \end{array}$	$\begin{array}{\|l} \hline \text { FR9 } \\ \text { FR9 } \\ \text { FR9 } \end{array}$	CPX12515AA CPX15015AA CPX20015AA		$\begin{aligned} & \text { CPX12565AA } \\ & \text { CPX15065AA } \\ & \text { CPX20065AA } \end{aligned}$		$\begin{array}{\|l\|} \hline \text { CPX12535AA } \\ \text { CPX15035AA } \\ \text { CPX20035AA } \end{array}$	
9	$\begin{aligned} & 250 \\ & 300 \\ & 400 \end{aligned}$	$\begin{aligned} & 261 \\ & 325 \\ & 385 \end{aligned}$	$\begin{aligned} & \hline \text { FR10 } \\ & \text { FR10 } \\ & \text { FR10 } \end{aligned}$	CPX25015AA CPX30015AA CPX40015AA		$\begin{aligned} & \text { CPX25065AA } \\ & \text { CPX30065AA } \\ & \text { CPX40065AA } \end{aligned}$		-	
10	$\begin{aligned} & 500 \\ & 600 \end{aligned}$	$\begin{array}{\|l\|} \hline 502 \\ 590 \end{array}$	$\begin{aligned} & \hline \text { FR11 } \\ & \text { FR11 } \end{aligned}$	CPX50015AA		$\begin{aligned} & \text { CPX50065AA } \\ & \text { CPX60065AA } \end{aligned}$		-	
11	$\begin{aligned} & \hline 650 \\ & 700 \\ & 800 \end{aligned}$	$\begin{array}{\|l\|} \hline 650 \\ 750 \\ 820 \end{array}$	$\begin{aligned} & \hline \text { FR12 } \\ & \text { FR12 } \\ & \text { FR12 } \end{aligned}$	CPX65015AA CPX70015AA CPX80015AA		$\begin{aligned} & \text { CPX65065AA } \\ & \text { CPX70065AA } \\ & \text { CPX80065AA } \end{aligned}$		-	

High Overload Drive							
7	25	27	FR6	CPX02515EA	CPX02565EA	CPX02535EA	
7	$\begin{aligned} & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & \hline 34 \\ & 41 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { FR7 } \\ \text { FR7 } \end{array}$	$\begin{aligned} & \hline \text { CPX03015EA } \\ & \text { CPX04015DA } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { CPX03065EA } \\ \text { CPX04065DA } \end{array}$	$\begin{aligned} & \text { CPX03035EA } \\ & \text { CPX04035DA } \end{aligned}$	
7	$\begin{aligned} & 50 \\ & 60 \\ & 75 \end{aligned}$	$\begin{aligned} & 52 \\ & 62 \\ & 80 \end{aligned}$	$\begin{array}{\|l} \hline \text { FR8 } \\ \text { FR8 } \\ \text { FR8 } \end{array}$	$\begin{aligned} & \text { CPX05015DA } \\ & \text { CPX06015DA } \\ & \text { CPX07515DA } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { CPX05065DA } \\ \text { CPX06065DA } \\ \text { CPX07565DA } \end{array}$	$\begin{aligned} & \text { CPX05035DA } \\ & \text { CPX06035DA } \\ & \text { CPX07535DA } \end{aligned}$	
8	$\begin{aligned} & \hline 100 \\ & 125 \\ & 150 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 100 \\ 125 \\ 144 \\ \hline \end{array}$	$\begin{array}{\|l} \hline \text { FR9 } \\ \text { FR9 } \\ \text { FR9 } \end{array}$	$\begin{aligned} & \hline \text { CPX10015DA } \\ & \text { CPX12515DA } \\ & \text { CPX15015DA } \end{aligned}$	CPX10065DA CPX12565DA CPX15065DA	$\begin{aligned} & \text { CPX10035DA } \\ & \text { CPX12535DA } \\ & \text { CPX15035DA } \end{aligned}$	
9	$\begin{aligned} & \hline 200 \\ & 250 \\ & 300 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 208 \\ 261 \\ 325 \end{array}$	$\begin{aligned} & \hline \text { FR10 } \\ & \text { FR10 } \\ & \text { FR10 } \end{aligned}$	$\begin{aligned} & \hline \text { CPX20015DA } \\ & \text { CPX25015DA } \\ & \text { CPX30015DA } \end{aligned}$	$\begin{aligned} & \hline \text { CPX20065DA } \\ & \text { CPX25065DA } \\ & \text { CPX30065DA } \end{aligned}$	-	
10	$\begin{array}{\|l\|} \hline 400 \\ 450 \\ 500 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 385 \\ 460 \\ 502 \end{array}$	$\begin{aligned} & \text { FR11 } \\ & \text { FR11 } \\ & \text { FR11 } \end{aligned}$	$\begin{aligned} & \text { CPX40015DA } \\ & \text { CPX45015DA } \\ & \text { CPX50015DA } \end{aligned}$	$\begin{array}{\|l} \hline \text { CPX40065DA } \\ \text { CPX45065DA } \\ \text { CPX50065DA } \end{array}$	-	
11	$\begin{aligned} & \hline 600 \\ & 650 \\ & 700 \end{aligned}$	$\begin{array}{\|l\|} \hline 590 \\ 650 \\ 750 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { FR12 } \\ & \text { FR12 } \\ & \text { FR12 } \end{aligned}$	$\begin{aligned} & \text { CPX60015DA } \\ & \text { CPX65015DA } \\ & \text { CPX70015DA } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { CPX60065DA } \\ \text { CPX65065DA } \\ \text { CPX70065DA } \end{array}$	-	

(1) See enclosure dimensions in Table 40-364.
(2) The 18-pulse Clean Power assembly includes a standard drive, door-mounted local/remote keypad and enclosure.
${ }^{3}$ All NEMA 3R drives use the Box F Enclosure.
Table 40-364. CPX9000 Enclosure Dimensions

Enclosure Size ${ }^{(4)}$	Approximate Dimensions in Inches (mm)			Approx. Shipping Weight in lbs (kg)
	Width	Height	Depth	$1,000(454)$
7	$30.00(762.0)$	$90.00(2286.0)$	$21.50(546.1)$	$1,400(636)$
8	$48.00(1219.2)$	$90.00(2286.0)$	$26.14(664.0)$	$1,800(817)$
9	$60.00(1524.0)$	$90.00(2286.0)$	$25.74(653.8)$	$2,100(953)$
10	$80.00(2032.0)$	$90.00(2286.0)$	$31.75(806.5)$	$2,500(1,135)$
$11{ }^{(5) 6}($	$120.00(3048.0)$	$90.00(2286.0)$	$25.74(653.8)$	$2,500(1,135)$
Box F ${ }^{(7)}$	$60.00(1524.0)$	$93.50(2374.9)$	$37.50(952.5)$	

[^41]
Enclosed Drives

Options

Control/Communication Option Descriptions

Table 40-365. Available Control/Communications Options

Option	Description	Option Type
K1	Door-Mounted Speed Potentiometer - Provides the CPX9000 with the ability to adjust the frequency reference using a doormounted potentiometer. This option uses the 10 V DC reference to generate a $0-10 \mathrm{~V}$ signal at the analog voltage input signal terminal. When the HOA bypass option is added, the speed is controlled when the HOA switch is in the hand position. Without the HOA bypass option, a 2-position switch (labeled local/remote) is provided on the keypad to select speed reference from the Speed Potentiometer or a remote speed signal.	Control
K2	Door-Mounted Speed Potentiometer with HOA Selector Switch - Provides the CPX9000 with the ability to start/stop and adjust the speed reference from door-mounted control devices or remotely from customer supplied inputs. In HAND position, the drive will start and the speed is controlled by the door-mounted speed potentiometer. The drive will be disabled in the OFF position. When AUTO is selected, the drive run and speed control commands are via user-supplied dry contact and $4-20 \mathrm{~mA}$ signal.	Control
K3	3-15 psig Follower - Provides a pneumatic transducer which converts a 3-15 psig pneumatic signal to either 0-8V DC or a $1-9 V$ DC signal interface with the CPX9000. The circuit board is mounted on the inside of the front enclosure panel and connects to the user's pneumatic control system via 6 ft . $(1.8 \mathrm{~m})$ of flexible tubing and a $1 / 4 \mathrm{inch}(6.4 \mathrm{~mm})$ brass tube union.	Control
K4	HAND/OFF/AUTO Switch for Non-bypass Configurations - Provides a three-position selector switch that allows the user to select either a Hand or Auto mode of operation. Hand mode is defaulted to keypad operation, and Auto mode is defaulted to control from an external terminal source. These modes of operation can be configured via drive programming to allow for alternate combinations of start and speed sources. Start and speed sources include Keypad, I/O and Fieldbus.	Control
K5	MANUAL/AUTO Speed Reference Switch - Provides door-mounted selector switch for Manual/Auto speed reference.	Control
K6	START/STOP Pushbuttons - Provides door-mounted START and STOP pushbuttons for either bypass or non-bypass configurations.	Control
KF	Bypass Test Switch for RB and RA - Allows the user to energize the AF drive for testing while operating the motor on the bypass controller. The Test Switch is mounted on the inside of the enclosure door.	Addl. Bypass
KO	Standard Elapsed Time Meter - Provides a door-mounted elapsed run time meter.	Control
L1	Power On and Fault Power Lights - Provides a white power on light that indicates power to the enclosed cabinet and a red fault light that indicates a drive fault has occurred.	Light
L2	Bypass Pilot Lights for RB, RA Bypass Options - A green light indicates when the motor is running in inverter mode and an amber light indicates when the motor is running in bypass mode. The lights are mounted on the enclosure door, above the switches.	Addl. Bypass
LE	Red Run Pilot Light (22 mm) - Provides a red run pilot light that indicates the drive is running.	Light
P1	Input Circuit Breaker - High Interrupting Circuit Breaker that provides a means of short circuit protection for the power cables between it and the CPX9000, and protection from high-level ground faults on the power cable. Allows a convenient means of disconnecting the CPX9000 from the line and the operating mechanism can be padlocked in the OFF position. This is factory mounted in the enclosure. Standard rating is 65 KAIC at 208/480V. 100 KAIC is available as an option.	Input
PE	Output Contactor - Provides a means for positive disconnection of the drive output from the motor terminals. The contactor coil is controlled by the drive's run or permissive logic. NC and NO auxiliary contacts rated at 10A, 600V AC are provided for customer use. Bypass Options RB and RA include an Output Contactor as standard. This option includes a low VA 115V AC fused Control Power Transformer and is factory mounted in the enclosure.	Output
PF	Output Filter - Used to reduce the transient voltage (DV/DT) at the motor terminals. The Output Filter is recommended for cable lengths exceeding 100 ft . 30 m) with a drive of 3 hp and above, for cable lengths of 33 ft . $(10 \mathrm{~m})$ with a drive of 2 hp and below, or for a drive rated at $525-690 \mathrm{~V}$. This option is mounted in the enclosure, and may be used in conjunction with a Brake Chopper Circuit.	Output
PG	MotoRx ($\mathbf{3 0 0} \mathbf{- 6 0 0}$ Ft.) $\mathbf{1 0 0 0}$ V/ μ S DV/DT Filter — Used to reduce transient voltage (DV/DT) and peak voltages at the motor terminals. This option is comprised of a 0.5% line reactor, followed by capacitive filtering and an energy recovery/clamping circuit. Unlike the Output Filter (See option PF), the MotoRx recovers most of the energy from the voltage peaks, resulting in a lower voltage drop to the motor, and therefore conserving power. This option is used when the distance between a single motor and the drive is $300-600$ feet ($91-183 \mathrm{~m}$).	Output
PH	Single Overload Relay - Uses a bimetallic overload relay to provide additional overload current protection to the motor on configurations without bypass options. It is included with the Bypass Configurations for overload current protection in the bypass mode. The Overload Relay is mounted within the enclosure, and is manually resettable. Heater pack included.	Output
PI	Dual Overload Relays - This option is recommended when a single drive is operating 2 motors and overload current protection is needed for each of the motors. The standard configuration includes two bimetallic overload relays, each sized to protect a motor with 50% of the drive hp rating. For example, a 100 hp drive would include two overload relays sized to protect two 50 hp motors. The relays are mounted within the enclosure, and are manually resettable. Heater packs not included.	Output
PN	Dual Overloads for Bypass - This option is recommended when a single drive is operating 2 motors in the bypass mode and overload current protection is needed for each of the motors. The standard configuration includes two bimetallic overload relays, each sized to protect a motor with 50% of the drive hp rating. For example, a 100 hp drive would include two overload relays sized to protect two 50 hp motors. The relays are mounted within the enclosure, and are manually resettable.	Addl. Bypass

Table 40-365. Available Control/Communications Options (Continued)

