

Measuring and monitoring relays

CM and C5xx range

Content

	Benefits and advantages	2/	2	
	Monitoring features and application ranges			
	Approvals and marks			
		_	Ŭ	
	Current and voltage monitors, single-phase	2/	7	
	Ordering details			
	Technical data			
		_		
	Three-phase monitors	2/	19	
NEW	Conversion table	2/	21	
	Ordering details	2/	22	
	Function Description / Diagrams	2/	28	
	Technical data	2/	33	
	Insulation monitors for ungrounded supply mains	2/	43	
NEW	Ordering details	2/	47	
	Technical data	2/	51	
	Motor load monitors	2/	59	
	Ordering details	2/	61	
	Technical data			
NEW	Motor control and protection	2/	63	
	Technical data	2/	65	
	Thermistor motor protection relays			
	Ordering details	2/	69	
	Technical data	2/	73	
	Temperature monitors			
	Ordering details	2/	76	
	Technical data	2/	80	
	Liquid level monitors and controls			
	Ordering details	2/	82	
	Technical data	2/	88	
		_ ·		
	Contact protection relays and sensor interface relay			
	Ordering details			
	Technical data	2/	94	
	Cycle monitor with watchdog function			
	Ordering details			
	Technical data	2/	99	
		• · ·	•	
	General technical data, Accessories and Current transformers			
	Technical diagrams			
	Dimensional drawings			
	Accessories			
	Current transformers	2 /1	05	ı

Measuring and monitoring relays CM range Benefits and advantages

CM-E range: Economic

- Only 22.5 mm wide enclosure
- Output contacts: 1 c/o contact or 1 n/o contact
- One supply voltage range
- One monitoring function
- Cost-efficient solution for OEM applications
- Preset monitoring ranges

Combination screws

Easy tightening and release of the connecting screws with pozidrive, pan- or crosshead screwdriver.

Safety

The "real distance" is hidden. The clearance and the creepage distances of our products exceed international standards and substantially increase the safety of our products.

Measuring and monitoring relays CM range Benefits and advantages

CM-S range: Universal and multifunctional

Only 22.5 mm wide enclosure

direct reading scale

Output contacts: 1 or 2 c/o contacts

Integrated and snap-fitted front-face marker

Sealable transparent cover (accessory)

One supply voltage range or supplied by measuring circuit

Adjustment of threshold values and switching hysteresis via

Setting and operation via front-face operating controls

Direct reading scales

Direct adjustment of the threshold values of measuring and monitoring relays without any additional calculation provides accurate time delay adjustment.

LEDs for status Indication

All actual operational states are indicated by front-face LEDs, thus simplifying commissioning and troubleshooting.

253

Double-chamber cage connection terminals

Double-chamber cage connection terminals provide connection of wires up to 2 x 2.5 mm² (2 x 14 AWG), rigid or fine-strand, with or without wire end ferrules. Potential distribution does not require additional terminals, thus saving time and money. Wiring is considerably simplified through integrated cable guides.

CM-N range: Multifunctional

- 45 mm wide enclosure -
- Output contacts: 2 c/o contacts
- Continuous voltage range (24-240 V AC/DC) or single-supply
- Setting and operation via front-face operating controls .
- Adjustment of threshold values and switching hysteresis via direct reading scale
- Adjustable time delays .
- Integrated and snap-fitted front-face marker label
- Sealable transparent cover (accessory)

Integrated marker labels allow the product to be marked quickly and simply. No additional marking labels are required.

600

253 (

CDC

F0005 Sealable transparent covers

Protection against unauthorized changes of time and/or threshold values in sizes 22.5 and 45 mm wide (optionally available as an accessory).

Safety

The "real distance" is hidden. The clearance and the creepage distances of our products exceed international standards and substantially increase the safety of our products.

Measuring and monitoring relays CM and C5xx range

Monitoring features and application ranges

Single-phase current and voltage monitoring

- Over- or undercurrent monitoring CM-SRS and CM-SRS.M
- Over- and undercurrent monitoring CM-SFS
- Over- or undervoltage monitoring CM-ESS and CM-ESS.M
- Over- and undervoltage monitoring CM-EFS

Three-phase monitoring

- Phase loss CM-PBE
- Over- and undervoltage CM-PVE
- Phase sequence and phase loss CM-PFE and CM-PFS
- Phase sequence and phase loss, over- and undervoltage CM-PSS.xx and CM-PVS.xx
- Phase sequence and phase loss, unbalance CM-PAS.xx
- Phase sequence and phase loss, unbalance, over- and undervoltage CM-MPS.xx and CM-MPN.xx
- Over- and undervoltage, overand underfrequenzy CM-UFS.x

Insulation monitoring

CM-IWS.2 for electrically isolated AC systems, and CM-IWS.1 & CM-IWN 1 for electrically isolated AC, DC and mixed AC/DC systems.

Motor load monitoring

CM-LWN monitors load states of single- and three-phase asynchronous motors.

Current monitoring

- Monitoring of motor current consumption
- Monitoring of lighting installations and heating circuits
- Monitoring of hoisting gear and transportation equipment overload
- Monitoring of locking devices, electromechanical brake gear and locked rotor

Voltage monitoring

- Speed monitoring of DC motors
- Monitoring of battery voltages and other supply networks
- Monitoring of upper and lower voltage threshold values

Three-phase voltage monitoring

- Voltage monitoring of mobile three-phase equipment
- Protection of personnel and installations against phase reversal
- Monitoring of the supply voltage to machines and installations
 - Protection of equipment against damage caused by unstable supply voltage
- Switching to emergency or auxiliary supply
- Protection of motors against damage caused by unbalanced phase voltages and phase loss
- Automatic connection & disconnection of decentralised power stations to the grid

Insulation monitoring

- Monitoring of electrically isolated supply mains for insulation resistance failure
 - Detection of initial faults
 - Protection against earth faults

Motor load monitoring

- Detection of V-belt breaking
- Motor protection against overload
- Monitoring of filters for clogging
- Protection of pumps against dry running
- Detection of high pressure in conduit systems
- Monitoring for dulling blades in sawing and cutting machines

Measuring and monitoring relays CM and C5xx range

Monitoring features and application ranges

Thermistor motor protection

CM-MSE, CM-MSS and CM-MSN provide full protection of motors with integrated PTC resistor sensors.

- Thermistor motor protection
- Protection of motors against thermal overload, e.g. caused by insufficient cooling, heavy load starting conditions, undersized motors, etc.

Liquid level monitoring

CM-ENE, CM-ENS and CM-ENN for control and regulation of liquid levels and ratios of mixtures of conductive fluids.

Liquid level monitoring and control

- Protection of pumps against dry running
- Protection against container overflow
- Control of liquid levels
- Detection of leaks
- Control of mixing ratios

Contact protection, sensor evaluation

The CM-KRN protects sensitive control contacts from excessive loads and can store switch positions. The CM-SIS supplies and evaluates NPN and PNP sensors.

Contact protection / sensor evaluation

- Storage of the switching states of bouncing contacts
- Amplification of the switch state information of sensitive contacts
- Supply and evaluation of NPN or PNP sensors

Temperature monitoring

Acquisition, messaging and regulation of temperatures of solid, liquid and gaseous media in processes and machines via PT100, PT1000, KTY83, KTY 84 or NTC sensors with C510, C511, C512, C513.

Cycle monitoring

2000 252 033 F0004

Temperature monitoring

- Motor and system protection
- Control cabinet temperature monitoring
- Frost monitoring
- Temperature limits for process variables, e.g. in the packing or electroplating industry
- Control of systems and machines like heating, air-conditioning and ventilation systems, solar collectors, heat pumps or hot water supply systems
- Monitoring of servomotors with KTY sensors
- Bearing and gear oil monitoring
- Coolant monitoring

Cycle monitoring

 External monitoring of the correct function of programmable logic controllers (plc) and industrial pcs (ipc)

Measuring and monitoring relays CM and C5xx range Approvals and marks

∎ exist □ pend			Cu		nitor		0							Th	ree-p	ohase	e mo	nitor	ring				
Approv	als	CM-SRS.1x	CM-SRS.2x	CM.SRS.M	CM-SFS.2	CM-ESS.2x	CM-ESS.M	CM-EFS.2		CM-PBE	CM-PVE	CM-PFE	CM-PFS	CM-PSS.x1	CM-PVS.x1	CM-PAS.x1	CM-MPS.x1	CM-MPS.x3	CM-MPN.52	CM-MPN.62	CM-MPN.72	CM-UFS.1	CM-UFS.2
CUL US LISTED	UL 508, CAN/CSA C22.2 No.14								ĺ														
(L)	GL																						
¢	GOST																						
CB	CB scheme									•	•												
Ŵ	CCC			•						•								-					
۲	RMRS								1														
<u>A</u>	VDE V 0126-1-1								1														
	ENEL DK 5940 Ed. 2.2								1														-
Marks																							
CE	CE		•								•							-			-		
C	C-Tick											-		-				-					

∎ exist □ pend		n ung	nonit roun	atior ors fo ded s nains	or sup-			tor lo nitori			empe nonit				(orote interf	ction face	,	
Approv	als	CM-IWS.2	CM-IWS.1	CM-IWN.1	CM-IVN		CM-LWN			C510	C511	C512	C513	CM-KRN	CM-SIS						
CUL ISTED	UL 508, CAN/CSA C22.2 No.14	-		-			•						-		-						
(L	GL						•							-							
¢¢	GOST]															
CB	CB scheme					1															
))))	ссс					1															
۲	RMRS			ĺ	İ	1								-							
Marks																					
CE	CE																				
C	C-Tick					1															

∎ existi □ pend		r	cle toring		Th	ermi	stor	moto	or pro	otect	ion				Lie	quid	leve	l moi	nitori	ng	
Approva	als	CM-WDS		CM-MSE	CM-MSS (1)	CM-MSS (2)	CM-MSS (3)	CM-MSS (4)	CM-MSS (5)	CM-MSS (6)	CM-MSS (7)	CM-MSN		CM-ENE MIN	CM-ENE MAX	CM-ENS	CM-ENS UP/	CM-ENN	CM-ENN UP/		
CUL USTED	UL 508, CAN/CSA C22.2 No.14				-								1								
0	GL				-								1								
¢	GOST				-								1								
(Ex)	II (2) G D, PTB 02 ATEX 3080												1								
CB	CB scheme				-								1								
()	ссс				-																
۲	RMRS	-			-																
Marks																					
CE	CE			•	-							-					-	-	-		
C	C-Tick					-	-	-	-	-	-	-		-	-		-		-		

ABB

 $^{\scriptscriptstyle 1)}$ Versions with safety isolation without $\textcircled{\ensuremath{\mathbb O}}$ approval

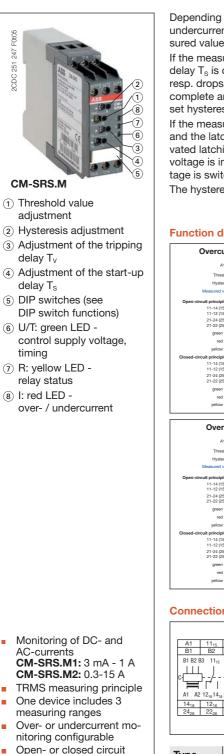
Current and voltage monitors, single-phase

Content

Ordering details		
CM-SRS.1, CM-SRS.2		
CM-SRS.M	.2/	9
CM-SFS.2	.2/	10
CM-ESS.1, CM-ESS.2	.2/	11
CM-ESS.M	.2/	12
CM-EFS.2	.2/	13
Technical data		
CM-SRS.1, CM-SRS.2, CM-SRS.M, CM-SFS.2	.2/	14
CM-ESS.1, CM-ESS.2, CM-ESS.M, CM-EFS.2	.2/	16
Approvals and marks	.2/	6
Technical diagrams	.2/1	102
Dimensional drawings	. 2 /1	103
Accessories	.2/1	104
Current transformers	.2/1	105

Current monitoring relays, single-phase AC/DC - CM-SRS.1 and CM-SRS.2 Ordering details

Depending on the configuration, the current monitoring relays CM-SRS.1 and CM-SRS.2 can be used for over- 🖂 or undercurrent monitoring 🔄 in single-phase AC and/or DC systems. The current to be moni-244 F0t05 tored (measured value) is applied to terminals B1/B2/B3-C. The devices work according the open-circuit principle. 20DC 251 If the measured value exceeds resp. drops below the adjusted threshold value, the output relay(s) energize(s): on the CM-SRS.1 immediately, on the CM-SRS.2 after the set tripping delay T_w If the measured value exceeds resp. drops below the threshold value plus resp. minus the adjusted hysteresis, the 1 output relay(s) de-energize(s). 6 The hysteresis is adjustable within a range of 3-30 % of the threshold value. (5) Function diagrams CM-SRS.1 Function diagrams CM-SRS.2 (4 3 Overcurrent monitoring Overcurrent monitoring A1-A2 CM-SRS.1 A1-A2 ed value 11-14 (15-18) 11-12 (15-16) 245 F0t05 21-24 (25-28) 21-22 (25-26) green LEE en LED red LED red LED llow LED 20DC 251 1 Undercurrent monitoring 法 Undercurrent monitoring A1-A2 9 A1-A2 6 5 Threshold 14 (15-18) 4 11-14 (15-18) 11-12 (15-16) 3 green LED red LED reen LED red LED flow LED ow LED Г H CM-SRS.2 Connection diagram CM-SRS.1 **Connection diagram CM-SRS.2** (1) Threshold value A1-A2 Control supply voltage A1-A2 Control supply voltage 11₁₅ C B2 B3 A1 11₁₅ 21₂₅ B1 B2 B3 adjustment B1-C Measuring range 1: 3-30 mA or 0.3-1.5 A B1-C Measuring range 1: 3-30 mA or 0.3-1.5 A B1 B1 B2 B3 205 F B1 B2 B3 (2) Hysteresis adjustment 204 B2-C B2-C Measuring range 2: Measuring range 2: 10-100 mA or 1-5 A 111 252 10-100 mA or 1-5 A 252 (3) DIP switches (see 7 5-7 ́г г4 B3-C Т B3-C Measuring range 3: 0.1-1 A or 3-15 A Measuring range 3: 0.1-1 A or 3-15 A SOD SODO DIP switch functions) A2 12161418 A2 1216 1418 2226 Output contact -open-circuit principle 11₁₅-12₁₆/14₁₈ 21₂₅-22₂₆/24₂₈ Output contacts -open-circuit principle 1115-1216/1418 (4) U/T: green LED -1418 1216 A2 control supply voltage, (timing) DIP switch functions CM-SRS.1, CM-SRS.2 (5) R: yellow LED relay status (6) I: red LED - $\overline{}$ ON t 272 over- / undercurrent 252 ON Undercurrent monitoring OFF Overcurrent monitoring Adjustment of the tripping OFF C OFF = Default delay T_v Control supply Tripping Order code Pack. Price Weight Type voltage delav unit 1 piece 1 piece 50/60 Hz piece T_v kg / lb Measuring ranges AC/DC: 3-30 mA; 10-100 mA; 0.1-1 A 24-240 V AC/DC 1SVR 430 840 R0200 0.12 / 0.26 1 CM-110-130 V AC without 1SVR 430 841 R0200 1 0.15 / 0.33 Monitoring of DC- and **SRS.11** AC-currents 0.15 / 0.33 220-240 V AC 1SVR 430 841 R1200 1 CM-SRS.x1: 3 mA - 1 A Measuring ranges AC/DC: 0.3-1.5 A; 1-5 A; 3-15 A CM-SRS.x2: 0.3-15 A TRMS measuring principle 24-240 V AC/DC 1SVR 430 840 R0300 0.12 / 0.26 CM-One device includes 3 110-130 V AC 1SVR 430 841 R0300 without 1 0.15 / 0.33 **SRS.12** measuring ranges 220-240 V AC 1SVR 430 841 R1300 0.15 / 0.33 1 Over- or undercurrent Measuring ranges AC/DC: 3-30 mA; 10-100 mA; 0.1-1 A monitoring configurable 24-240 V AC/DC 1SVR 430 840 R0400 0.12 / 0.26 adjustable Hysteresis adjustable from 1 CM-3-30 % 110-130 V AC 0 or 1SVR 430 841 R0400 1 0.15 / 0.33 **SRS.21** CM-SRS.2: 0.1-30 s 220-240 V AC 1SVR 430 841 R1400 0.15 / 0.33 Tripping delay T_v adjustable Measuring ranges AC/DC: 0.3-1.5 A; 1-5 A; 3-15 A 0; 0.1-30 s 24-240 V AC/DC 1SVR 430 840 R0500 0.12 / 0.26 adjustable 3 supply voltage versions CM-110-130 V AC 0 or 1SVR 430 841 R0500 0.15 / 0.33 1 CM-SRS.1: 1 c/o contact **SRS.22** 0.1-30 s CM-SRS.2: 2 c/o contacts 220-240 V AC 1SVR 430 841 R1500 0.15 / 0.33 22.5 mm width 2/14 Approvals and marks. 2/6 Technical data. 3 LEDs for status indication Dimensional drawings • Technical diagrams . 2/102 2/103