Option	Description	Option Type
RA	Manual HOA Bypass Controller - The Manual HAND/OFF/AUTO (HOA) - 3-contactor - bypass option provides a means of bypassing the CPX9000, allowing the AC motor to be operated at full speed directly from the AC supply line. This option consists of an input disconnect, a fused control power transformer, and a full voltage bypass starter with a door mounted HOA selector switch and an INVERTER/BYPASS switch. The HOA switch provides the ability to start and stop the drive in the inverter mode. For applications up to 250 hp , an IT. Series IEC input contactor, an IT. Series IEC output contactor, and an IT. Series IEC starter with an electronic overload relay is included. For applications above 250 hp , an Advantage input contactor, an Advantage output contactor and an Advantage starter with electronic overload protection is included. The contactors are mechanically and electrically interlocked (see power diagram on Page 40-261).	Bypass
RB	Manual IOB Bypass Controller - The Manual INVERTER/OFF/BYPASS (IOB) - 3-contactor - bypass option provides a means of bypassing the CPX9000, allowing the AC motor to be operated at full speed directly from the AC supply line. This option consists of an input disconnect, a fused control power transformer, and a full voltage bypass starter with a door mounted IOB selector switch. For applications up to 250 hp , an IT. Series IEC input contactor, an IT. Series IEC output contactor, and an IT. Series IEC starter with an electronic overload relay is included. For applications above 250 hp , an Advantage input contactor, an Advantage output contactor and an Advantage starter with electronic overload protection is included. The contactors are mechanically and electrically interlocked (see power diagram on Page 40-261).	Bypass
RC	Auto Transfer HOA Bypass Controller - The Manual HAND/OFF/AUTO (HOA) - 3-contactor - bypass option provides a means of bypassing the CPX9000, allowing the AC motor to be operated at full speed directly from the AC supply line. The circuitry provides an automatic transfer of the load to "across the line" operation after a drive trip. This option consists of an input disconnect, a fused control power transformer, and a full voltage bypass starter with a door mounted HOA selector switch and an INVERTER/BYPASS switch. The HOA switch provides the ability to start and stop the drive in either mode. For applications up to 250 hp , an IT. Series IEC input contactor, an IT. Series IEC output contactor, and an IT. Series IEC starter with an electronic overload relay is included. For applications above 250 hp , an Advantage input contactor, an Advantage output contactor and an Advantage starter with electronic overload protection is included. The contactors are mechanically and electrically interlocked (see power diagram on Page 40-261). Door mounted pilot lights are provided which indicate bypass or inverter operation. A green light indicates when the motor is running in inverter mode and an amber light indicates when the motor is running in bypass mode. WARNING: The motor may restart when the overcurrent relay is reset when operating in bypass, unless the IOB selector switch is turned to the OFF position.	Bypass
RD	Auto Transfer IOB Bypass Controller - The Auto INVERTER/OFF/BYPASS (IOB) - 3-contactor - bypass option provides a means of bypassing the CPX9000, allowing the AC motor to be operated at full speed directly from the AC supply line. The circuitry provides an automatic transfer of the load to "across the line" operation after a drive trip. This option consists of an input disconnect, a fused control power transformer, and a full voltage bypass starter with a door mounted IOB selector switch. For applications up to 250 hp , an IT. Series IEC input contactor, an IT. Series IEC output contactor, and an IT. Series IEC starter with an electronic overload relay is included. For applications above 250 hp , an Advantage input contactor, an Advantage output contactor and an Advantage starter with electronic overload protection is included. The contactors are mechanically and electrically interlocked (see power diagram on Page 40-261). Door mounted pilot lights are provided which indicate bypass or inverter operation. A green light indicates when the motor is running in inverter mode and an amber light indicates when the motor is running in bypass mode. WARNING: The motor may restart when the overcurrent relay is reset when operating in bypass, unless the IOB selector switch is turned to the OFF position.	Bypass
RG	Reduced Voltage Starter for Bypass - Used in conjunction with bypass option RA, RB, RC or RD. This option adds IT. Series reduced voltage soft starter to bypass assembly for soft starting in bypass mode.	Bypass
S7	10" Expansion - Expansion cabinet allows for special components, customer-supplied components or oversized cables. NOTE: Enclosure expansion rated NEMA Type 1 only.	Enclosure
S8	20" Expansion - Expansion cabinet allows for special components, customer-supplied components or oversized cables. NOTE: Enclosure expansion rated NEMA Type 1 only.	Enclosure
S9	Space Heater - Prevents condensation from forming in the enclosure when the drive is inactive or in storage. Includes a thermostat for variable temperature control. The 400W heater requires a customer supplied 115 V remote supply source.	Enclosure

Note: For availability, see Pages 40-254 and Page 40-255 for base drive voltage required.
Table 40-366. Dissipated Watt Losses

Horsepower	40	50	60	75	100	125	150	200	250	300	350	400	450	500	600	700	800
Watts	1844	2170	2540	3040	4011	4940	5730	8020	9383	11600	13600	15700	16250	17976	20393	27200	31400

Enclosed Drives

CPX9000 Series Option Board Kits

The CPX9000 Series drives can accommodate a wide selection of expander and adapter option boards to customize the drive for your application needs. The drive's control unit is designed to accept a total of five option boards (see Figure 40-147).

The CPX9000 Series factory installed standard board configuration includes an A9 I/O board and an A2 relay output board, which are installed in slots A and B.

Figure 40-147. CPX9000 Series Option Boards

Table 40-367. Option Board Kits

Option Kit Description (2)	Allowed Slot Locations	Field Installed		Factory Installed		SVX Ready Programs						
		Catalog Number	Price U.S.S	Option Designator	Adder U.S.S	Basic	Local/ Remote	Standard	MSS	PID	Multi-P.	PFC
Standard I/O Cards (See Figure 40-147)												
2 RO (NC/NO)	B	OPTA2		-		X	X	X	X	X	X	X
$\begin{aligned} & \hline 6 \mathrm{DI}, 1 \mathrm{DO}, 2 \mathrm{Al}, 1 \mathrm{AO}, \\ & 1 \text { +10V DC ref, } 2 \text { ext } \\ & \text { +24V DC/ EXT +24V DC } \end{aligned}$	A	OPTA9		-		X	X	X	X	X	X	X

$\begin{aligned} & \hline 6 \mathrm{DI}, 1 \mathrm{ext} \\ & +24 \mathrm{~V} \text { DC/EXT +24V DC } \end{aligned}$	B, C, D, E	OPTB1	B1	-	-	-	-	-	X	X
$\begin{aligned} & \hline 1 \mathrm{RO}(\mathrm{NC} / \mathrm{NO}), 1 \mathrm{RO}(\mathrm{NO}), \\ & 1 \text { Therm } \end{aligned}$	B, C, D, E	OPTB2	B2	-	-	-	-	-	X	X
1 Al (mA isolated), 2 AO (mA isolated), 1 ext +24 V DC/EXT +24 V DC	B, C, D, E	OPTB4	B4	X	X	X	X	X	X	X
3 RO (NO)	B, C, D, E	OPTB5	B5	-	-	-	-	-	X	X
$\begin{aligned} & 1 \mathrm{ext}+24 \mathrm{~V} \mathrm{DC} / \mathrm{EXT}+24 \mathrm{~V} \\ & \mathrm{DC}, 3 \mathrm{Pt} 100 \end{aligned}$	B, C, D, E	OPTB8	B8	-	-	-	-	-	-	-
$\begin{array}{\|l\|} \hline 1 \text { RO (NO), } 5 \text { DI } \\ 42-240 \mathrm{~V} \text { AC Input } \\ \hline \end{array}$	B,C, D, E	OPTB9	B9	-	-	-	-	-	X	X
Communication Cards ${ }^{(3)}$										
Modbus	D, E	OPTC2	C2	X	X	X	X	X	X	X
Modbus TCP	D, E	OPTCI	CI	X	X	X	X	X	X	X
BACnet	D, E	OPTCJ	CJ	X	X	X	X	X	X	X
Ethernet IP	D, E	OPTCK	CK	X	X	X	X	X	X	X
Johnson Controls N2	D, E	OPTC2	CA	-	-	-	-	-	-	-
Profibus DP	D, E	OPTC3	C3	X	X	X	X	X	X	X
LonWorks	D, E	OPTC4	C4	X	X	X	X	X	X	X
Profibus DP (D9 Connector)	D, E	OPTC5	C5	X	X	X	X	X	X	X
CanOpen (Slave)	D, E	OPTC6	C6	X	X	X	X	X	X	X
DeviceNet	D, E	OPTC7	C7	X	X	X	X	X	X	X
Modbus (D9 Type Connector)	D, E	OPTC8	C8	X	X	X	X	X	X	X
RS-232 with D9 Connection	D, E	OPTD3	D3	X	X	X	X	X	X	X

(1) Option card must be installed in one of the slots listed for that card. Slot indicated in Bold is the preferred location.
(2) $\mathrm{AI}=$ Analog Input; $\mathrm{AO}=$ Analog Output, $\mathrm{DI}=$ Digital Input, $\mathrm{DO}=$ Digital Output, RO = Relay Output
(3) OPTC2 is a multi-protocol option card.

Modbus RTU Network Communications

The Modbus Network Card OPTC2 is used for connecting the 9000X Drive as a slave on a Modbus network. The interface is connected by a 9-pin DSUB connector (female) and the baud rate ranges from 300 to 19200 baud. Other communication parameters include an address range from 1 to 247; a parity of None, Odd or Even; and the stop bit is 1 .

Profibus Network Communications

The Profibus Network Card OPTC3 is used for connecting the 9000X Drive as a slave on a Profibus-DP network. The interface is connected by a 9 -pin DSUB connector (female). The baud rates range from 9.6 K baud to 12 M baud, and the addresses range from 1 to 127.

LonWorks Network Communications

The LonWorks Network Card OPTC4 is used for connecting the 9000X Drive on a LonWorks network. This interface uses Standard Network Variable Types (SNVT) as data types. The channel connection is achieved using a FTT-10A Free Topology transceiver via a single twisted transfer cable. The communication speed with LonWorks is $78 \mathrm{kBits} / \mathrm{s}$.

Discount Symbol

Enclosed Drives

CanOpen (Slave) Communications

The CanOpen (Slave) Network Card OPTC6 is used for connecting the 9000X Drive to a host system. According to ISO11898 standard cables to be chosen for CAN bus should have a nominal impedance of 120Ω, and specific line delay of nominal $5 \mathrm{nS} / \mathrm{m} .120 \Omega$ line termination resistors required for installation.

DeviceNet Network Communications

The DeviceNet Network Card OPTC7 is used for connecting the 9000X Drive on a DeviceNet Network. It includes a 5.08 mm pluggable connector. Transfer method is via CAN using a 2 -wire twisted shielded cable with 2 -wire bus power cable and drain. The baud rates used for communication include 125 K baud, 250 K baud and 500 K baud.

Johnson Controls Metasys ${ }^{\text {TM }}$ N2 Network Communications

The OPTC2 fieldbus board provides communication between the 9000X Drive and a Johnson Controls Metasys ${ }^{\text {TM }}$ N2 network. With this connection, the drive can be controlled, monitored and programmed from the Metasys system. The N2 fieldbus is available as a factory installed option and as a field installable kit.

Modbus/TCP Network Communications

The Modbus/TCP Network Card OPTCI is used for connecting the 9000X Drive to Ethernet networks utilizing Modbus protocol. It includes an RJ-45 pluggable connector. This interface provides a selection of standard and custom register values to communicate drive parameters. The board supports 10 Mbps and 100 Mbps communication speeds. The IP address of the board is configurable over Ethernet using a supplied software tool.

BACnet Network Communications

The BACnet Network Card OPTCJ is used for connecting the $9000 \times$ Drive to BACnet networks. It includes a 5.08 mm pluggable connector. Data transfer is Master-Slave/Token Passing (MS/TP) RS-485. This interface uses a collection of 30 Binary Value Objects (BVOs) and 35 Analog Value Objects
(AVOs) to communicate drive parameters. The card supports 9.6, 19.2 and 38.4 Kbaud communication speeds and supports network addresses 1-127.

Ethernet/IP Network Communications

The Ethernet/IP Network Card OPTCK is used for connecting the 9000X Drive to Ethernet/Industrial Protocol networks. It includes an RJ-45 pluggable connector. The interface uses CIP objects to communicate drive parameters (CIP is "Common Industrial Protocol", the same protocol used by DeviceNet). The board supports 10 Mbps and 100 Mbps communication speeds. The IP address of the board is configurable by Static, BOOTP and DHCP methods.
Table 40-368. I/O Specifications for the Control/Communication Options

Description	Specifications
Analog voltage, input	$0- \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{i}} \geq 200 \mathrm{k} \Omega$
Analog current, input	0 (4) - $20 \mathrm{~mA}, \mathrm{R}_{\mathrm{i}}=250 \Omega$
Digital Input	24 V : " 0 " $\leq 10 \mathrm{~V}$, " 1 " $\geq 18 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}>5 \mathrm{k} \Omega$
Aux. voltage	24 V ($\pm 20 \%$), max. 50 mA
Reference voltage	$10 \mathrm{~V} \pm 3 \%$, max. 10 mA
Analog current, output Analog voltage, output	$0(4)-20 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=500 \mathrm{k} \Omega$, resolution 10 bit , accuracy $\leq \pm 2 \%$ 0 (2) - $10 \mathrm{~V}, R_{L} \geq 1 \mathrm{k} \Omega$, resolution 10 bit, accuracy $\leq \pm 2 \%$
Relay output Max. switching voltage Max. switching load Max. continuous load	300 V DC, 250 V AC 8A/24V DC, .4A/300V DC, 2 kVA/250V AC 2A rms
Thermistor input	Rtrip $=4.7 \mathrm{k} \Omega$

Table 40-369. Conformal (Varnished) Coating Adder -
208-240V, 380-500V (1)

Chassis Frame	Delivery Code	Adder U.S. \$	Chassis Frame	Delivery Code	Adder U.S. \$
FR6	FP		FR9	FP	
FR7	FP		FR10	FP	
FR8	FP		FR11	FP	

(1) See catalog number description to order.

Enclosed Options

Table 40-370. 480V Light Options

Catalog Number Suffix ${ }^{\prime \prime \prime} \Rightarrow$	Power On/Fault Pilot Lights (22 mm)	Red RUN Light (22 mm)
	L1	LE
hp	Adder U.S. \$	Adder U.S. \$
$25-800$		

Table 40-371. 480V Control Options

Catalog Number	Door-Mounted Speed Potentiometer	Door-Mounted Speed Potentiometer with HOA Selector Switch	$3-15 \mathrm{psig}$ Follower	HAND/OFF/AUTO Switch (22 mm)	MANUAL/AUTO Ref Switch (22 mm)	START/STOP Pushbuttons (22 mm)	Standard Elapsed Time Meter
Suffix ${ }^{\text {III }}$	K1	K2	K3	K4	K5	K6	KO
hp	Adder U.S. \$						
25-800							

Enclosed Drives

Table 40-372. 480V Bypass Options (1)

Catalog Number	Bypass Test Switch for RA, RB, RC, RD	Bypass Pilot Lights for RA, RB Options	Dual Overloads for Bypass	Manual HOA Bypass Controller	Manual IOB Bypass Controller	Auto Transfer HOA Bypass Controller	Auto Transfer IOB Bypass Controller	Reduced Volt Starter for Bypass
Suffix ${ }^{\text {III }}$	KF	L2	PN	RA	RB	RC	RD	RG
hp	Adder U.S. \$	Adder U.S. \$	Adder U.S. \$	Adder U.S. \$	Adder U.S. \$	Adder U.S. \$	$\begin{aligned} & \text { Adder } \\ & \text { U.S. \$ } \end{aligned}$	$\begin{aligned} & \text { Adder } \\ & \text { U.S. \$ } \end{aligned}$
$\begin{aligned} & 25 \\ & 30 \\ & 40 \\ & 50 \\ & 60 \end{aligned}$								
$\begin{array}{r} \hline 75 \\ 100 \\ 125 \\ 150 \\ 200 \end{array}$								
250 300 350 400 500 550								
$\begin{aligned} & \hline 600 \\ & 650 \\ & 700 \\ & 800 \end{aligned}$								

(1) See Pages 40-251 and 40-252 for details.