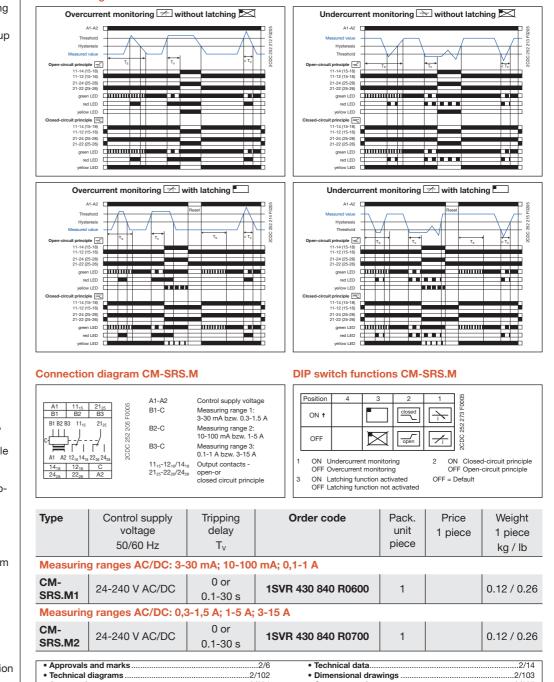

Current transformers

.2/105

.2/104

Accessories

Current monitoring relays, single-phase AC/DC, multifunctional - CM-SRS.M Ordering details



Depending on the configuration, the current monitoring relays CM-SRS.M can be used for over- I or undercurrent monitoring 🔄 in single-phase AC and/or DC systems. The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. Open 🖃 or closed-circuit principle 🖃 are configurable. If the measured value exceeds resp. drops below the adjusted threshold value before the set start-up delay Ts is complete, the output relays do not change their actual state. If the measured value exceeds resp. drops below the adjusted threshold value when T_s is complete, the tripping delay T_v starts. If T_v is complete and the measured value is still exceeding resp. below the threshold value plus resp. minus the set hysteresis, the output relays energize and / de-energize and .

If the measured value exceeds resp. drops below the threshold value minus resp. plus the set hysteresis and the latching function is not activated 🖾, the output relays de-energize 🖃 / energize 🖭. With activated latching function E the output relays remain energized and de-energize only, when the supply voltage is interrupted / the output relays remain de-energized 🖂 and energize only, when the supply voltage is switched off and then again switched on = Reset.

The hysteresis is adjustable within a range of 3-30 % of the threshold value.

Function diagrams CM-SRS.M

.2/104

Current transformers

- Monitoring of DC- and AC-currents CM-SRS.M1: 3 mA - 1 A CM-SRS.M2: 0.3-15 A
- TRMS measuring principle One device includes 3
- Open- or closed circuit principle configurable
- Latching function configurable
- Hysteresis adjustable from 3-30 %
- Start-up delay Ts adjustable 0; 0.1-30 s Tripping delay T_v
- adjustable 0; 0.1-30 s 2 c/o contacts
- 22.5 mm width
- 3 LEDs for status indication

Accessories

.2/105

Current monitoring relay, single-phase AC/DC, window monitoring - CM-SFS.2 Ordering details

CM-SFS.2

- Threshold value adjustment >I for overcurrent
- 2 Threshold value adjustment <I for undercurrent
- 3 Adjustment of the tripping delay T_{ν}
- Adjustment of the start-up delay T_s
- DIP switches (see DIP switch functions)
- U/T: green LED control supply voltage, timing
- R: yellow LED relay status
- 8 I: red LED over- / undercurrent
- Monitoring of DC- and AC-currents
 CM-SFS.21: 3 mA - 1 A
 CM-SFS.22: 0.3-15 A
- TRMS measuring principleOne device includes 3
- One device includes 3 measuring ranges
- Over- and undercurrent monitoring
- ON-or OFF-delay configurable
- Open- or closed circuit principle configurable
- Latching function configurable
- Thresholds for I_{min} and I_{max} adjustable
- Fixed hysteresis of 5 %
 Start-up delay T_s adjustable 0; 0.1-30 s
- Tripping delay T_v adjustable 0; 0.1-30 s
- 1x2 c/o contacts (common signal) or 2x1 c/o contact (separate signals for I_{min} and I_{max})
- 22.5 mm width
- 3 LEDs for status indication

The current window monitoring relays **CM-SFS.2** can be used for the simultaneous monitoring of over- (>I) and undercurrents (<I) in single-phase AC and/or DC systems. Depending on the configuration, one c/o contact each and/or bc systems. Depending on the configuration, one c/o contact each and/or bc systems. Depending on the configuration, one c/o contact each and/or bc systems. Depending on the configuration, one c/o contact each and/or bc systems. Depending on the configuration, one c/o contact each and/or bc systems. Depending on the configuration, one c/o contact each and/or bc systems. Depending on the configuration, one c/o contact each and/or bc systems. Depending on the configuration, one c/o contact each and/or bc systems. Depending on the configuration, one c/o contact each and/or bc systems. Depending on the configuration, one c/o contact each and/or bc systems. Depending on the configuration, one c/o contact each and/or bc systems. Depending on the configuration, one c/o contact each and/or bc systems. Depending on the configuration, one c/o contact each and/or bc systems. Depending on the configuration, one c/o contact each and/or bc systems. Depending on the configuration of the current to be monitored (measured value) is applied to terminals B1/B2/B3-C. Open- concerct context principle as well as an adjustable ON concerct of the current of the curr

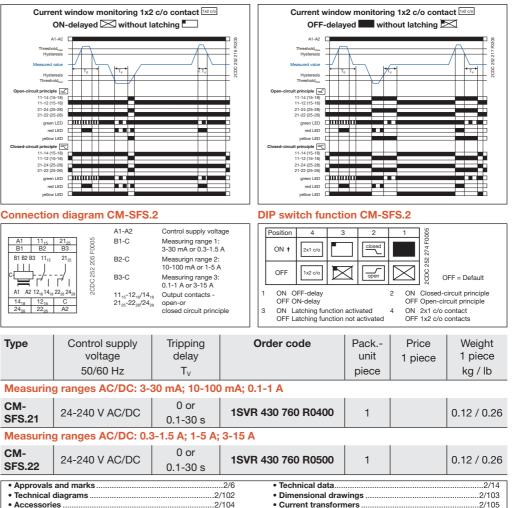
ON-delayed current window monitoring with parallel switching c/o contacts

If the measured value exceeds resp. drops below the adjusted threshold value before the set start-up delay T_s is complete, the output relays do not change their actual state.

If the measured value exceeds resp. drops below the adjusted threshold value when T_s is complete, the tripping delay T_v starts, when \square is configured. If T_v is complete and the measured value is still exceeding resp. below the threshold value minus resp. plus the fixed hysteresis (5%), the output relays energize \square /de-energize \square .

If the measured value exceeds resp. drops below the threshold value plus resp. minus the hysteresis and the latching function is not activated \square , the output relays de-energize \square / energize \square . With activated latching function \bowtie the output relays remain energized \square and de-energize only, when the supply voltage is interrupted / the output relays remain de-energized \square and energize only, when the supply voltage is switched off and then again switched on = Reset. OFF-delayed \square current window monitoring with parallel switching c/o contacts $\boxed{\square 2 = 0}$

If the measured value exceeds resp. drops below the adjusted threshold value when the set start-up delay T_s is complete, the output relays energize $\boxed{}$ / de-energize $\boxed{}$, when $\boxed{}$ is configured, and remain in this position during the set tripping delay T_v .


If the measured value exceeds resp. drops below the threshold value plus resp. minus the fixed hysteresis (5%) and the latching function is not activated \bowtie , the tripping delay T_v starts.

After completion of T_{w} the output relays de-energize \Box / energize \Box , provided that the latching function is not activated \Box . With activated latching function \Box the output relays remain energized \Box and de-energize only, when the supply voltage is interrupted / the output relays remain de-energized \Box and energize only, when the supply voltage is switched off and then again switched on = Reset.

When \mathbb{E}^{1} is adjusted on the device, the functionality is equivalent to the one described above. There is only to consider that in this case, instead of both output relays, only one output relay each will be switched. ">" = 11₁₅-12₁₆/14₁₈ ; "<!" = 21₂₅-22₂₆/24₂₈

Function diagrams CM-SFS.2

Further function diagrams see data sheet.

Voltage monitoring relays, single-phase AC/DC - CM-ESS.1 and CM-ESS.2 Ordering details

Depending on the configuration, the voltage monitoring relays CM-ESS.1 and CM-ESS.2 can be used for over- 🖂 or undervoltage monitoring 🔄 in single-phase AC and/or DC systems. The voltage to be moni-248 F0t05 tored (measured value) is applied to terminals B-C. The devices work according the open-circuit principle. If the measured value exceeds resp. drops below the adjusted threshold value, the output relay(s) 2CDC 251 energize(s): on the CM-ESS.1 immediately, on the CM-ESS.2 after the set tripping delay Ty. If the measured value exceeds resp. drops below the threshold value plus resp. minus the adjusted hysteresis, the output relay(s) de-energize(s). The hysteresis is adjustable within a range of 3-30 % of the threshold value. 6 5 3 Function diagrams CM-ESS.1 Function diagrams CM-ESS.2 4 Overvoltage monitoring Overvoltage monitoring CM-ESS.1 A1-A2 A1-A2 251 249 F0t05 11-14 (15-18) 11-12 (15-16) green LED red LED en I FD red LED low LED F CDC Undervoltage monitoring 🛬 Undervoltage monitoring 🛬 A1-A2 A1-A2 6 Hy 5 shold 11-14 (15-18) 11-12 (15-16) 8 11-14 (15-18) 11-12 (15-16) 21-24 (25-28) 3 green LED green LED red LED yellow LED 4 red LEE low I FD CM-ESS.2 (1) Threshold value **Connection diagram CM-ESS.1 Connection diagram CM-ESS.2** adjustment 11₁₅ 21₂₅ (2) Hysteresis adjustment A1-A2 Control supply voltage A1-A2 Control supply voltage (3) Adjustment of the B-C Measuring ranges: B-C Measuring ranges: 252 206 21. 207 3-30 V: 6-60 V 3-30 V: 6-60 V 252 measuring range 30-300 V; 60-600 V 30-300 V; 60-600 V · - -/ CDC SODO 1115-1210/1418 (4) DIP switches (see 11₁₅-12₁₆/14₁₈ Output contact -Output contacts -A1 A2 12161416 open-circuit principle A1 A2 1216 1418 2226 245 2125-2228/2428 open-circuit principle **DIP** switch functions) 14₁₈ 12₁₆ C 24₂₈ 22₂₆ A2 14₁₈ 12₁₈ A2 (5) U/T: green LED control supply voltage, timing DIP switch functions CM-ESS.1, CM-ESS.2 6 R: yellow LED relay status Position 2CDC 252 275 F0005 ⑦ U: red LED - \rightarrow ON t over- / undervoltage ON Undervoltage monitoring OFF Overvoltage monitoring 1 OFF 1 (8) Adjustment of the tripping OFF = Default delay T_v Control supply Order code Pack. Price Weiaht Туре Tripping voltage delay unit 1 piece 1 piece piece 50/60 Hz T_v kg / lb Measuring ranges AC/DC: 3-30 V; 6-60 V; 30-300 V; 60-600 V TRMS measuring principle 24-240 V AC/DC 1SVR 430 830 R0300 0.12 / 0.26 1 One device includes 4 CM-110-130 V AC without 1SVR 430 831 R0300 1 0.15 / 0.33 measuring ranges: 3-30 V, ESS.1 6-60 V, 30-300 V, 60-600 V 220-240 V AC 1SVR 430 831 R1300 1 0.15 / 0.33 Over- or undervoltage monitoring configurable 24-240 V AC/DC 1SVR 430 830 R0400 0.12 / 0.26 adjustable 1 Hysteresis adjustable from CM-110-130 V AC 0 or 1SVR 430 831 R0400 1 0.15 / 0.33 3-30 % ESS.2 220-240 V AC 0.1-30 s 1SVR 430 831 R1400 1 0.15 / 0.33 CM-ESS.2: Tripping delay T_v adjustable 0; 0.1-30 s 3 supply voltage versions

> Approvals and marks..... 2/6 Technical data. Technical diagrams Dimensional drawings . 2/102 .2/103 Accessories .2/104

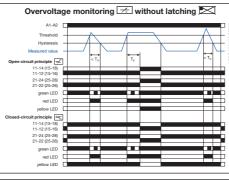
•	Monitoring of DC- and AC-voltages from 3-600 V
	TD140

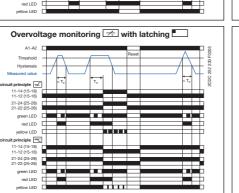
- CM-ESS.1: 1 c/o contact
- CM-ESS.2: 2 c/o contacts
- 22.5 mm width
- 3 LEDs for status indication

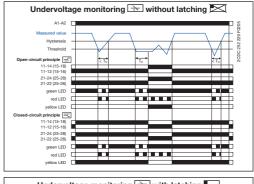
Voltage monitoring relay, single-phase AC/DC, multifunctional - CM-ESS.M Ordering details

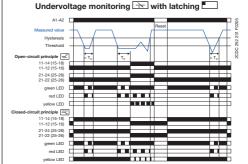
CM-ESS.M

- Threshold value adjustment
- (2) Hysteresis adjustment(3) Adjustment of the tripping
- (a) Adjustment of the trippin
 (b) Adjustment of the
- measuring range
 DIP switches
- (see DIP switch functions)(6) U/T: green LED -
- control supply voltage(7) R: yellow LED -
- relay status (8) U: red LED -
- over- / undervoltage


Depending on the configuration, the voltage monitoring relay **CM-ESS.M** can be used for over- \bowtie or undervoltage monitoring \bowtie in single-phase AC and/or DC systems. The voltage to be monitored (measured value) is applied to terminals B-C. Open \bowtie or closed-circuit principle \boxdot are selectable.


If the measured value exceeds resp. drops below the adjusted threshold value, the tripping delay T_v starts. If T_v is complete and the measured value is still exceeding resp. below the threshold value plus resp. minus the set hysteresis, the output relays energize $\equiv /$ de-energize \equiv .


If the measured value exceeds resp. drops below the threshold value plus resp. minus the set hysteresis and the latching function is not activated A, the output relays de-energize A energize A. With activated latching function the output relays remain energized and de-energize only, when the supply voltage is interrupted / the output relays remain de-energized and energize only, when the supply voltage is switched off and then again switched on = Reset.


The hysteresis is adjustable within a range of 3-30 % of the threshold value.