Table 40-373. 480V Enclosure Options

Catalog Number Suffix III \Rightarrow	10" Expansion	20" Expansion	Space Heater ${ }^{2}{ }^{2}$
Enclosure Size	Adder U.S. \$	S8	S9
7		Adder U.S.	Adder U.S. \$
7			
9			
10			
11			

(2) Requires customer supplied 115V AC supply.

Table 40-374. 480V Power Options

Catalog Number Suffix ${ }^{\text {III }}$,	Input	Output				
	Input Circuit Breaker (65 KAIC)	Output Contactor	Output Filter	$\begin{aligned} & \text { MotoRx (300-600 Ft.) } \\ & 1000 \text { V/ } \mu \mathrm{S} \text { DV/DT Filter } \end{aligned}$	Single Overload Relay (4)	Dual Overload Relays (4)
	P1	PE	PF	PG	PH	PI
hp	Adder U.S. S	Adder U.S. \$	Adder U.S. \$	Adder U.S. \$	Adder U.S. \$	Adder U.S. S
$\begin{aligned} & 25 \\ & 30 \\ & 40 \\ & 50 \\ & 60 \end{aligned}$						
$\begin{array}{r} \hline 75 \\ 100 \\ 125 \\ 150 \\ 200 \\ \hline \end{array}$						
$\begin{aligned} & \hline 250 \\ & 300 \\ & 350 \\ & 400 \\ & 500 \\ & 550 \end{aligned}$						
$\begin{aligned} & \hline 600 \\ & 650 \\ & 700 \\ & 800 \end{aligned}$						

[^42](4) Heater packs not included.

Dimensions

Enclosure Size 7

Figure 40-148. 25 - $150 \mathrm{hp} \mathrm{I}_{\mathrm{L}}$ and $25-125 \mathrm{hp} \mathrm{I}_{\mathrm{H}} 480 \mathrm{~V}, 25-100 \mathrm{hp} \mathrm{I}_{\mathrm{L}}$ and $25-75 \mathrm{hp} \mathrm{I}_{\mathrm{H}} 575 \mathrm{~V}$ — Approximate Dimensions in Inches (mm)

Enclosed Drives

Enclosure Size 8

Enclosure Size 9

Figure 40-150. $\mathbf{3 0 0} \mathbf{- 4 0 0 ~ h p ~} \mathrm{I}_{\mathrm{L}}$ and $250-350 \mathrm{hp} \mathrm{I}_{\mathrm{H}} 480 \mathrm{~V}, 250-400 \mathrm{hp} \mathrm{I}_{\mathrm{L}}$ and $200-300 \mathrm{hp} \mathrm{I}_{\mathrm{H}} 575 \mathrm{~V}$ — Approximate Dimensions in Inches (mm)

Enclosed Drives

Enclosure Size 10

Figure 40-151. 500-600 hp I_{L} and $400-500 \mathrm{hp} \mathrm{I}_{\mathrm{H}} 480 \mathrm{~V}, 500-600 \mathrm{hp} \mathrm{I}_{\mathrm{L}}$ and $400-500 \mathrm{hp} \mathrm{I}_{\mathrm{H}} \mathbf{5 7 5 \mathrm { V }}$ ——Approximate Dimensions in Inches (mm)

Enclosure Box F NEMA Type 3R Drives

Figure 40-152. 25 - $250 \mathrm{hp} \mathrm{I}_{\mathrm{L}}$ and $25-200 \mathrm{hp} \mathrm{I}_{\mathrm{H}} 480 \mathrm{~V}, 25-200 \mathrm{hp} \mathrm{I}_{\mathrm{L}}$ and $25-150 \mathrm{hp} \mathrm{I}_{\mathrm{H}} 575 \mathrm{~V}$ NEMA 3R Drives — Approximate Dimensions in Inches (mm)

Wiring Diagrams

Figure 40-153. Power Diagram $25-250 \mathbf{h p} \mathrm{I}_{\mathrm{L}}$ and $25-200 \mathbf{h p} \mathrm{I}_{\mathrm{H}}$

Figure 40-154. Power Diagram 300+hp I_{L} and $250+\mathrm{hp} \mathrm{I}_{\mathrm{H}}$

Figure 40-155. Power Diagram 25 - 250 hp I_{L} and $\mathbf{2 5 - 2 0 0 ~ h p} \mathrm{I}_{\mathrm{H}}$ with Bypass

Figure 40-156. Power Diagram 300+hp $\mathrm{I}_{\mathrm{L}} / 250+\mathrm{hp} \mathrm{I}_{\mathrm{H}}$ with Bypass

Contents

Description
 Page

LCX9000 Liquid Cooled Adjustable Frequency Drives

Product Description 40-262
Features and Benefits 40-262
Technical Data and
Specifications 40-262
Catalog Number Selection . 40-264
Product Selection 40-265
Dimensions 40-269
Cooling System Diagrams . 40-278
I/O Board Wiring Diagrams. 40-279

LCX9000 Liquid Cooled Drive

Product Description

The LCX9000 Liquid Cooled Drive family continues Eaton's tradition of providing state-of-the-industry Cutler-Hammer ${ }^{\circledR}$ products, by taking advantage of liquid cooling technology in lieu of air-cooling techniques.
The LCX9000 drives are liquid-cooled products that utilize potable water or a water-glycol mixture as a cooling medium.

Features and Benefits

- Compact size and low heat transfer rates allow enclosure size to be greatly reduced, which is especially beneficial in NEMA Type 4X applications
- Design is modular, with control and power modules independent of each other. Connection between power and control modules can be direct or extended via a fiber optic cable
- Same reliable control module and operating system as the SPX9000 air-cooled drives.
- CE mark ensures compliance with the Electromagnetic Compatibility Directive (EMC) and the Low Voltage Directive (LVD)
■ Reliable drive with over 500,000 hours MTBF based on MIL 217
- Currently supports DeviceNet, PROFIBUS-DP, Modbus RTU and Modbus TCP communication protocols
- Separately mounted line reactor included with AC fed models

Technical Data and Specifications

Table 40-375. LCX9000 Specifications

Description	Specification
Line Voltage	$400-500 \mathrm{~V} \mathrm{AC;} \mathrm{525-690V} \mathrm{AC;} \mathrm{(-10} \mathrm{\%} \mathrm{-10} \mathrm{\%)}$ $665-800 \mathrm{~V}$ DC; $640-1100 \mathrm{~V}$ DC; (-0 -0\%)
Frequency	$50 / 60 \mathrm{~Hz}$
Line Voltage Variation	-10% to 10%
Input Frequency Variation	$45-66 \mathrm{~Hz}$
Continuous Output Current	Rated current at incoming cooling liquid temperature of $30^{\circ} \mathrm{C}$
Output Frequency	$0-320 \mathrm{~Hz}$
Drive Efficiency	$>95 \%$
Power Factor (Displacement)	.96
Liquid Coolant Pressure	87 psi (6 bar) maximum
Liquid Coolant Flow Rate	1.3 to 7.9 gal./min. (5 to 30 liter/min.) minimum depending on
drive size	
Liquid Coolant Fittings	Standard quick connect, NPT
Operating Ambient Temperature	$-10 /+50^{\circ} \mathrm{C}$
Storage Temperature	$-40 /+70^{\circ} \mathrm{C}$
Humidity	95% maximum (non-condensing)
Altitude	3300 ft (1000 m) maximum without derating
Enclosure	IP00
Ratings	CE Mark
Warranty	Standard terms, 3 years with certified start-up

Table 40-376. Technical Information

Description	Specification
Mains Connection	
Input Voltage ($\mathrm{V}_{\text {in }}$)	$\begin{array}{\|l\|} \hline 400-500 V \text { AC; } 525-690 V \text { AC; (-10\% - 10\%) } \\ 465-800 V \text { DC; } 640-1100 V \text { DC; (-0 - 0\%) } \\ \hline \end{array}$
Input Frequency ($\mathrm{f}_{\text {in }}$)	$45-66 \mathrm{~Hz}$
Connection to Mains	Once per minute or less (normal case)

Motor Connection

Output Voltage	$0-V_{\text {in }}$
Continuous Output Current	Rated current at nominal inflow cooling water temperature of $30^{\circ} \mathrm{C}$; Overload $2 \mathrm{sec} . / 20 \mathrm{sec}$.
Starting Current	Rated current at 2 sec. $/ 20 \mathrm{sec}$. if output frequency $<30 \mathrm{~Hz}$ and temperature of heatsink $<149^{\circ} \mathrm{F}\left(65^{\circ} \mathrm{C}\right)$
Output Frequency	$0-320 \mathrm{~Hz}$ (standard); 7200 Hz (special software)
Frequency Resolution	Application dependent
Control Characteristics	
Control Method	Frequency control (V/f) Open loop: Sensorless vector control Closed loop: Frequency control Closed loop: Vector control
Switching Frequency (see parameter 2.6.9)	480V:Up to and including 61-Amp size: $1-16 \mathrm{kHz}$ (factory default, 10 kHz) From 72-Amp size: $1-12 \mathrm{kHz}$ (factory default, 3.6 kHz) $575 \mathrm{~V}: 1-6 \mathrm{kHz}$ (factory default, 1.5 kHz) Note: Derating required if higher switching frequency than the default is used.
Frequency Reference	Analog input: Resolution .1\% (10 bits); Accuracy $\pm 1 \%$ Panel reference: Resolution .01 Hz
Field Weakening Point	$30-320 \mathrm{~Hz}$
Acceleration Time	. $1-3000 \mathrm{sec}$.
Deceleration Time	. 1 - 3000 sec .
Braking Torque	DC brake: $30 \% \times \mathrm{T}_{\mathrm{n}}$ (without brake option)

Ambient Conditions

Ambient Operating Temperature	$14^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right)$, no frost to $+122^{\circ} \mathrm{F}\left(+50^{\circ} \mathrm{C}\right)$ at I th $122-158^{\circ} \mathrm{F}\left(50-70^{\circ} \mathrm{C}\right)$, derating required
Storage Temperature	$-40^{\circ} \mathrm{F}$ to $+158^{\circ} \mathrm{F}\left(-40\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$ No liquid in heatsink under $32^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right)$
Relative Humidity	$5-96 \%$ RH, noncondensing, no dripping water
Air Quality	Chemical vapors: IEC $721-3-3$, unit in operation, class 3C2 Mechanical particles: IEC 721-3-3, unit in operation, class 3S2 (no conductive dust allowed); No corrosive gases
Altitude	Up to 1,000m: 100% load capacity (no derating) Above 1,000m: Derating of 1% per each 100 m required
Vibration	EN 50178, EN 60068-2-6; 5-150 Hz Displacement amplitude: $.25 ~ m m ~(p e a k) ~ a t ~ 3-31 ~ H z ~$
Max. acceleration amplitude:	
1 G at 31 - 150 Hz	

Description	Specification
EMC	Fulfils all EMC immunity requirements
Immunity	EMC level N; EMC level T for IT networks
Emissions	
Safety	Approvals EN 50178, EN 60204-1, CE, UL, CUL, FI, GOST R, IEC 61800-5 (See unit nameplate for more detailed approvals.)

Analog Input Voltage	0 to $+10 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}=200 \mathrm{k} \Omega(-10 \mathrm{~V}$ to +10 V joystick control) Resolution $.1 \% ;$ Accuracy $\pm 1 \%$
Analog Input Current	$0(4)-20 \mathrm{~mA}, \mathrm{R}_{\mathrm{i}}=250 \Omega$ differential
Digital Inputs	6 positive or negative logic; $18-24 \mathrm{~V}$ DC
Auxiliary Voltage	$+24 \mathrm{~V}, \pm 15 \%$, max. 250 mA
Output Reference Voltage	$+10 \mathrm{~V},+3 \%$, max. load 10 mA
Analog Output	$0(4)-20 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}$ max. 500Ω Resolution 10 bits; Accuracy $\pm 2 \%$
Digital Outputs	Open collector output, $50 \mathrm{~mA} / 48 \mathrm{~V}$
Relay Outputs	2 programmable change-over relay outputs Switching capacity: $24 \mathrm{~V} \mathrm{DC} / 8 \mathrm{~A}$, 250 V AC/8A, $25 \mathrm{~V} \mathrm{DC} / .4 \mathrm{~A}$ Min. switching load: $5 \mathrm{~V} / 10 \mathrm{~mA}$

Protections

Overvoltage Protection Undervoltage Protection	480V: $911 \mathrm{~V} ; 575 \mathrm{~V}: 1200 \mathrm{~V}$ 480V: $333 \mathrm{~V} ; 575 \mathrm{~V}: 461 \mathrm{~V}$
Ground Fault Protection	In case of ground fault in motor or motor cable, only the drive is protected.
Mains Supervision	Trips if any of the input phases are missing (drives only).
Motor Phase Supervision	Trips if any of the output phases are missing
Unit Overtemperature Protection	Alarm limit: $149^{\circ} \mathrm{F}\left(65^{\circ} \mathrm{C}\right)$ for heatsink, $158^{\circ} \mathrm{F}$ $\left(70^{\circ} \mathrm{C}\right)$ for circuit boards Trip limit: $158^{\circ}{ }^{\circ}\left(70^{\circ} \mathrm{C}\right)$ for heatsink, $185^{\circ} \mathrm{F}\left(85^{\circ} \mathrm{C}\right)$ for circuit boards
Overcurrent Protection	Yes
Motor Overload Protection	Yes
Motor Stall Protection	Yes
Motor Underload Protection	Yes
Short-Circuit Protection	Yes (+24 V and +10 V reference voltages)

Liquid Cooling

Allowed Cooling Agents	Drinking water Water-glycol mixture
Temperature of Cooling Agent	$32-86^{\circ} \mathrm{F}\left(0-30^{\circ} \mathrm{C}\right)$ at $\mathrm{I}_{\text {th }}$ for input; $86-149^{\circ} \mathrm{F}\left(30-65^{\circ} \mathrm{C}\right)$ Max. temperature rise during circulation: $9^{\circ} \mathrm{F}$ $\left(5^{\circ} \mathrm{C}\right)$, no condensation allowed
System Max. Working Pressure	87 psi (6 bar)
System Max. Peak Pressure	580 psi $(40$ bar)
Pressure Loss (at nominal flow)	Varies according to size

Catalog Number Selection

Table 40-377. LCX9000 Liquid Cooled Adjustable Frequency Drive Catalog Numbering System

[^43]
Product Selection

Table 40-378. 380-500V AC Liquid Cooled Drive Product Selection

Motor Output				Chassis	Catalog Number	Price U.S. \$
Current			kW			
Thermal, $I_{\text {th }}$ (A)	$\begin{aligned} & \hline \mathrm{I}_{\mathrm{L}} \\ & (\mathrm{~A}) \end{aligned}$	$\begin{aligned} & \hline \begin{array}{l} \mathrm{l} H \\ (A) \end{array} \end{aligned}$				
16	15	11	7.5	CH3	LCX016A0-4A2B1	
22	20	15	11	CH3	LCX022A0-4A2B1	
31	28	21	15	CH3	LCX031A0-4A2B1	
38	35	25	18.5	CH3	LCX038A0-4A2B1	
45	41	30	22	CH3	LCX045A0-4A2B1	
61	55	41	30	CH3	LCX061A0-4A2B1	
72	65	48	37	CH4	LCX072A0-4A2N1	
87	79	58	45	CH4	LCX087A0-4A2N1	
105	95	70	55	CH4	LCX105A0-4A2N1	
140	127	93	75	CH4	LCX140A0-4A2N1	
168	153	112	90	CH5	LCX168A0-4A2N1	
205	186	137	110	CH5	LCX205A0-4A2N1	
261	237	174	132	CH5	LCX261A0-4A2N1	
300	273	200	160	CH61	LCX300A0-4A2N1	
385	350	257	200	CH61	LCX385A0-4A2N1	
460	418	307	250	CH72	LCX460A0-4A2N1	
520	473	347	250	CH72	LCX520A0-4A2N1	
590	536	393	315	CH72	LCX590A0-4A2N1	
650	591	433	355	CH72	LCX650A0-4A2N1	
730	664	487	400	CH72	LCX730A0-4A2N1	
820	745	547	450	CH63	LCX820A0-4A2N1	
920	836	613	500	CH63	LCX920A0-4A2N1	
1030	936	687	560	CH63	LCXH10A0-4A2N1	
1150	1045	766	600	CH63	LCXH11A0-4A2N1	
1370	1245	913	700	CH74	LCXH13A0-4A2N1	
1640	1491	1093	900	CH74	LCXH16A0-4A2N1	
2060	1873	1373	1100	CH74	LCXH20A0-4A2N1	
2300	2091	1533	1200	CH74	LCXH23A0-4A2N1	

Table 40-379. 525-690V AC Liquid Cooled Drive Product Selection

Motor Output				Chassis	Catalog Number	Price U.S. \$
Current			kW			
Thermal, $\mathrm{I}_{\text {th }}$ (A)	$\begin{aligned} & \mathrm{I} \mathrm{I}_{\mathrm{L}} \\ & \mathrm{~A}) \end{aligned}$	$\begin{aligned} & \mathrm{I} \mathrm{H} \\ & (\mathrm{~A}) \end{aligned}$				
170	155	113	110	CH61	LCX170A0-5A2N1	
208	189	139	132	CH61	LCX208A0-5A2N1	
261	237	174	160	CH72	LCX261A0-5A2N1	
325	295	217	200	CH72	LCX325A0-5A2N1	
385	350	257	250	CH72	LCX385A0-5A2N1	
416	378	277	250	CH72	LCX416A0-5A2N1	
460	418	307	300	CH72	LCX460A0-5A2N1	
502	456	335	355	CH72	LCX502A0-5A2N1	
590	536	393	400	CH63	LCX590A0-5A2N1	
650	591	433	450	CH63	LCX650A0-5A2N1	
750	682	500	500	CH63	LCX750A0-5A2N1	
820	745	547	560	CH74	LCX820A0-5A2N1	
920	836	613	650	CH74	LCX920A0-5A2N1	
1030	936	687	700	CH74	LCXH10A0-5A2N1	
1180	1073	787	800	CH74	LCXH11A0-5A2N1	
1300	1182	867	900	CH74	LCXH13A0-5A2N1	
1500	1364	1000	1000	CH74	LCXH15A0-5A2N1	

Table 40-380. 540-675V DC Liquid Cooled Inverter Unit Product Selection

Drive Output					Power Lossc/a/T(kW)	Chassis	Catalog Number	Price U.S. \$
Current			Motor Output Power					
Thermal $I_{\text {th }}$ (A)	Rated Cont. IL (A)	Rated Cont. I_{H} (A)	Optimum Motor at $\mathrm{I}_{\text {th }}$ 400V (kW)	Optimum Motor at $I_{\text {th }}$ 500 V (kW)				
16	15	11	7.5	11	0.4/0.2/0.6	CH3	LCX016A0-4A7B1	
22	20	15	11	15	0.5/0.2/0.7	CH3	LCX022A0-4A7B1	
31	28	21	15	18.5	0.7/0.2/0.9	CH3	LCX031A0-4A7B1	
38	35	25	18.5	22	0.8/0.2/1.0	CH3	LCX038A0-4A7B1	
45	41	30	22	30	1.0/0.3/1.3	CH3	LCX045A0-4A7B1	
61	55	41	30	37	1.3/0.3/1.5	CH3	LCX061A0-4A7B1	
72	65	48	37	45	1.2/0.3/1.5	CH4	LCX072A0-4A7N1	
87	79	58	45	55	1.5/0.3/1.8	CH 4	LCX087A0-4A7N1	
105	95	70	55	75	1.8/0.3/2.1	CH4	LCX105A0-4A7N1	
140	127	93	75	90	2.3/0.3/2.6	CH4	LCX140A0-4A7N1	
168	153	112	90	110	2.5/0.3/2.8	CH5	LCX168A0-4A7N1	
205	186	137	110	132	3.0/0.4/3.4	CH5	LCX205A0-4A7N1	
261	237	174	132	160	4.0/0.4/4.4	CH5	LCX261A0-4A7N1	
300	273	200	160	200	4.5/0.4/4.9	CH61	LCX300A0-4A7N1	
385	350	257	200	250	5.5/0.5/6.0	CH61	LCX385A0-4A7N1	
460	418	307	250	315	5.5/0.5/6.0	CH62	LCX460A0-4A7N1	
520	473	347	250	355	6.5/0.5/7.0	CH62	LCX520A0-4A7N1	
590	536	393	315	400	7.5/0.6/8.1	CH62	LCX590A0-4A7N1	
650	591	433	355	450	8.5/0.6/9.1	CH62	LCX650A0-4A7N1	
730	664	487	400	500	10.0/0.7/10.7	CH62	LCX730A0-4A7N1	
820	745	547	450	560	12.5/0.8/13.3	CH63	LCX820A0-4A7N1	
920	836	613	500	600	14.4/0.9/15.3	CH63	LCX920A0-4A7N1	
1030	936	687	560	700	16.5/1.0/17.5	CH63	LCXH10A0-4A7N1	
1150	1045	766	600	750	18.4/1.1/19.5	CH63	LCXH11A0-4A7N1	
1370	1245	913	700	900	15.5/1.0/16.5	CH64	LCXH13A0-4A7N1	
1640	1491	1093	900	1100	19.5/1.2/20.7	CH64	LCXH16A0-4A7N1	
2060	1873	1373	1100	1400	26.5/1.5/28.0	CH64	LCXH20A0-4A7N1	
2300	2091	1533	1250	1500	29.6/1.7/31.3	CH64	LCXH23A0-4A7N1	
2470	2245	1647	1300	1600	36.0/2.0/38.0	2*CH64	LCXH24A0-4A7N1	
2950	2681	1967	1550	1950	39.0/2.4/41.4	2*CH64	LCXH29A0-4A7N1	
3710	3372	2473	1950	2450	48.0/2.7/50.7	2*CH64	LCXH37A0-4A7N1	
4140	3763	2760	2150	2700	53.0/3.0/66.0	2*CH64	LCXH41A0-4A7N1	

Table 40-381. 710 - 930V DC Liquid Cooled Inverter Unit Product Selection

Drive Output					Power Lossc/a/T(kW)	Chassis	Catalog Number	Price U.S. \$
Current			Motor Output Power					
Thermal $I_{\text {th }}$ (A)	Rated Cont. IL (A)	Rated Cont. I_{H} (A)	Optimum Motor at $\mathrm{I}_{\text {th }}$ 400V (kW)	Optimum Motor at $\mathrm{I}_{\text {th }}$ 500 V (kW)				
170	155	113	110	160	4.5/0.2/4.7	CH61	LCX170A0-5A7N1	
208	189	139	132	200	5.5/0.3/5.8	CH61	LCX208A0-5A7N1	
261	237	174	160	250	5.5/0.3/5.8	CH61	LCX261A0-5A7N1	
325	295	217	200	300	6.5/0.3/6.8	CH62	LCX325A0-5A7N1	
385	350	257	250	355	7.5/0.4/7.9	CH62	LCX385A0-5A7N1	
416	378	277	250	355	8.0/0.4/8.4	CH62	LCX416A0-5A7N1	
460	418	307	300	400	8.5/0.4/8.9	CH62	LCX460A0-5A7N1	
502	456	335	355	450	10.0/0.5/10.5	CH62	LCX502A0-5A7N1	
590	536	393	400	560	10.0/0.5/10.5	CH63	LCX590A0-5A7N1	
650	591	433	450	600	13.5/0.7/14.2	CH63	LCX650A0-5A7N1	
750	682	500	500	700	16.0/0.8/16.8	CH63	LCX750A0-5A7N1	
820	745	547	560	800	16.0/0.8/16.8	CH64	LCX820A0-5A7N1	
920	836	613	650	850	18.0/0.9/18.9	CH64	LCX920A0-5A7N1	
1030	936	687	700	1000	19.0/1.0/20.0	CH64	LCXH10A0-5A7N1	
1180	1073	787	800	1100	21.0/1.1/22.1	CH64	LCXH11A0-5A7N1	
1300	1182	867	900	1200	27.0/1.4/28.4	CH64	LCXH13A0-5A7N1	
1500	1364	1000	1050	1400	32.0/1.6/33.6	CH64	LCXH15A0-5A7N1	
1700	1545	1133	1150	1550	NA	CH64	LCXH17A0-5A7N1	
1850	1682	1233	1250	1650	34.2/1.8/36.0	2*CH64	LCXH18A0-5A7N1	
2120	1927	1413	1450	1900	37.8/2.0/39.8	2*CH64	LCXH21A0-5A7N1	
2340	2127	1560	1600	2100	48.6/2.5/51.1	2*CH64	LCXH23A0-5A7N1	
2700	2455	1800	1850	2450	57.6/3.0/60.6	2*CH64	LCXH27A0-5A7N1	
3100	2818	2066	2150	2800	NA	2*CH64	LCXH31A0-5A7N1	

June 2008

Series Option Board Kits

The 9000X Series drives can accommodate a wide selection of expander and adapter option boards to customize the drive for your application needs. The drive's control unit is designed to accept a total of five option boards (see Figure 40-157).

The 9000X Series factory installed standard board configuration includes an A9 I/O board and an A2 relay output board, which are installed in slots A and B.

Figure 40-157. 9000X Series Option Boards
Table 40-382. Option Board Kits

Option Kit Description (2)	Allowed Slot Locations	Field Installed		Factory Installed		SVX Ready Programs						
		Catalog Number	Price U.S.S	Option Designator	Adder U.S.S	Basic	Local/ Remote	Standard	MSS	PID	Multi-P.	PFC
Standard I/O Cards (See Figure 40-157)												
2 RO (NC/NO)	B	OPTA2		-		X	X	X	X	X	X	X
$\begin{aligned} & 6 \mathrm{DI}, 1 \mathrm{DO}, 2 \mathrm{Al}, 1 \mathrm{AO}, 1+10 \mathrm{~V} \text { DC ref, } \\ & 2 \text { ext +24V DC/EXT +24V DC } \end{aligned}$	A	OPTA9		-		X	X	X	X	X	X	X