Function diagrams CM-ESS.M

Pack.

unit

Price

1 piece

Connection diagram CM-ESS.M

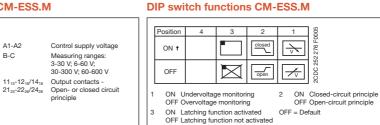
11. 21.

A1 A2 1216 1418 2226 241

Туре

۲ ۲

I


-000

207

2CDC 252

Control supply

voltage

Order code

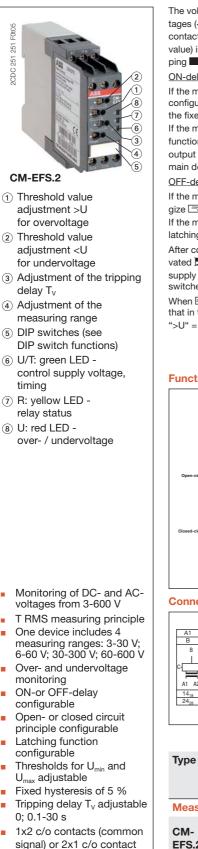
AC-voltages from 3-600 V TRMS measuring principle One device includes 4 measuring ranges: 3-30 V;

Monitoring of DC- and

- 6-60 V; 30-300 V; 60-600 V Over- or undervoltage
- monitoring configurable
 Open- or closed circuit principle configurable
- Latching function configurable
- Hysteresis adjustable from 3-30 %
- Tripping delay T_v adjustable 0; 0.1-30 s
- 2 c/o contacts22.5 mm width
- 3 LEDs for status indication
- S LEDS for status indication
- 50/60 Hz
 Tv
 piece
 kg / lb

 Measuring ranges AC/DC: 3-30 V; 6-60 V; 30-300 V; 60-600 V
 CM-ESS.M
 24-240 V AC/DC
 0 or 0.1-30 s
 1SVR 430 830 R0500
 1
 0.12 / 0.26

Tripping


delay

Weight

1 piece

Voltage monitoring relay, single-phase AC/DC, window monitoring - CM-EFS.2 Ordering details

251 F0t05

2CDC 251

- signal) or 2x1 c/o contact (separate signals for U_{min} and Umax)
- 22.5 mm width

-

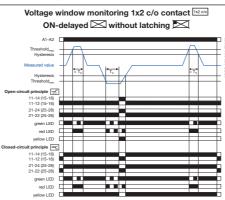
3 LEDs for status indication

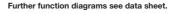
The voltage window monitoring relay CM-EFS.2 can be used for the simultaneous monitoring of over- (>U) and undervoltages (<U) in single-phase AC and/or DC systems. Depending on the configuration, one c/o contact each and or both c/o contacts in parallel Leco can be used for the over- and undervoltage monitoring. The voltage to be monitored (measured value) is applied to terminals B-C. Open- 🖃 or closed-circuit principle 🗺 as well as an adjustable ON 🖂 or OFF tripping delay are configurable.

ON-delayed Solver voltage window monitoring with parallel switching c/o contacts

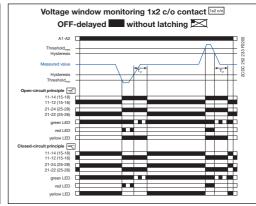
If the measured value exceeds resp. drops below the adjusted threshold value, the tripping delay T_v starts, when \boxtimes is configured. If T_v is complete and the measured value is still exceeding resp. below the threshold value minus resp. plus the fixed hysteresis (5%), the output relays energize $\boxed{}$ /de-energize $\boxed{}$.

If the measured value exceeds resp. drops below the threshold value plus resp. minus the hysteresis and the latching function is not activated 🖂, the output relays de-energize 🖅 / energize 🖭. With activated latching function 🔀 the output relays remain energized and de-energize only, when the supply voltage is interrupted / the output relays remain de-energized 🚎 and energize only, when the supply voltage is switched off and then again switched on = Reset. OFF-delayed voltage window monitoring with parallel switching c/o contacts

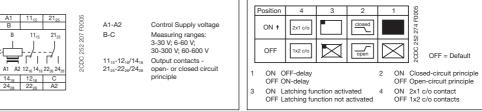

If the measured value exceeds resp. drops below the adjusted threshold value, the output relays energize 📼 / de-energize 🖭, when 📰 is configured, and remain in this position during the set tripping delay T_v.


If the measured value exceeds resp. drops below the threshold value plus resp. minus the fixed hysteresis (5%) and the latching function is not activated \mathbb{N} , the tripping delay T_v starts.

After completion of T_{v₀} the output relays de-energize */* energize *,* provided that the latching function is not activated 🖂. With activated latching function 🖂 the output relays remain energized 🖃 and de-energize only, when the supply voltage is interrupted / the output relays remain de-energized 🔄 and energize only, when the supply voltage is switched off and then again switched on = Reset.


When being is adjusted on the device, the functionality is equivalent to the one described above. There is only to consider that in this case, instead of both output relays, only one output relay each will be switched. ">U" = 11_{15} - 12_{16} / 14_{18} ; "<U" = 21_{25} - 22_{26} / 24_{28}

Function diagrams CM-EFS.2



DIP switch functions CM-EFS.2

Connection diagram CM-EFS.2

Туре	Control supply voltage 50/60 Hz	Tripping delay T _v adjustable	Order code	Pack. unit piece	Price 1 piece	Weight 1 piece kg / lb
Measuring	g ranges AC/DC: 3-	30 V; 6-60 V; 3	0-300 V; 60-600 V			
CM- EFS.2	24-240 V AC/DC	0 or 0.1-30 s	1SVR 430 750 R0400	1		0.12 / 0.26

Approvals and marks	Technical data2/16
Technical diagrams	Dimensional drawings
Accessories	-

Current monitoring relays, single-phase CM-SRS.1, CM-SRS.2, CM-SRS.M and CM-SFS.2 Technical data

L	_		1
		~	
		4	
	4		

Туре		CM-SRS	.1 CN	M-SRS.2	CM-SRS	S.M	CN	A-SFS.2			
Input circuit - Supply circuit	A1-A2										
Rated control supply voltage Us	A1-A2			110-13	30 V AC						
	A1-A2			220-24	10 V AC						
	A1-A2			24-240	V AC/DC						
Rated control supply voltage Us tolera	ince			-15	+10 %						
Rated frequency	AC versions			50/6	60 Hz						
	AC/DC versions	50/60 Hz or DC									
Current / power consumption		24 \	230 V	AC							
	110-130 V AC	24 1	/ DC		V AC / 2.6 VA		230 V	AC			
	220-240 V AC		-	24 MA	/ 2.0 VA	10	-				
	24-240 V AC/DC	00 0	-	17	-		mA / 2				
	24-240 V AC/DC	30 MA /	/ 0.75 W	I7 MA	/ 1.9 VA		mA / 2	2.6 VA			
On-period				10	0 %						
Power failure buffering time				20	ms						
Transient overvoltage protection				Vari	stors						
Input circuit - Measuring circuit	B1/B2/B3-C										
Monitoring function			over- or unde cor	rcurrent mon nfigurable	litoring			and under- nt monitoring			
Measuring method			Tr	ue RMS mea	suring princip	le					
Measuring in-			CM-SxS.x1			CM-Sx	S.x2				
puts	Terminal connection	B1-C	B2-C	B3-C	B1-C	B2-0		B3-C			
Mea	suring ranges AC/DC	3-30 mA	10-100 mA	0.1-1 A	0.3-1.5 A	1-5/		3-15 A ²⁾			
	Input resistance	3.3 Ω	1Ω	0.1 Ω	0.05 Ω	0.01	Ω	0.0025 Ω			
Pulse ove	rload capacity t < 1 s	500 mA	1 A	10 A	15 A	50 A	1	100 A			
	Continous capacity	50 mA	150 mA	1.5 A	2 A	7 A		17 A			
Threshold value(s)		adjustable	within the inc	licated meas	uring rar	nge					
Setting accuracy of threshold value	adjustable within the indicated measuring range										
Repeat accuracy (constant parameter	s)	±0.07 % of full scale									
Hysteresis related to the threshold val	,		3-30 %	6 adjustable			5 9	% fixed			
Measuring signal frequency range					Hz - 2 kHz						
Rated measuring signal frequency ran	ae	DC / 50-60 Hz									
Maximum response time	<u> </u>	AC: 80 ms / DC: 120 ms									
Accuracy within the control supply vol	tage tolerance	$\Delta U \le 0.5 \%$									
Accuracy within the temperature range	-			$\Delta U \leq 0.0$	06 % / °C						
Timing circuit											
Start-up delay T _s			none		0 or	0.1-30 s	adiust	able			
Tripping delay T _v		none		0	or 0.1-30 s a		,				
Repeat accuracy (constant parameter	s)				of full scale	ajaotaon					
Accuracy within the control supply vol	,	-		_0.01 /0	$\Delta t \le 0.5$	%					
Accuracy within the temperature range	•	-			$\Delta t \le 0.06 \ \%$						
Indication of operational states	<u> </u>		I		<u> </u>	0, 0					
Control supply voltage	U/T: green LED			1: control sur	ply voltage a	nnlied					
Control cupply voltage	o, il groon LLD				elay T_s active,	ppnou,					
				_: tripping de	lay T _v active						
Measured value	I: red LED			l: overcurren _: undercurre	,						
Relay status	R: yellow LED				jized, no latch	ing func	tion				
			רורות	l: relay energ	jized, active la nergized, activ	atching fu	unction				
Output circuits				25)-22(26)/24(28		-					
Kind of output				, , , , , - , (=	, ,,(=		-	/o contacts			
	1 c/o conta	act	2 c/o c	ontacts		or 2x1	c/o contac ifigurable				
Operating principle ¹⁾	Operating principle 1)			open-circuit principle open- or closed-circuit principle configurable							
Contact material				Ag	gNi						
Rated operational voltage U _e	IEC/EN 60947-1			25	0 V						
	24 V / 10 mA										
Minimum switching voltage / minimun	n switching current				10110						