Extended I/O Card Options

2 RO , Therm	B	OPTA3	A3	-	X	X	X	X	X	X
Encoder Low Volt $+5 \mathrm{~V} / 15 \mathrm{~V} / 24 \mathrm{~V}$	C	OPTA4	A4	-	X	X	X	X	X	X
Encoder High Volt +15V/24V	C	OPTA5	A5	-	X	X	X	X	X	X
Dual Encoder +15V/24V	C	OPTA7	A7	-	X	X	X	X	X	X
6 DI, 1 DO, 2 Al, 1 AO	A	OPTA8	A8	-	X	X	X	X	X	X
$\begin{array}{\|l} \hline 3 \mathrm{DI} \text { (Encoder } 10-24 \mathrm{~V}) \text {, Out +15V/+24V, } 2 \\ \text { DO (pulse+direction) - SPX Only } \end{array}$	C	OPTAE	AE	X	X	X	X	X	X	X
6 DI, 1 ext +24V DC/EXT +24V DC	B, C, D, E	OPTB1	B1	-	-	-	-	-	X	X
1 RO (NC/NO), 1 RO (NO), 1 Therm	B, C, D, E	OPTB2	B2	-	-	-	-	-	X	X
1 Al (mA isolated), 2 AO (mA isolated), 1 ext +24 V DC/EXT +24 V DC	B, C, D, E	OPTB4	B4	-	X	X	X	X	X	X
3 RO (NO)	B, C, D, E	OPTB5	B5	-	-	-	-	-	X	X
1 ext +24V DC/EXT +24V DC, 3 Pt100	B, C, D, E	OPTB8	B8	-	-	-	-	-	-	-
1 RO (NO), 5 DI 42 -240V AC Input	B,C, D, E	OPTB9	B9	-	-	-	-	-	X	X
SPI, Absolute Encoder	C	OPTBB	BB	-	-	-	-	-	-	-
Communication Cards										
Modbus	D, E	OPTC2 ${ }^{3}$	C2	X	X	X	X	X	X	X
Johnson Controls N2	D, E	OPTC2 ${ }^{3}$	CA	-	-	-	-	-	-	-
Profibus DP	D, E	OPTC3	C3	X	X	X	X	X	X	X
LonWorks	D, E	OPTC4	C4	X	X	X	X	X	X	X
Profibus DP (D9 Connector)	D, E	OPTC5	C5	X	X	X	X	X	X	X
CanOpen (Slave)	D, E	OPTC6	C6	X	X	X	X	X	X	X
DeviceNet	D, E	OPTC7	C7	X	X	X	X	X	X	X
Modbus (D9 Type Connector)	D, E	OPTC8	C8	X	X	X	X	X	X	X
Modbus TCP	D, E	OPTCI	CI	X	X	X	X	X	X	X
Adapter - SPX Only	D, E	OPTD1	D1	X	X	X	X	X	X	X
Adapter - SPX Only	D, E	OPTD2	D2	X	X	X	X	X	X	X
$\begin{array}{\|l} \hline \text { RS-232 with } \\ \text { D9 Connection } \end{array}$	D, E	OPTD3	D3	X	X	X	X	X	X	X

Keypad

9000X Series Standard Keypad	-	KEYPADSTD	-	-	-	-	-	-	-	X
9000X Series Remote Mount Keypad Unit (Keypad not included, includes 10 ft . cable, keypad holder, mounting hardware)	-	OPTRMT-KIT- 9000X	-	-	-	-	-	-	-	-

[^44](2) $\mathrm{AI}=$ Analog Input; $\mathrm{AO}=$ Analog Output, $\mathrm{DI}=$ Digital Input, $\mathrm{DO}=$ Digital Output, RO = Relay Output
(3) OPTC2 is a multi-protocol option card.

Line Reactors

The line reactor carries out several functions in the Liquid Cooled Drive. Connection of the line reactor is necessary except if you have a component in your system that performs the same tasks (e.g. a transformer). The line reactor is needed as an essential component for motor control, to protect
the input and DC-link components against abrupt changes of current and voltage as well as to function as a protection against harmonics. The line reactors are included in the standard delivery of liquid-cooled drives (not inverters). However, you can also order your drive without a line reactor.

Table 40-383. Line Reactor Specifications

Drive Rating $480 \mathrm{~V}$	Drive Rating 690V	Thermal Current (A)	Nominal Inductance ($\mu \mathrm{H}$) A/B ${ }^{(1)}$	Calculated Loss (W)	Choke Catalog Number (690V AC)
16 to 22A	12 to 23A	23	1900	145	CHK0023N6A0
31 to 38A	31 to 38A	38	1100	170	CHK0038N6A0
45 to 61A	46 to 62A	62	700	210	CHK0062N6A0
72 to 87A	72 to 87A	87	480	250	CHK0087N6A0
105 to 140A	105 to 140A	145	290	380	CHK0145N6A0
168 to 261A	170 to 261A	261	139/187	460	CHK0261N6A0
300 to 385A	$\begin{aligned} & 325 \text { to } 385 \mathrm{~A} \\ & 820 \text { to } 1180 \mathrm{~A} \text { (2) } \end{aligned}$	400	90/126	570	CHK0400N6A0
$\begin{aligned} & 460 \text { to 520A } \\ & 1370 \mathrm{~A} \text { (2) } \end{aligned}$	$\begin{aligned} & 416 \text { to } 502 \mathrm{~A} \\ & 1300 \text { to } 1500 \mathrm{~A} \end{aligned}$	520	65/95	610	CHK0520N6AO
$\begin{aligned} & 590 \text { to } 650 \mathrm{~A} \\ & 1640 \mathrm{~A} \text { (2) } \end{aligned}$	590 to 650A	650	51/71	840	CHK0650N6A0
$\begin{aligned} & 730 \mathrm{~A} \\ & 2060 \mathrm{~A}(2) \end{aligned}$	-	730	45/61	850	CHK0730N6AO
$\begin{array}{\|l\|} \hline 820 \mathrm{~A} \\ 2300 \mathrm{~A}^{(2} \end{array}$	750A	N/A	N/A	N/A	CHK0820N6AO
920 to 1030A	-	1000	30/41	950	CHK1030N6A0
1150A	-	1150	26/36	1000	CHK1150N6A0

(1) Inductances for different supply voltages: $\mathrm{A}=400-480 \mathrm{~V}$ AC; $\mathrm{B}=500-690 \mathrm{~V}$ AC.
(2) Drives require three chokes of the designated catalog number with 6-pulse supply.

Table 40-384. Line Reactor Dimensions

Catalog Number	H1 Inches (mm)	W1 Inches (mm)	D1 Inches (mm)	Weight Lbs. (kg)
CHK0023N6A0 $7.01(178)$ $9.06(230)$ $4.76(121)$ $22 \quad(10)$ CHK0038N6A0 $8.23(209)$ $10.63(270)$ $5.71(145)$ $33 \quad(15)$ CHK0062N6A0 $8.39(213)$ $11.81(300)$ $6.30(160)$ $44 \quad(20)$ CHK0087N6A0 $9.13(232)$ $11.81(300)$ $6.69(170)$ $57 \quad(26)$ CHK0145N6A0 $11.50(292)$ $11.81(300)$ $7.28(185)$ $82 \quad(37)$ CHK0220N6A0 $12.05(306)$ $13.86(352)$ $7.28(185)$ $119 \quad(54)$ CHK0325N6A0 $13.66(347)$ $13.86(352)$ $7.28(185)$ $132 \quad(60)$ CHK0460N6A0 $16.54(423)$ $13.70(348)$ $9.41(239)$ $203 \quad(92)$ CHK0520N6A0 $17.60(447)$ $15.51(394)$ $10.71(272)$ $231(105)$ CHK0590N6A0 $20.43(519)$ $15.51(394)$ $10.71(272)$ $276(125)$ CHK0650N6A0 $20.51(521)$ $15.51(394)$ $10.71(272)$ $276(125)$ CHK0750N6A0 $24.72(628)$ $15.51(394)$ $11.10(282)$ $331(150)$ CHK0820N6A0 $24.72(628)$ $15.51(394)$ $11.10(282)$ $331(150)$ CHK1000N6A0 $22.68(576)$ $19.57(497)$ $11.85(301)$ $441(200)$ CHK1150N6A0 $22.83(580)$ $19.57(497)$ $11.85(301)$ $441(200)$				

Dimensions

Figure 40-160. Approximate Dimensions, CH3

Figure 40-161. Approximate Dimensions, CH4

Front

Side

Top

Bottom

Figure 40-162. Approximate Dimensions, CH5
Table 40-385. LCX9000 Chassis Dimensions

Chassis Size	Voltage	Amps	Approximate Dimensions in Inches (mm)									Weight lbs. (kg)
			H1	H2	H3	D1	W1	W2	W3	R1 dia.	R2 dia.	
CH3	$380-500 \mathrm{~V}$ AC	16-61	$\begin{aligned} & 16.97 \\ & (431.0) \end{aligned}$	$\begin{array}{\|l\|} \hline .53 \\ (13.5) \end{array}$	$\begin{aligned} & \hline .59 \\ & (15.0) \end{aligned}$	$\begin{aligned} & \hline 9.69 \\ & (246.0) \end{aligned}$	$\begin{aligned} & 6.30 \\ & (160.0) \end{aligned}$	$\begin{aligned} & 4.80 \\ & (122.0) \end{aligned}$	$\begin{aligned} & 4.80 \\ & (122.0) \end{aligned}$	$\begin{aligned} & .39 \\ & (10.0) \end{aligned}$	$\begin{array}{\|l\|} \hline .35 \\ (9.0) \end{array}$	$\begin{array}{\|l\|} \hline 66 \\ (30) \end{array}$
CH4	$380-500 \mathrm{~V}$ AC	72-140	$\begin{aligned} & 19.41 \\ & (493.0) \end{aligned}$	$\begin{aligned} & \hline .49 \\ & (12.5) \end{aligned}$	$\begin{aligned} & 1.77 \\ & (45.0) \end{aligned}$	$\begin{aligned} & 10.14 \\ & (257.5) \end{aligned}$	$\begin{aligned} & 7.60 \\ & (193.0) \end{aligned}$	$\begin{array}{\|l\|} \hline 3.35 \\ (85.0) \end{array}$	$\begin{aligned} & 5.24 \\ & (133.0) \end{aligned}$	$\begin{aligned} & .39 \\ & (10.0) \end{aligned}$	-	$\begin{array}{\|l\|} \hline 77 \\ \text { (35) } \end{array}$
CH5	$380-500 \mathrm{~V}$ AC	168-261	$\begin{aligned} & 21.77 \\ & (553.0) \end{aligned}$	$\begin{aligned} & \hline 1.30 \\ & (33.0) \end{aligned}$	$\begin{aligned} & \hline 19.88 \\ & (505.0) \end{aligned}$	$\begin{array}{\|l\|} \hline 10.39 \\ (264.0) \end{array}$	$\begin{aligned} & 9.69 \\ & (246) \end{aligned}$	$\begin{aligned} & \hline 3.94 \\ & (100.0) \end{aligned}$	$\begin{aligned} & \hline 7.87 \\ & (200.0) \end{aligned}$	$\begin{aligned} & .51 \\ & (13.0) \end{aligned}$	-	$\begin{array}{\|l\|} \hline 88 \\ (40) \end{array}$

Figure 40-163. Approximate Dimensions, CH61
Table 40-386. LCX9000 Chassis Dimensions

Chassis Size	Voltage	Amps	Approximate Dimensions in Inches (mm)									Weight lbs. (kg)
			H1	H2	H3	D1	W1	W2	W3	R1 dia.	R2 dia.	
CH61	$380-500 \mathrm{~V}$ AC	300-385	$\begin{array}{\|l\|} \hline 25.91 \\ (658.0) \end{array}$	$\begin{aligned} & \hline 2.09 \\ & (53.0) \end{aligned}$	$\begin{aligned} & \hline 23.23 \\ & (590.0) \end{aligned}$	$\begin{aligned} & \hline 14.69 \\ & (373.0) \end{aligned}$	$\begin{aligned} & 9.69 \\ & (246.0) \end{aligned}$	$\begin{aligned} & \hline 3.94 \\ & (100.0) \end{aligned}$	$\begin{aligned} & \hline 5.91 \\ & (150.0) \end{aligned}$	$\begin{array}{\|l\|} \hline .55 \\ (14.0) \end{array}$	$\begin{array}{\|l} .51 \\ (13.0) \end{array}$	$\begin{aligned} & \hline 121 \\ & (55) \end{aligned}$
	525-690V AC	170-208										

Bottom

Side

Front

Figure 40-164. Approximate Dimensions, LCX9000 Liquid-Cooled Inverter, CH62
Table 40-387. LCX9000 Liquid-Cooled Inverter, CH62 Dimensions

Chassis Size	Voltage	Amps	Approximate Dimensions in Inches (mm)								
			H1	H2	H3	D1	W1	W2	W3	R1 dia.	R2 dia.
CH62	$540-675 \mathrm{~V}$ DC	460-730	$\begin{aligned} & \hline 26.50 \\ & (673) \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & \text { (53) } \end{aligned}$	$\begin{aligned} & 23.23 \\ & (590) \end{aligned}$	$\begin{array}{\|l\|} \hline 14.69 \\ (373) \end{array}$	$\begin{aligned} & \hline 9.69 \\ & (246) \end{aligned}$	$\begin{aligned} & \hline 3.94 \\ & (100) \end{aligned}$	$\begin{aligned} & \hline 5.91 \\ & (150) \end{aligned}$	$\begin{aligned} & \hline .55 \\ & (14) \end{aligned}$	$\begin{array}{\|l\|} \hline .51 \\ (13) \end{array}$
	710 -930V DC	325-502									

Figure 40-165. Approximate Dimensions, CH72
Table 40-388. LCX9000 Chassis Dimensions

Chassis Size	Voltage	Amps	Approximate Dimensions in Inches (mm)							Weight lbs. (kg)
			H1	H2	H3	D1	W1	R1 dia.	R2 dia.	
CH72	380-500V AC	460-730	$\begin{aligned} & \hline 42.38 \\ & (1076.5) \end{aligned}$	$\begin{aligned} & \hline 1.57 \\ & (40.0) \end{aligned}$	$\begin{aligned} & 39.37 \\ & (1000.0) \end{aligned}$	$\begin{aligned} & \hline 14.65 \\ & (372.0) \end{aligned}$	$\begin{aligned} & \hline 7.87 \\ & (200.0) \end{aligned}$	$\begin{aligned} & \hline .55 \\ & (14.0) \end{aligned}$	$\begin{aligned} & .51 \\ & (13.0) \end{aligned}$	$\begin{aligned} & \hline 198 \\ & (90) \end{aligned}$
	525-690V AC	261-502								

Figure 40-166. Approximate Dimensions, CH63
Table 40-389. LCX9000 Chassis Dimensions

Chassis Size	Voltage	Amps	Approximate Dimensions in Inches (mm)							Weight lbs. (kg)
			H1	H2	H3	D1	W1	W2	R1 dia.	
CH63	$380-500 \mathrm{~V}$ AC	820-1030	$\begin{array}{\|l\|} \hline 36.36 \\ (923.5) \end{array}$	$\begin{array}{\|l\|} \hline .91 \\ (23.0) \end{array}$	$\begin{array}{\|l\|} \hline 34.39 \\ (873.5) \end{array}$	$\begin{aligned} & \hline 15.35 \\ & (390.0) \end{aligned}$	$\begin{aligned} & \hline 19.88 \\ & \text { (505.0) } \end{aligned}$	$\begin{aligned} & \hline 13.98 \\ & (355.0) \end{aligned}$	$\begin{aligned} & \hline .43 \\ & (11.0) \end{aligned}$	$\begin{aligned} & \hline 264 \\ & (120) \end{aligned}$
	525-690V AC	590-750								

Figure 40-167. Approximate Dimensions, LCX9000 Liquid-Cooled Inverter with Mounting Bracket, CH64, IP90
Table 40-390. LCX9000 Liquid-Cooled Inverter with Mounting Bracket, CH64, IP90 Dimensions

Chassis Size	Voltage	Amps	Approximate Dimensions in Inches (mm)						
			H1	H2	H3	D1	W1	W2	R1 dia.
CH64	540-675V DC	1370-4140	$\begin{array}{\|l\|} \hline 36.38 \\ (924) \end{array}$	$\begin{aligned} & 1.03 \\ & (26) \end{aligned}$	$\begin{array}{\|l\|} \hline 34.37 \\ (873) \end{array}$	$\begin{aligned} & 15.35 \\ & (390) \end{aligned}$	$\begin{aligned} & 29.37 \\ & (746) \end{aligned}$	$\begin{array}{\|l\|} \hline 7.87 \\ (200) \end{array}$	$\begin{array}{\|l\|} \hline .43 \\ \text { (11) } \end{array}$
	710-930V DC	820-3100							

Front

Top

Side

Bottom

Figure 40-168. Approximate Dimensions, CH74
Table 40-391. LCX9000 Chassis Dimensions

Chassis Size	Voltage	Amps	Approximate Dimensions in Inches (mm)										Weight lbs. (kg)
			H1	H2	H3	D1	W1	W2	W3	W4	R1 dia.	R2 dia.	
CH74	$380-500 \mathrm{~V}$ AC	1370-2300	$\begin{array}{\|l\|} \hline 42.38 \\ (1076.5) \end{array}$	$\begin{aligned} & \hline 1.57 \\ & (40.0) \end{aligned}$	$\begin{aligned} & \hline 39.37 \\ & (1000.0) \end{aligned}$	$\begin{aligned} & \hline 14.65 \\ & (372.0) \end{aligned}$	$\begin{array}{\|l\|} \hline 29.06 \\ (738.0) \end{array}$	$\begin{array}{\|l\|} \hline .91 \\ (23.0) \end{array}$	$\begin{aligned} & \hline 7.87 \\ & (200.0) \end{aligned}$	$\begin{aligned} & 9.69 \\ & (246) \end{aligned}$	$\begin{aligned} & .51 \\ & (13.0) \end{aligned}$	$\begin{aligned} & .55 \\ & (14.0) \end{aligned}$	$\begin{aligned} & \hline 617 \\ & (280) \end{aligned}$
	525-690V AC	820-1500											

Control Unit Dimensions

Figure 40-169. Approximate Dimensions, Control Unit
Table 40-392. LCX9000 Control Unit Dimensions

Approximate Dimensions in Inches (mm)					
H1	H2	H3	D1	D2	W1
12.93 .33 11.81 2.95 .33 (328.5) (8.5) (300.0) (75.0) (8.5)					

Cooling System Diagrams

Figure 40-170. Example of a Typical Cooling System

Figure 40-171. Example PI-Diagram of a Typical Cooling System and Connections

I/O Board Wiring Diagrams

Figure 40-172. A9 Option Board Control Wiring

Figure 40-173. A2 Option Board Wiring

Contents

Description
 SPI Common DC Bus Drive Products

Product Description 40-280
Application Description ... 40-280
Features and Benefits 40-282
Technical Data and
Specifications 40-282
Catalog Number
Selection 40-284
Product Selection 40-286
Dimensions 40-289
Wiring Diagrams 40-290

SPI9000 Products

Product Description

Eaton offers a comprehensive range of Cutler-Hammer ${ }^{\circledR}$ common DC bus drive products. The product family covers a number of front-end units and inverter units in the entire power range from 1-1/2 to 2000 horsepower at 460 V and 690 V . The drive components are built on the SPX9000 technology.

Front-End Units

The front-end units convert a mains AC voltage and current into a DC voltage and current. The power is transferred from the mains to a common DC bus (and, in certain cases, vice versa).
The SPA (active front-end) unit is a bidirectional (regenerative) power converter for the front end of a common DC bus drive line up. An external LCL filter is used at the input. This unit is suitable in applications where low mains harmonics are required.

The SPN (non-regenerative front-end) unit is a unidirectional (motoring) power converter for the front-end of a common DC bus drive line-up. The device operates as a diode bridge using diode/thyristor components. A dedicated external choke is used at the input. The unit has the capacity to charge a common DC bus. This unit is suitable as a rectifying device when a "normal" level of harmonics is accepted and no regeneration to the mains is required.

Inverter Unit

The SPI9000 Inverter Unit is a bidirectional DC-fed power inverter for the supply and control of AC motors. The inverter is supplied from a common DC bus drive line-up. A charging circuit is needed in case a connection to a live DC bus is required. The DC side charging circuit is integrated up to 75 kW (FR4 - FR8) and external for higher power ratings (FI9 - FI14).

Application Description

The Cutler-Hammer common DC bus product portfolio fulfills all solution demands with a flexible architecture.
Front end units are selected according to the level of harmonics and power requirements. Typical drive system configurations are illustrated in
Figures 40-174-40-175.

Figure 40-174. SPN + Inverters
■ Low total mains power, $\mathrm{P}_{\text {mains }} \leq \sum \mathrm{P}_{\text {INU }}$
■ Suitable e.g. for small processing line with un- and recoiler, em-stop coasting

Figure 40-175. SPA + Inverters

- Low harmonics, $-P_{\text {mains }} \approx+P_{\text {mains }}$ $P_{\text {mains }} \leq \sum P_{\text {INU }}$
■ Suitable for almost every application

Figure 40-176. Combination Configuration
Common DC bus components are used in a multitude of combinations. Drives which are braking can transfer the energy directly to the drives in motoring mode.

Advantages over Conventional Front Ends

Table 40-393. Cutler-Hammer Front Ends vs. Conventional

	Non-regenerative Front End	Active Front End	Conventional Regenerative Front End (1)
Input device	Choke (L)	Filter (LCL)	Choke or auto-transformer (L)
Bridge type	Diode/thyristor bridge	IGBT bridge, two-level type	Anti-parallel connected thyristor bridge
Type of operation	Controlled half-bridge	High frequency modulation $(1.5$ to 3.6 kHz)	Firing angle controlled
Direction of power	Motoring	Motoring and regenerating	Motoring and regenerating
Charging	Constant current	External required	Usually internal
DC voltage	Nominal (approx. $\left.1.35 * U_{\mathrm{N}}\right)$	Stable at +10\% of nominal (approx. 110% of 1.35 * UN	Lowered DC voltage for commutation margin (e.g. 17\% fi approx. 83\% of 1.35 * UN) or autotransformer on regenerative bridge
THD	Similar to 6-pulse bridge normal < 40\%	Very low	Similar to six-pulse bridge or worse

(1) Conventional regenerative front end (a.k.a. "anti-parallel thyristor bridge") is not available from Eaton.

Features and Benefits

Table 40-394. Standard Features

Feature	SPI9000		SPA	SPN	
	FR4, 6, 7	FR8	FI9 - FI14	FI9 - FI14	FI9
IP00		\bullet	\bullet	\bullet	\bullet
IP21	\bullet				
Air cooling	\bullet	\bullet	\bullet	\bullet	\bullet
Standard board	\bullet	\bullet	\bullet	\bullet	
Varnished board					\bullet
Alphanumeric keypad	\bullet	\bullet	\bullet	\bullet	
EMC class T (EN 61800-3 for IT networks)	\bullet	\bullet	\bullet	\bullet	\bullet
Safety CE / UL	\bullet	\bullet	\bullet	\bullet	\bullet
Input choke					\bullet
LCL filter				\bullet	
No integrated charging			\bullet	\bullet	
Integrated charging (DC side)	\bullet	\bullet			\bullet
Diode/thyristor rectifier					\bullet
IGBT	\bullet	\bullet	\bullet	\bullet	

Technical Data and Specifications

Table 40-395. Specifications

Description	Specifications
Supply Connection	
Input voltage $\mathrm{U}_{\text {in }}(\mathrm{AC})$ Front End modules	$380-500 \mathrm{~V}$ AC / $525-690 \mathrm{~V}$ AC -10\% to +10\%
Input voltage $\mathrm{U}_{\text {in }}(\mathrm{DC})$ Inverter	$465-800 \mathrm{~V}$ DC / $640-1100 \mathrm{~V}$ DC -0% to $+0 \%$, The waviness of the inverter supply voltage, formed in rectification of the electric network's alternating voltage in basic frequency, must be less than 50 V peak-to-peak
Output voltage $\mathrm{U}_{\text {out }}$ (AC) Inverter	$3 \sim 0-\mathrm{U}_{\text {in }} / 1.4$
Output voltage $\mathrm{U}_{\text {out }}$ (DC) Active Front End module	$1.10 \times 1.35 \times \mathrm{U}_{\text {in }}$ (Factory default)
Output voltage $\mathrm{U}_{\text {out }}(\mathrm{DC})$ Non-regenerative Front End module	$1.35 \times \mathrm{U}_{\text {in }}$
Ambient Conditions	
Ambient operating temperature	14 (no frost) to $122^{\circ} \mathrm{F}\left(-10\right.$ to $50^{\circ} \mathrm{C}$): I_{H} 14 (no frost) to $104^{\circ} \mathrm{F}\left(-10\right.$ to $\left.40^{\circ} \mathrm{C}\right)$: I L
Storage temperature	-40 to $158^{\circ} \mathrm{F}\left(-40\right.$ to $70^{\circ} \mathrm{C}$)
Relative humidity	0 to 95\% RH, non-condensing, non-corrosive, no dripping water
Air quality: - chemical vapors - mechanical particles	IEC 721-3-3, unit in operation, class 3C2 IEC 721-3-3, unit in operation, class 3S2
Altitude	100% load capacity (no derating) up to 1000 m 1% derating for each 100 m above 1000 m ; max. 3000 m
Vibration	$5-150 \mathrm{~Hz}$
EN50178/EN60068-2-6	Displacement amplitude 0.25 mm (peak) at $3-15.8 \mathrm{~Hz}$ Max acceleration amplitude 1G at $15.8-150 \mathrm{~Hz}$
Shock EN50178, EN60068-2-27	UPS Drop Test (for applicable UPS weights) Storage and shipping: max 15G, 11 mS (in package)
Cooling capacity required	approximately 2%
Cooling air required	FR4 41 cfm , FR6 250 cfm , FR7 250 cfm , FR8 383 cfm FI9 677 cfm, FI10 824 cfm, FI12 1648 cfm, FI13 2472 cfm
Unit enclosure class	FR4 - FR7 NEMA Type 1 (IP21); FR8, FI9 - FI14 Chassis (IP00)
EMC (at fault settings)	
Immunity	Fulfill all EMC immunity requirements
Safety	
Approvals	CE, UL, CUL, EN 61800-5-1 (2003), see unit nameplate for more detailed approvals
Control Connections	
Analog input voltage	$\begin{aligned} & 0-10 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}=200 \mathrm{k} \Omega,(-10 \mathrm{~V}-10 \mathrm{~V} \text { joystick control) } \\ & \text { Resolution } 0.1 \% \text {, accuracy } \pm 1 \% \end{aligned}$
Analog input current	$0(4)-20 \mathrm{~mA}, \mathrm{R}_{\mathrm{i}}=250 \Omega$ differential
Digital inputs	6 , positive or negative logic; $18-30 \mathrm{~V}$ DC

Table 40-395. Specifications (Continued)

Description	Specifications
Control Connections (Continued)	
Auxiliary voltage	+24V, $\pm 15 \%$, max. 250 mA
Output reference voltage	+10V, +3\%, max. load 10 mA
Analog output	0(4) - 20 mA ; RL max. 500Ω; resolution 10 bits Accuracy $\pm 2 \%$
Digital outputs	Open collector output, $50 \mathrm{~mA} / 48 \mathrm{~V}$
Relay outputs	2 programmable change-over relay outputs Switching capacity: 24 V DC / 8A, 250V AC / 8A, 125V DC / 0.4A Min. switching load: 5V / 10 mA
Protections	
Overvoltage protection	480V / 911V DC, 575V / 1200V DC
Undervoltage protection	480V / 333V DC, 575V / 460V DC
Ground fault protection	In case of ground fault in motor or motor cable, only the inverter is protected
Motor phase supervision	Trips if any of the output phases is missing
Overcurrent protection	Yes
Unit overtemperature protection	Yes
Motor overload protection	Yes
Motor stall protection	Yes
Motor underload protection	Yes
Short circuit protection of 24 V and 10 V reference voltages	Yes

Table 40-396. Input Fuses

Module		Bussman Fuse Type (aR)	Size	$\mathrm{U}_{\mathrm{N}}(\mathrm{V})$	$\mathrm{I}_{\mathrm{N}}(\mathrm{A})$	Oty.
Component	Frame					
Inverter Units						
SPI003A1-4	FR4	170M1560	000	690	20	2
SPI007A1-4	FR4	170M1562	000	690	63	2
SPI009A1-4	FR4	170M1562	000	690	63	2
SPI012A1-4	FR6	170M1565	000	690	63	2
SPI016A1-4	FR6	170M1565	000	690	63	2
SPI023A1-4	FR6	170M1565	000	690	63	2
SPI031A1-4	FR6	170M1567	000	690	100	2
SPI038A1-4	FR6	170M1567	000	690	100	2
SPI061A1-4	FR7	170M1570	000	690	200	2
SPI072A1-4	FR7	170M1570	000	690	200	2
SPI087A1-4	FR7	170M1571	000	690	250	2
SPI105A0-4	FR8	170M3819	DIN1	690	400	2
SPI140A0-4	FR8	170M3819	DIN1	690	400	2
SPI170A0-4	FR8	170M3819	DIN1	690	400	2
SPI205A0-4	FI9	170M6812	DIN3	690	800	2
SPI245A0-4	FI9	170M6812	DIN3	690	800	2
SPI300A0-4	FI10	170M8547	3SHT	690	1250	2
SPI385A0-4	Fl10	170M8547	3SHT	690	1250	2
SPI460A0-4	Fl10	170M8547	3SHT	690	1250	2
SPI520A0-4	Fl12	170M8547	3SHT	690	1250	2×2
SPI590A0-4	Fl12	170 M 8547	3SHT	690	1250	2×2
SPI650A0-4	Fl12	170M8547	3SHT	690	1250	2×2
SPI730A0-4	Fl12	170 M 8547	3SHT	690	1250	2×2
SPI820A0-4	Fl12	170 M 8547	3SHT	690	1250	2×2
SPI920A0-4	Fl12	170M8547	3SHT	690	1250	2×2
SPIH10A0-4	FI13	170M8547	3SHT	690	1250	6
SPIH11A0-4	Fl13	170M8547	3SHT	690	1250	6
SPIH13A0-4	Fl13	170M8547	3SHT	690	1250	6
SPIH16A0-4	FI14	170M8547	3SHT	690	1250	2×6
SPIH19A0-4	Fl14	170M8547	3SHT	690	1250	2×6
SPIH23A0-4	FI14	170 M 8547	3SHT	690	1250	2×6
Active Front Ends						
SPA205A0-4	FI9	170M6202	3SHT	1250	500	3
SPA385A0-4	FI10	170M6277	3SHT	1250	1000	3
SPAH10A0-4	FI13	170M6277	3SHT	1250	1000	3×3
Non-regenerative Front Ends						
SPN468A0-4	F19	170M8547	3SHT	690	1250	3

Note: SHT fuses can be assembled into same-size DIN fuse base.