ABB

Current monitoring relays, single-phase CM-SRS.1, CM-SRS.2, CM-SRS.M and CM-SFS.2 Technical data

Туре			CM-SRS.1	CM-SRS.2	CM-SRS.M	CM-SFS.2
Rated	AC12	resistive) at 230 V		4	A	
operational		nductive) at 230 V		3	A	
current I _e	DC12	(resistive) at 24 V		4	A	
(IEC/EN 60947-5-1)	DC13	(inductive) at 24 V		2	A	
AC rating	Utilization category (Contr	ol Circuit Rating Code)		B	300	
(UL 508)		ed operational voltage			V AC	
		rmal current at B 300			A	
		aking apparent power Make/Break) at B 300			360 VA	
Mechanical lifetir	· · · · · · · · · · · · · · · · · · ·	marto, Broarty at B 000		30x10 ⁶ swit	ching cycles	
	e (AC12, 230 V, 4 A)				ching cycles	
Max. fuse rating	<u> </u>	n/c contact	6 A fast-acting		st-acting	6 A fast-acting
short circuit prot		n/o contact	o / Habt dotting		st-acting	o / Habi ability
General data		1,00011401			or dotting	
Dimensions (W x				22.5 x 78 x 100 mm	(0.89 x 3.07 x 3.94 j	n)
Mounting					C/EN 60715)	
Mounting positio	n				,	
Degree of protec		enclosure / terminals			ny / IP20	
Electrical conne		chologure / termindis		11 30	, 11 20	
Wire size		ut) wire end ferrule		2 x 0 75 2 5 mm	2 (2 x 18-14 AWG)	
WIIE 3126					2 x 20-12 AWG)	
Stripping length		rigid			0.28 in)	
11 0 0					.8 Nm	
Tightening torque				0.6-0	.0 1111	
Ambient tempera		operation /		-20+60 °C	/ -40+85 °C	
Damp heat (IEC	60068 0 20)	storage		EE °C	2 ovelee	
	idal) (IEC/EN 60255-21-	1)			6 cycles ss 2	
Shock (IEC/EN 6	, ,	1)			ss 2	
Isolation data	0233-21-2)			Old	33 Z	
Rated insulation	voltage	supply / measuring				
(VDE 0110, IEC 6 IEC/EN 60255-5)	60947-1,	circuit / output		60	0 V	
,		supply / output 1 / output 2		25	0 V	
(IEC/EN 60947-1		supply / measuring circuit / output		6 kV 1.	2/50 µs	
IEC/EN 60255-5)	1	supply / output 1 / output 2		4 kV 1.	2/50 µs	
Pollution degree	(VDE 0110, IEC 664, IEC	C/EN 60255-5)			3	
Overvoltage cate	egory (VDE 0110, IEC 664, IE	C/EN 60255-5)		I	II	
Standards						
Product standard	b			IEC/EN	60255-6	
Low Voltage Dire	ective			2006/	95/EC	
EMC Directive				2004/-	108/EC	
Electromagnetic	c compatibility					
Interference imm	unity to			IEC/EN 6	1000-6-2	
electrostatic dis	scharge	IEC/EN 61000-4-2		Lev	vel 3	
radiated, radio-freq	uency, electromagnetic field	IEC/EN 61000-4-3		Lev	vel 3	
electrical fast tr	ansient / burst	IEC/EN 61000-4-4		Lev	vel 3	
surge		IEC/EN 61000-4-5		Lev	vel 3	
T	s, induced by radio-frequency fields	IEC/EN 61000-4-6			rel 3	
Interference emis					1000-6-3	
interference ernit				-		
high-frequency	radiated	IEC/CISPR 22; EN 55022		Cla	ss B	

Open-circuit principle: output relay energizes if the measured value exceeds 1/ falls below 1// falls below 1/ fa

Approvals

Voltage monitoring relays, single-phase CM-ESS.1, CM-ESS.2, CM-ESS.M and CM-EFS Technical data

Туре		CM-ESS.1	C	M-ESS.2	CM-ESS	.M	CM-EFS.2				
Input circuit - Supply circuit	A1-A2				1						
Rated control supply voltage Us	A1-A2			110-13	30 V AC						
	A1-A2			220-24	10 V AC						
	A1-A2			24-240	V AC/DC						
Rated control supply voltage Us toler	ance			-15	+10 %						
Rated frequency	AC versions			50/6	60 Hz						
	AC/DC versions				Iz or DC						
Current / power consumption		24 V DC		1	115 V AC 230 V AC						
	110-130 V AC	-		-	/ 2.6 VA	230 V AC					
	220-240 V AC	-				10	-				
	24-240 V AC/DC	-			-		mA / 2.6 VA				
	24-240 V AO/DO	30 mA / 0.7	5 VV	17 mA	/ 1.9 VA		mA / 2.6 VA				
On-period				100	0 %						
Power failure buffering time				20	ms						
Transient overvoltage protection				Vari	stors						
Input circuit - Measuring circuit	B-C										
Monitoring function		over		ervoltage mor nfigurable	nitoring						
Measuring method			Ti	rue RMS mea	suring princip	le					
Measuring				CM	-ExS						
inputs	Terminal connection		B-C	B-C	B-C	B-C	;				
Me	easuring range AC/DC		50			0.0					
	Input resistance		Ω	Ω	Ω	Ω					
Pulse ov	erload capacity t < 1 s										
Threshold value(s)	adjustable within the indicated measuring range										
Setting accuracy of threshold value	10 %										
Repeat accuracy (constant paramete	±0.07 % of full scale										
Hysteresis related to the threshold va		3-30 % adjustable 5 % fixed									
Measuring signal frequency range	lide	DC / 15 Hz - 2 kHz									
Rated measuring signal frequency rai	900	DC / 15 HZ - 2 KHZ DC / 50-60 Hz									
Maximum response time	ige										
Accuracy within the control supply vol	taga talaranga	$AC: 80 \text{ ms / DC: 120 ms}$ $\Delta U \le 0.5 \%$									
				_	0.3 % 06 % / °C						
Accuracy within the temperature rang	je										
Transient overvoltage protection				vari	stors						
Timing circuit			1								
Delay time T _v	<u>,</u>	none			or 0.1-30 s ad	djustable	9				
Repeat accuracy (constant paramete	,			±0.07 % (of full scale	- /					
Accuracy within the control supply vol		-	_		$\Delta t \leq 0.5$						
Accuracy within the temperature range	je	-			$\Delta t \leq 0.06$ %	6 / °C					
Indication of operational states											
Control supply voltage	U/T: green LED			_: tripping de		oplied,					
Measured value	U: red LED			☐: overvoltage _: undervoltage							
Relay status	R: yellow LED			ר: relay energ	jized, no latch jized, active la nergized, activ	tching f	unction				
Output circuits		1		•	25)-22(26)/24(28		*				
Kind of output		1 c/o contact			ontacts		1x2 c/o contact or 2x1 c/o contac configurable				
Operating principle 1)		open-cir	cuit princ	iple	open- or	closed- configu	circuit principle				
Contact material				Ar	gNi	ge					
Rated operational voltage U _e	IEC/EN 60947-1			-	0 V						
		24 V / 10 mA									
Minimum switching voltage / minimu	Minimum switching voltage / minimum switching current Maximum switching voltage / maximum switching current										