Catalog Number Selection

Table 40-397. Active Front End Catalog Numbering System

Table 40-398. Non-regenerative Front End Catalog Numbering System

Table 40-399. SPI9000 Inverter Unit Catalog Numbering System

Product Selection

Table 40-400. Active Front End 480V Product Selection

Frame	Low Overload (AC Current)		High Overload (AC Current)		$\begin{array}{\|l\|} \hline \operatorname{Imax} \\ \hline \mathbf{I}_{\mathbf{2 s}}(\mathrm{A}) \\ \hline \end{array}$	Catalog Number	$\begin{aligned} & \text { Price } \\ & \text { U.S. \$ } \end{aligned}$
	$\mathrm{I}_{\text {L-cont }}(\mathrm{A})$	$1_{1 \text { min }}(\mathrm{A})$	$\mathrm{I}_{\mathrm{H} \text {-cont }}(\mathrm{A})$	$1_{1 \text { min }}(\mathrm{A})$			
FI9	261	287	205	308	349	SPA205A0-4A3N1	
FI10	460	506	385	578	693	SPA385A0-4A3N1	
FI13	1300	1430	1150	1725	2070	SPAH11A0-4A3N1	

Table 40-401. Non-regenerative Front End 480V Product Selection

Frame	Low Overload (AC Current)		High Overload (AC Current)		Imax	Catalog Number	$\begin{aligned} & \text { Price } \\ & \text { U.S. \$ } \end{aligned}$
	IL-cont (A)	$1{ }_{1 \text { min }}(\mathrm{A})$	$\mathrm{I}_{\mathrm{H} \text {-cont }}(\mathrm{A})$	$1_{1 \text { min }}(\mathrm{A})$	$\mathbf{1 2 s}^{\text {(}}$ ($)$		
FI9	520	572	460	690	828	SPN460A0-4A3N1	

Table 40-402. SPI9000 Inverter Unit 480V Product Selection

Frame	Low Overload (AC Current)		High Overload (AC Current)		$\begin{array}{\|l\|} \hline \operatorname{Imax} \\ \hline \mathrm{I}_{2 \mathrm{~s}}(\mathrm{~A}) \\ \hline \end{array}$	Catalog Number	Price U.S. \$
	IL-cont (A)	$1_{1 \text { min }}(\mathrm{A})$	$\mathrm{I}_{\mathrm{H} \text {-cont }}{ }^{(A)}$	$\mathrm{I}_{1 \text { min }}(\mathrm{A})$			
FR4	4.3	4.7	3.3	5.0	6.2	SPI003A1-4A3N1	
FR4	9	9.9	7.6	11.4	14	SPI007A1-4A3N1	
FR4	12	13.2	9	13.5	18	SPI009A1-4A3N1	
FR6	16	17.6	12	18	24	SPI012A1-4A3N1	
FR6	23	25.3	16	24	32	SPI016A1-4A3N1	
FR6	31	34	23	35	46	SPI023A1-4A3N1	
FR6	38	42	31	47	62	SPI031A1-4A3N1	
FR6	46	51	38	57	76	SPI038A1-4A3N1	
FR7	72	79	61	92	122	SPI061A1-4A3N1	
FR7	87	96	72	108	144	SPI072A1-4A3N1	
FR7	105	116	87	131	174	SPI087A1-4A3N1	
FR8	140	154	105	158	210	SPI105A0-4A3N1	
FI9	170	187	140	210	280	SPI140A0-4A3N1	
FI9	205	226	170	255	336	SPI170A0-4A3N1	
FI9	261	287	205	308	349	SPI205A0-4A3N1	
FI9	300	330	245	379	444	SPI245A0-4A3N1	
FI10	385	424	300	450	540	SPI300A0-4A3N1	
FI10	460	506	385	578	693	SPI385A0-4A3N1	
FI10	520	572	460	690	828	SPI460A0-4A3N1	
FI12	590	649	520	780	936	SPI520A0-4A3N1	
FI12	650	715	590	885	1062	SPI590A0-4A3N1	
FI12	730	803	650	975	1170	SPI650A0-4A3N1	
FI12	820	902	730	1095	1314	SPI730A0-4A3N1	
FI12	920	1012	820	1230	1476	SPI820A0-4A3N1	
FI12	1030	1133	920	1380	1656	SPI920A0-4A3N1	
FI13	1150	1265	1030	1545	1854	SPIH10A0-4A3N1	
FI13	1300	1430	1150	1720	2070	SPIH11A0-4A3N1	
FI13	1450	1595	1300	1950	2340	SPIH13A0-4A3N1	
FI14	1770	1947	1600	2400	2880	SPIH16A0-4A3N1	
FI14	2150	2365	1940	2910	3492	SPIH19A0-4A3N1	

Table 40-403. LCL Filters for Active Front End (480V)

Catalog Number	Amps	Price U.S. \$
REG 1050 0	10	
REG 1850	18	
REG 3250	32	
REG 485 0	48	
REG 75 5 0	75	
REG 11050	110	
REG 18050	180	
REG 27050	270	
REG 41050	410	
REG 58050	580	
REG 84050	840	
REG 116050 0	1160	
REG 148050 0	1480	

Table 40-404. Line Reactor for Non-
regenerative Front End (480/575V)

Catalog Number	Amps	Watts Losses	Price U.S. \$
CHK600	600	493	

Table 40-405. Active Front End 575V Product Selection

Frame	Low Overload (AC Current)		High Overload (AC Current)		Imax	Catalog Number	PriceU.S.
	$\mathrm{I}_{\text {L-cont }}(\mathrm{A})$	$1_{1 \text { min }}(\mathrm{A})$	$\mathrm{I}_{\mathrm{H} \text {-cont }}(\mathrm{A})$	$1_{1 \text { min }}(\mathrm{A})$	$\mathrm{I}_{2 \mathrm{~s}}(\mathrm{~A})$		
FI9	144	158	125	188	213	SPA125A0-5A3N1	
FI10	385	424	325	488	585	SPA325A0-5A3N1	
FI13	1030	1133	920	1380	1656	SPA920A0-5A3N1	

Table 40-406. Non-regenerative Front End 575V Product Selection

Frame	Low Overload (AC Current)		High Overload (AC Current)		Imax	Catalog Number	$\begin{array}{\|l\|} \hline \text { Price } \\ \text { U.S. \$ } \end{array}$
	${ }_{\text {L-cont }}(\mathrm{A})$	$\mathrm{I}_{1 \text { min }}(\mathrm{A})$	$\mathrm{I}_{\mathrm{H} \text {-cont }}(\mathrm{A})$	$1_{1 \text { min }}(\mathrm{A})$	$\mathrm{I}_{2 \mathrm{~s}}(\mathrm{~A})$		
F19	600	660	510	732	888	SPN510A	

Table 40-407. SP19000 Inverter Unit 575V Product Selection

Frame	Low Overload (AC Current)		High Overload (AC Current)		Imax	$\begin{array}{\|l\|} \hline \text { Catalog } \\ \text { Number } \end{array}$	$\begin{array}{\|l\|} \hline \text { Price } \\ \text { U.S. } \$ \end{array}$
	$\mathrm{I}_{\text {L-cont }}{ }^{(A)}$	$\mathrm{I}_{1 \text { min }}(\mathrm{A})$	$\mathrm{I}_{\mathrm{H} \text {-cont }}(\mathrm{A})$	$\mathrm{I}_{1 \text { min }}(\mathrm{A})$	$\mathrm{I}_{2 \mathrm{~s}}(\mathrm{~A})$		
FR6	4.5	5	3.2	5	6.4	SPI003A1-5A3N1	
FR6	5.5	6	4.5	7	9	SPI004A1-5A3N1	
FR6	7.5	8	5.5	8	11	SPI005A1-5A3N1	
FR6	10	11	7.5	11	15	SPI007A1-5A3N1	
FR6	13.5	15	10	15	20	SPI010A1-5A3N1	
FR6	18	20	13.5	20	27	SPI013A1-5A3N1	
FR6	22	24	18	27	36	SPI018A1-5A3N1	
FR6	27	30	22	33	44	SPI022A1-5A3N1	
FR6	34	37	27	41	54	SPI027A1-5A3N1	
FR7	41	45	34	51	68	SPI034A1-5A3N1	
FR7	52	57	41	62	82	SPI041A1-5A3N1	
FR8	62	68	52	78	104	SPI052A0-5A3N1	
FR8	80	88	62	93	124	SPI062A0-5A3N1	
FR8	100	110	80	120	160	SPI080A0-5A3N1	
FI9	125	138	100	150	200	SPI100A0-5A3N1	
FI9	144	158	125	188	213	SPI125A0-5A3N1	
FI9	170	187	144	216	245	SPI144A0-5A3N1	
FI9	208	229	170	255	289	SPI170A0-5A3N1	
FI10	261	287	208	312	375	SPI208A0-5A3N1	
Fl10	325	358	261	392	470	SPI261A0-5A3N1	
Fl10	385	424	325	488	585	SPI325A0-5A3N1	
FI12	460	506	385	578	693	SPI385A0-5A3N1	
Fl12	502	552	460	690	828	SPI460A0-5A3N1	
Fl12	590	649	502	753	904	SPI502A0-5A3N1	
Fl12	650	715	590	885	1062	SPI590A0-5A3N1	
Fl12	750	825	650	975	1170	SPI650A0-5A3N1	
Fl13	920	1012	820	1230	1476	SPI820A0-5A3N1	
Fl13	1030	1133	920	1380	1656	SPI920A0-5A3N1	
Fl13	1180	1298	1030	1464	1755	SPIH10A0-5A3N1	
FI14	1500	1650	1300	1950	2340	SPIH13A0-5A3N1	
Fl14	1900	2090	1500	2250	2700	SPIH15A0-5A3N1	
FI14	2250	2475	1900	2782	3335	SPIH19A0-5A3N1	

Table 40-408. LCL Filters for Active Front End (690V)

Catalog Number	Amps	Price U.S. \$
REG 1460	14	
REG 2360	23	
REG 3560	35	
REG 5260	52	
REG 8560	85	
REG 12260	122	
REG 18560	185	
REG 28760	287	
REG 39060	390	
REG 46060	460	
REG 62060	620	
REG 78060	780	
REG 92060	920	
REG 118060	1180	

Table 40-409. Line Reactor for Non-
regenerative Front End (480/575V)

Catalog Number	Amps	Watts Losses	Price U.S. \$
CHK600	600	493	

Series Option Board Kits

The 9000X Series drives can accommodate a wide selection of expander and adapter option boards to customize the drive for your application needs. The drive's control unit is designed to accept a total of five option boards (see Figure 40-177).

The 9000X Series factory installed standard board configuration includes an A9 I/O board and an A2 relay output board, which are installed in slots A and B.

Figure 40-177. 9000X Series Option Boards

Table 40-410. Option Board Kits

Option Kit Description (2)	Allowed Slot Locations	Field Installed		Factory Installed		SVX Ready Programs						
		Catalog Number	$\begin{aligned} & \hline \text { Price } \\ & \text { U.S.\$ } \end{aligned}$	Option Designator	Adder U.S.	Basic	Local/ Remote	Standard	MSS	PID	Multi-P.	PFC

Standard I/O Cards (See Figure 40-177)

2 RO ($\mathrm{NC/NO}$)	B	OPTA2	-	X	X	X	X	X	X	X
6 DI, 1 DO, 2 Al, 1AO, 1 +10V DC ref, 2 ext +24V DC/EXT +24V DC	A	OPTA9	-	X	X	X	X	X	X	X

Extended I/O Card Options

2 RO , Therm	B	OPTA3	A3	-	X	X	X	X	X	X
Encoder low volt $+5 \mathrm{~V} / 15 \mathrm{~V} 24 \mathrm{~V}$	C	OPTA4	A4	-	X	X	X	X	X	X
Encoder high volt +15V/24V	C	OPTA5	A5	-	X	X	X	X	X	X
Double encoder	C	OPTA7	A7	X	X	X	X	X	X	X
$6 \mathrm{DI}, 1 \mathrm{DO}, 2 \mathrm{Al}, 1 \mathrm{AO}$	A	OPTA8	A8	-	X	X	X	X	X	X
$\begin{aligned} & \text { 3 DI (Encoder } 10-24 \mathrm{~V}) \text {, Out }+15 \mathrm{~V} /+24 \mathrm{~V} \text {, } \\ & 2 \mathrm{DO} \text { (pulse+direction) } \end{aligned}$	C	OPTAE	AE	X	X	X	X	X	X	X
$6 \mathrm{DI}, 1 \mathrm{ext}+24 \mathrm{~V}$ DC/EXT +24V DC	B, C, D, E	OPTB1	B1	-	-	-	-	-	X	X
1 RO ($\mathrm{NC} / \mathrm{NO}$), 1 RO (NO), 1 Therm	B, C, D, E	OPTB2	B2	-	-	-	-	-	X	X
$\begin{aligned} & 1 \mathrm{Al} \text { (mA isolated), } 2 \mathrm{AO} \text { (mA isolated), } \\ & 1 \mathrm{ext}+24 \mathrm{~V} \mathrm{DC} / E X T+24 \mathrm{~V} \mathrm{DC} \end{aligned}$	B, C, D, E	OPTB4	B4	-	X	X	X	X	X	X
3 RO (NO)	B, C, D, E	OPTB5	B5	-	-	-	-	-	X	X
1 ext +24V DC/EXT +24V DC, 3 Pt100	B, C, D, E	OPTB8	B8	-	-	-	-	-	-	-
1 RO (NO), 5 DI $42-240 \mathrm{~V}$ AC Input	B,C, D, E	OPTB9	B9	-	-	-	-	-	X	X
SPI, Absolute Encoder	C	OPTBB	BB	-	-	-	-	-	-	-
Communication Cards ${ }^{\text {3 }}$										
Modbus	D, E	OPTC2	C2	X	X	X	X	X	X	X
Johnson Controls N2	D, E	OPTC2	CA	-	-	-	-	-	-	-
Modbus TCP	D, E	OPTCI	CI	X	X	X	X	X	X	X
BACnet	D, E	OPTCJ	CJ	X	X	X	X	X	X	X
Ethernet IP	D, E	OPTCK	CK	X	X	X	X	X	X	X
Profibus DP	D, E	OPTC3	C3	X	X	X	X	X	X	X
LonWorks	D, E	OPTC4	C4	X	X	X	X	X	X	X
Profibus DP (D9 Connector)	D, E	OPTC5	C5	X	X	X	X	X	X	X
CanOpen (Slave)	D, E	OPTC6	C6	X	X	X	X	X	X	X
DeviceNet	D, E	OPTC7	C7	X	X	X	X	X	X	X
Modbus (D9 Type Connector)	D, E	OPTC8	C8	X	X	X	X	X	X	X
Adapter	D, E	OPTD1	D1	X	X	X	X	X	X	X
Adapter	D, E	OPTD2	D2	X	X	X	X	X	X	X
RS-232 with D9 Connection	D, E	OPTD3	D3	X	X	X	X	X	X	X
Keypad										
9000X Series Local/ Remote Keypad (Replacement Keypad)	-	KEYPAD- LOC/ REM	-	-	-	-	-	-	-	X
9000X Series Remote Mount Keypad Unit (Keypad not included, includes 10 ft . cable, keypad holder, mounting hardware)	-	OPTRMT-KIT- 9000X	-	-	-	-	-	-	-	-
$9000 \times$ Series RS-232 Cable, 13 ft .	-	PP00104	-	-	-	-	-	-	-	-

[^45]
Dimensions

Table 40-411. Approximate Dimensions in Inches (mm)

Frame	Height	Width	Depth	Weight in Lbs. (kg)
Inverter Units				
FR4	11.5 (292)	5.0 (128)	7.5 (190)	11 (5)
FR6	20.4 (519)	7.7 (195)	9.3 (237)	35 (16)
FR7	23.3 (591)	9.3 (237)	10.1 (257)	64 (29)
FR8	29.8 (758)	11.4 (289)	13.5 (344)	106 (48)
FI9	40.6 (1030)	9.4 (239)	14.6 (372)	148 (67)
FI10	40.6 (1032)	9.4 (239)	21.7 (552)	220 (100)
Fl12	40.6 (1032)	2×9.4 (2×239)	21.7 (552)	441 (200)
FI13	40.6 (1032)	27.9 (708)	21.8 (553)	674 (306)
Fl14	40.6 (1032)	$2 \times 27.9(2 \times 708)$	21.8 (553)	1348 (612)
Active Front Ends				
FI9	40.6 (1030)	9.4 (239)	14.6 (372)	148 (67)
FI10	40.6 (1032)	9.4 (239)	21.7 (552)	220 (100)
FI12	40.6 (1032)	$2 \times 9.4(2 \times 239)$	21.7 (552)	441 (200)
FI13	40.6 (1032)	27.9 (708)	21.8 (553)	674 (306)
Fl14	40.6 (1032)	$2 \times 27.9(2 \times 708)$	21.8 (553)	1348 (612)
Non-regenerative Front Ends				
FI9	40.6 (1030)	9.4 (239)	14.6 (372)	148 (67)

Wiring Diagrams

Figure 40-178. Non-regenerative Front End

Figure 40-179. Inverter Unit (FR4 - FR8)

Figure 40-180. Active Front End

Figure 40-181. Inverter Unit (FI9 - FI14)

[^0]: (1) Frame (hp) only available at $208-240 \mathrm{~V}$.

[^1]: (1) I_{L} only; has no corresponding I_{H} rated hp rating.

[^2]: (1) Brake Chopper is factory installed standard. Note: External dynamic braking resistors not included. Consult factory.
 (2) Includes local/remote speed reference switch.
 (3) See Pages 40-40 and 40-41 for descriptions.
 (4) See Pages 40-41 and 40-42 for complete descriptions.

[^3]: (1) Option card must be installed in one of the slots listed for that card. Slot indicated in Bold is the preferred location

[^4]: (1) Enclosure dimensions listed on Pages 40-44-40-48

[^5]: (1) FR10-FR14 includes 3% line reactor, but it is not integral to chassis.

[^6]: (1) Option card must be installed in one of the slots listed for that card. Slot indicated in Bold is the preferred location.
 (2) $\mathrm{AI}=$ Analog Input; $\mathrm{AO}=$ Analog Output, $\mathrm{DI}=$ Digital Input, $\mathrm{DO}=$ Digital Output, RO = Relay Output
 (3) OPTC2 is a multi-protocol option card.
 (4) SPX9000 Drives only (FR10 and larger).

[^7]: (1) Brake resistor terminal box (H6) included when brake chopper ordered.

[^8]: (1) I_{L} only; has no corresponding l_{H} rated hp rating

[^9]: (2) I_{L} only; has no corresponding I_{H} rated hp rating.

[^10]: (1) I_{L} only; has no corresponding I_{H} rated hp rating

[^11]: (1) SPX9000 Drives only (FR10 and larger).

[^12]: (1) Local/Remote keypad is included as the standard Control Panel.
 (2) Brake Chopper is a factory installed option only, see drive option tables on Pages 40-92-40-100. Note: External dynamic braking resistors not included. Consult factory.
 ${ }^{3}$ Includes local/remote speed reference switch.
 (4) Some options are voltage and/or horsepower specific. Consult your Eaton representative for details.
 (5) See Pages 40-88 and 40-89 for descriptions.
 (6) See Pages 40-90 and 40-91 for complete descriptions.
 (7) Applicable only with FR10 and FR11 Freestanding designs.
 ${ }^{8}$ Consult Eaton for availability.

[^13]: 4) External dynamic braking resistors not included. Consult factory.
[^14]: (2) Not required for 208 V applications.

[^15]: (4) External dynamic braking resistors not

[^16]: (1) See Pages 40-88 and 40-89 for details.

[^17]: (1) Option card must be installed in one of the slots listed for that card. Slot indicated in Bold is the preferred location.
 (2) $\mathrm{AI}=$ Analog Input; $\mathrm{AO}=$ Analog Output, $\mathrm{DI}=$ Digital Input, $\mathrm{DO}=$ Digital Output, RO = Relay Output
 ${ }^{(3)}$ OPTC2 is a multi-protocol option card.

[^18]: (1) Enclosure dimensions listed on Pages 40-124-40-129.
 (2) Includes drive, Local/Remote Keypad and enclosure.

[^19]: (3) Enclosure dimensions listed on Pages 40-124-40-129.
 (4) Includes drive, Local/Remote Keypad and enclosure.

[^20]: (3) Enclosure dimensions listed on Pages 40-124-40-129.
 (4) Includes drive, Local/Remote keypad and enclosure.

[^21]: (1) Consult factory.

[^22]: (1) Consult factory.

[^23]: (1) All 230V Drives and 480V Drives up to $200 \mathrm{hp}\left(\mathrm{l}_{\mathrm{H}}\right)$ are only available with Input Option 1 (EMC level H). 480 V Drives 250 hp (l_{H}) or larger are available with Input Option 2 (EMC level N). 575 V Drives $200 \mathrm{hp}\left(\mathrm{l}_{\mathrm{H}}\right)$ or larger are available with Input Option 2. 575V Drives up to 150 hp (l_{H}) are available with Input Option 4 (EMC level L). 480V and 690V Freestanding Drives are available with Input Option 4 (EMC level L).
 (2) 480 V Drives up to $30 \mathrm{hp}\left(\mathrm{I}_{\mathrm{H}}\right)$ are only available with Brake Chopper Option B. 480 V Drives $40 \mathrm{hp}\left(\mathrm{l}_{\mathrm{H}}\right)$ or larger come standard with Brake Chopper Option N. 230 V Drives up to $15 \mathrm{hp}\left(\mathrm{l}_{\mathrm{H}}\right)$ are only available with Brake Chopper Option B. 230V Drives 20 hp and larger come standard with Brake Chopper Option N. All 575V Drives come standard without Brake Chopper Option (N). Note: $\mathrm{N}=$ No Brake Chopper.
 (3) 480 V Drives $250-350 \mathrm{hp}\left(\mathrm{l}_{\mathrm{H}}\right)$ and 690 V Drives $200-300 \mathrm{hp}\left(\mathrm{l}_{\mathrm{H}}\right)$ are available with enclosure style 0 (Chassis). 480V and 690 V FR10 Freestanding Drives are available with 1 (NEMA Type 1) or 2 (NEMA Type 12). FR11 Freestanding Drives are only available with enclosure style 1 (NEMA Type 1).
 (4) Factory promise delivery. Consult Sales Office for availability.

[^24]: ${ }^{1}$ Option card must be installed in one of the slots listed for that card. Slot indicated in Bold is the preferred location.
 (2) $\mathrm{AI}=$ Analog Input; $\mathrm{AO}=$ Analog Output, $\mathrm{DI}=$ Digital Input, $\mathrm{DO}=$ Digital Output, $\mathrm{RO}=$ Relay Output
 (3) OPTC2 is a multi-protocol option card.

[^25]: (1) Brake resistor terminal box (H6) included when brake chopper ordered.

[^26]: (1) I_{L} only; has no corresponding I_{H} rated hp rating.

[^27]: Rectifying board not included.

[^28]: (1) I_{L} only; has no corresponding I_{H} rated hp rating.

[^29]: (1) FR10 includes 3\% line reactor, but it is not integrated to chassis.

[^30]: (1) Brake resistor terminal box $(\mathrm{H} 6)$ included when brake chopper ordered

[^31]: (1) PP00061 capacitor not included in main fan; please order separately.

[^32]: (1) 40 hp 208 V and 230 V supplied as a FR7 drive, but in a C-Box.

[^33]: (1) Fused Drive Isolation (P3) is not available in NEMA Type 1 Design in 208 V 30 hp and 480V 75 hp .
 (2) Fused Drive Isolation (P3) and 3rd Contactor Drive Isolation (P6) cannot be installed together in NEMA Type 1 Design.
 (3) P6 option only available with IntelliPass Drives.
 (4) 75 hp only available on 230 V units.

[^34]: (1) Brake Chopper is standard in $208 \mathrm{~V}, 230 \mathrm{~V}$ and 480 V drives up to FR6; optional in all other drives.
 (2) Local/remote keypad is included as the standard Control Panel.
 ${ }^{3}$) Some options are voltage and/or horsepower specific. Consult your Eaton representative for details.
 (4) See Pages 40-224 and 40-225 for descriptions.
 (5) Includes local/remote speed reference switch.
 (6) See Pages 40-226 and 40-227 for complete descriptions.
 (7) Consult Eaton for availability.

[^35]: (2) Not available for UL Type 3R.

[^36]: (3) Heater packs not included.

[^37]: (2) Requires customer supplied 115 V AC supply.

[^38]: (1) The EMI filter is optional in FR10 and larger.

[^39]: (1) Brake Chopper is standard in drives up to $30 \mathrm{hp} \mathrm{I}_{\mathrm{H}}$ or $40 \mathrm{hp} \mathrm{I}_{\mathrm{L}}$. It is optional in larger drives.
 (2) Local/remote keypad is included as the standard Control Panel.
 ${ }^{3}$ S Some options are voltage and/or horsepower specific. Consult your Eaton representative for details.
 (4) See Pages 40-251 and 40-252 for descriptions.
 (5) Includes local/remote speed reference switch.
 (6) See Pages 40-253 and 40-254 for complete descriptions.
 (7) Consult Eaton for availability.

[^40]: (1) See enclosure dimensions in Table 40-364.

[^41]: (4) Enclosure sizes accommodate drive and options, including bypass and disconnect.

 For other power options, consult your Eaton representative.
 (5) Consult factory. Limited power options available.
 (6) Enclosure size 11 consists of two of the enclosure size 9.
 (7) All NEMA 3R drives use the Box F Enclosure.

[^42]: ${ }^{(3)}$ Output filter may be required whenever the distance from the drive to the motor exceeds 100 feet (30 m). Refer to Application Notes for further details.

[^43]: (1) Brake Chopper is only available in 480 V CH3 Drives.

[^44]: (1) Option card must be installed in one of the slots listed for that card. Slot indicated in Bold is the preferred location.

[^45]: (1) Option card must be installed in one of the slots listed for that card. Slot indicated in Bold is the preferred location.
 (2) $\mathrm{AI}=$ Analog Input; $\mathrm{AO}=$ Analog Output, DI = Digital Input, DO = Digital Output, RO = Relay Output
 (3) OPTC2 is a multi-protocol option card.