Voltage monitoring relays, single-phase CM-ESS.1, CM-ESS.2, CM-ESS.M and CM-EFS Technical data

Туре			CM-ESS.1	CM-ESS.2	CM-ESS.M	CM-EFS.2					
Rated	AC	12 (resistive) at 230 V		4	A						
operational	AC1	5 (inductive) at 230 V		3	A						
current I _e	DC	C12 (resistive) at 24 V		4	A						
(IEC/EN 60947-5-1) -	DC	13 (inductive) at 24 V		2	A						
AC rating	Utilization category (Co	ontrol Circuit Rating Code)		B	300						
(UL 508)	max.	rated operational voltage	300 V AC								
-		thermal current at B 300			A						
	max. making/	/breaking apparent power	3600/360 VA								
		(Make/Break) at B 300									
Mechanical lifetir					ching cycles						
	e (AC12, 230 V, 4 A)		r		ching cycles	1					
Max. fuse rating		n/c contact	6 A fast-acting	10 A fas	st-acting	6 A fast-acting					
short circuit prot	ection	n/o contact		10 A fas	st-acting						
Gerneral data											
Dimensions (W x	ι Η x D)		2	2.5 x 78 x 100 mm	(0.89 x 3.07 x 3.94 i	n)					
Mounting				DIN rail (IEC	C/EN 60715)						
Mounting positio	n			a	ny						
Degree of protec	tion	enclosure / terminals		IP50	/ IP20						
Electrical conne	ection										
Wire size	fine-strand wit	h(out) wire end ferrule		2 x 0.75-2.5 mm ²	² (2 x 18-14 AWG)						
-		rigid			2 x 20-12 AWG)						
Stripping length					0.28 in)						
Tightening torque	e		· · · · · · · · · · · · · · · · · · ·		.8 Nm						
Environmental of				0.0 0							
Ambient tempera		operation / storage		-20 +60 °C	/ -40+85 °C						
Damp heat (IEC	· · · · · · · · · · · · · · · · · · ·	operation / storage			6 cycle						
• •	idal) (IEC/EN 60255-2	21 1)			ss 2						
Shock (IEC/EN 6	, (_ 1 - 1)			ss 2						
Isolation data	0255-21-2)			Cia	55 2						
	voltogo	ounnly / mocouring									
Rated insulation (VDE 0110, IEC 6	•	supply / measuring circuit / output		60	0 V						
IEC/EN 60255-5)		supply / output 1 /		25	0 V						
Rated impulse w	vithstand voltage	output 2 supply / measuring		0.11/4	0/50						
U _{imp} (IEC/EN 609		circuit / output		6 KV 1.	2/50 µs						
IEC/EN 60255-5))	supply / output 1		4 kV 1.	2/50 µs						
		output 2			•						
	(VDE 0110, IEC 664				3						
	gory (VDE 0110, IEC	664, IEC/EN 60255-5)		l							
Standards											
Product standard	-				60255-6						
Low Voltage Dire	ective				95/EC						
EMC Directive				2004/-	108/EC						
Electromagnetic	c compatibility										
Interference imm	unity to			IEC/EN 6	1000-6-2						
electrostatic dis	scharge	IEC/EN 61000-4-2		Lev	vel 3						
radiated, radio-frequ	iency, electromagnetic field	IEC/EN 61000-4-3		Lev	rel 3						
electrical fast tr	ansient / burst	IEC/EN 61000-4-4		Lev	rel 3						
surge		IEC/EN 61000-4-5		Lev	vel 3						
conducted disturbances, i	induced by radio-frequency fields	IEC/EN 61000-4-6		Lev	vel 3						
					1000-6-3						
Interference emis	331011			ILO/LIN C							
Interference emis		IEC/CISPR 22; EN 55022			ss B						

¹⁾ Open-circuit principle: output relay energizes if the measured value exceeds 굳 / falls below 😒 the adjusted threshold value Closed-circuit principle: output relay de-energizes if measured value exceeds 굳 / falls below 🛬 the adjusted threshold value²

....2/6

.....

ABB

Notes

2

							<u> </u>						<u> </u>							
																				ļ
-																				
	L	I		<u> </u>	I		<u> </u>	L	I				<u> </u>	I		L		<u> </u>		
2 /18																			AI	515

Three-phase monitors

2

Content

	Novelties	
	Selection / Conversion table	21
	Ordering details	
	CM-PBE, CM-PVE	22
	CM-PFE, CM-PFS	23
	CM-PSS.xx, CM-PVS.xx	24
	CM-PAS.xx, CM-MPS.x1	25
	CM-MPS.x3, CM-MPN.x2	26
NEW	CM-UFS.x	27
	Function description / function diagrams2/	28
	Technical data	
	CM-PBE, CM-PVE, CM-PFE, CM-PFS2/	33
	CM-PSS.xx, CM-PVS.xx, CM-PAS.xx	35
	CM-MPS.x1	37
	CM-MPS.x3, CM-MPN.x2	39
NEW	CM-UFS.x	41
	Approvals and marks	6
	Technical diagrams	102
	Dimensional drawings	103
	Accessories	'104

Three-phase monitoring relays

Expanded functionality

ABB's new generation of three-phase monitoring relays feature additional functions making the application field for the devices considerably larger.

Selectable phase sequence monitoring

The phase sequence monitoring can be switched off by means of a rotary switch or a DIP switch. This enables monitoring of three-phase mains where phase sequence is not relevant for the application, for example in case of motors with forward and reverse rotation, heating applications, etc.

Automatic phase sequence correction

The automatic phase sequence correction is activated by means of a DIP switch. With activated phase sequence correction, it is ensured that for any non-fixed or portable equipment, e.g. construction machinery, the correct phase sequence is always applied to the input terminals of the load. For details regarding the wiring, please see function description / diagrams.

Structure of the type designation

CM-__**x.yz** x: width of enclosure

y: Control supply voltage / measuring range

1	110, 115, 120, 127 V supply systems (phase-neutral)
2	220, 230, 240 V supply systems (phase-neutral)
3	200, 208, 220, 230, 240, 257, 260 V supply systems (phase-phase)
4	440, 460 V supply systems (phase-phase)
5	480, 500 V supply systems (phase-phase)
6	575, 600 V supply systems (phase-phase)
7	660, 690 V supply systems (phase-phase)

z: Rated frequency / output circuit

1	50/60 Hz – 1x2 c/o
2	50/60 Hz – 1x2 or 2x1 c/o
3	50/60/400 Hz – 1x2 oder 2x1 c/o

The number of decentralized plants that obtain power from the sun, wind, water or biogas is increasing rapidly around the world. The use of renewable energy sources has great potential from both an environmental and an economic point of view.

Photovoltaic systems, solar-thermal systems, wind turbines and block-type thermal power stations are used. The electricity generated in these decentralized micro power stations is not simply used to meet the operator's own energy requirements. Above all, a profit is made by feeding it into the public grid at various places.

When a decentralized micro power station is connected to the grid, safe operation must be ensured at all times. This applies particularly to the function for disconnecting the plant from the grid, for instance during maintenance work. As the grid operator is usually unable to access the decentralized micro power station's control unit, this disconnection must take place automatically. Fast disconnection can only be achieved with a monitoring device that immediately recognizes when the grid is deactivated.

The new CM-UFS monitoring relay

A fast response can now be ensured using ABB's three-phase monitoring relay CM-UFS, which constantly monitors the three phases of the public mains supply. The CM-UFS detects overvoltage and undervoltage (voltage increase and decrease protection) as well as any changes in grid frequency (frequency increase and decrease protection*). Where necessary, the CM-UFS monitoring relay generates a control signal to disconnect the plant from the grid. The CM-UFS thus ensures the safe connection of decentralized power stations to the grid at all times.

The features of the CM-UFS.1

- Monitoring device for realizing an automatized grid connection as per DIN V VDE V 0126-1-1: February 2006
- Can be directly combined with ABB switchgear
- Voltage increase protection \geq 115 % of U
- Voltage decrease protection ≤ 80 % of $U_{\rm S}$
- Frequency increase protection > 50.2 H_z
- Frequency decrease protection < 47.5 H_z
- -10 minutes average value 110-115 % of U_s, adjustable

The features of the CM-UFS.2

- Type-tested in accordance with the "Guideline for connections to ENEL distribution network" December 2008, Ed. I
- Can be directly combined with ABB switchgear
- Voltage increase protection \geq 120 % of $U_{\rm S}$
- Voltage decrease protection $\leq 80~\%$ of $U_{\rm S}$
- Frequency increase protection > 50,3 or 51 Hz
- Frequency decrease protection < 49,7 or 49 Hz

Three-phase monitoring relays Selection and conversion table

			1										_	-							
							31	-	Ξ	5	1	.	÷	5	31	41	53	4 8	52	62	72
	ш	ш	ш	ш	ш	S	CM-PSS.31	CM-PSS.41	CM-PVS.31	CM-PVS.41	CM-PAS.31	CM-PAS.41	CM-MPS.11	CM-MPS.21	CM-MPS.31	CM-MPS.41	CM-MPS.23	CM-MPS.43	CM-MPN.52	CM-MPN.62	CM-MPN.72
	BB	BB	≥	≥	Ч	ΡF	PS	PS	P	2	PA	PA	μ	μ	MF	μ	μ	μ	μ	Ϋ́Η	MF
🗇 adjustable	CM-PBE	CM-PBE	CM-PVE	CM-PVE	CM-PFE	CM-PFS	Ś	Σ	Ś	Σ	Σ	Ś	Σ	Σ	Σ	Ş	Σ	Σ	Σ	Σ	Ş
fix fixed value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rated control supply voltage Us																					
Phase to Phase																					
160-300 V AC																					
200-500 V AC																					
208-440 V AC																					
300-500 V AC																					
320-460 V AC																					
350-580 V AC																					
380 V AC																					
380-440 V AC																					
400 V AC																					
450-720 V AC																					
530-820 V AC																					
Phase to neutral																					
90-170 V AC																					
180-280 V AC																					
185-265 V AC																					
220-240 V AC																					
Rated frequency																	•				
50/60 Hz																					
50/60/400 Hz																					
Suitable for monitoring																					
Single-phase mains ¹⁾																			1		
Three-phase mains																					
Monitoring function																					
Phase failure																					
Phase sequence							Ø	Ð	Þ	Ð			Ð	P	0	Ð	Ð	Ø		Ð	Ð
Automatic phase sequence correction	1			1														20	0		
Overvoltage														10		0	Ð	0	0 0	0	Ð
		-											•			•					¢
			•	-			•			•							•	¢ •	Ð	•0•	
Undervoltage			1	•													¢ •	¢ •	•	• •	•
Undervoltage Unbalance			1	-													•	¢ •	•	•0•	•
Undervoltage Unbalance Neutral ²⁾			•	-													¢ •	¢ •	•	• •	•
Undervoltage Unbalance Neutral ²⁾ Thresholds	fix	fix			fix	fix					•	•		■ ■ ■ 3)		8	•••• •• •• •• ••		•		•
Undervoltage Unbalance Neutral ²⁾ Thresholds Thresholds	fix	fix	•		fix	fix				•							¢ •	¢ •		• •	•
Undervoltage Unbalance Neutral ²⁾ Thresholds Thresholds Timing function for tripping delay t _v / tin	fix	fix			fix	fix				•	\$	Þ		■ ■ ■ 3)		8	•••• •• •• •• ••				•
Undervoltage Unbalance Neutral ²⁾ Thresholds Thresholds Timing function for tripping delay t _v / tim ON-delay	fix mes		• • fix	• fix						•				■ ■ ■ 3)		8	•••• •• •• •• ••				•
Undervoltage Unbalance Neutral ²⁾ Thresholds Timing function for tripping delay t _v / tin ON-delay ON- and OFF-delay	fix		• • fix	• fix			■ fix	fix		•	\$	Þ	■ ■ ■ 3)	• • • • • • • • • •			•••• ••• ••• ••• ••• ••• ••• ••• ••• •				
Undervoltage Unbalance Neutral ²⁾ Thresholds Thresholds Timing function for tripping delay t _v / tin ON-delay ON- and OFF-delay ON- or OFF-delay (D)	fix mes		• • fix	• fix						•	\$	Þ		■ ■ ■ 3)			•••• •• •• •• ••				•
Undervoltage Unbalance Neutral ²⁾ Thresholds Timing function for tripping delay t _v / ti ON-delay ON- and OFF-delay ON- or OFF-delay (D) Output contacts	fix mes fix	fix	fix	fix fix			■ fix	fix		•	\$	Þ	■ ■ ■ 3)	• • • • • • • • • •			•••• ••• ••• ••• ••• ••• ••• ••• ••• •				
Undervoltage Unbalance Neutral ²⁾ Thresholds Timing function for tripping delay t _v / ti ON-delay ON- and OFF-delay ON- or OFF-delay (D) Output contacts n/o contacts	fix mes		• • fix	• fix	fix	fix	■ fix	fix			¢	¢		• • • • • • • • • • • • •			 • /ul>				
Undervoltage Unbalance Neutral ²⁾ Thresholds Timing function for tripping delay t _v / tim ON-delay ON- and OFF-delay ON- or OFF-delay (De) Output contacts n/o contacts c/o contacts	fix mes fix	fix	fix	fix fix			■ fix	fix		•	\$	Þ	■ ■ ■ 3)	• • • • • • • • • •			•••• ••• ••• ••• ••• ••• ••• ••• ••• •				
Undervoltage Unbalance Neutral ²⁾ Thresholds Timing function for tripping delay t _v / timesholds Timing function for tripping delay t _v / timesholds ON- delay ON- and OFF-delay ON- or OFF-delay (₯) Output contacts n/o contacts c/o contacts Indication of operational states	fix mes fix	fix 1	fix fix	fix fix	fix 1	fix	fix	■ ■ fix	• • • • • • • • •	• •	 2 	 2 	• • • • • • • • • • • • •	• • • • • • • • • • • • • • •		• • • • • • • • • • • •	 ₽ ■ /ul>	 ₽ /ul>	 ₽ ■ ■ ■ 2⁴) 		■ ■ ● ●
Undervoltage Unbalance Neutral ²⁾ Thresholds Timing function for tripping delay t _v / tim ON-delay ON- and OFF-delay ON- or OFF-delay (De) Output contacts n/o contacts c/o contacts Indication of operational states LED(s)	fix mes fix	fix	fix	fix fix	fix	fix	■ fix	fix			¢	¢		• • • • • • • • • • • • •			 • /ul>				
Undervoltage Unbalance Neutral ²⁾ Thresholds Timing function for tripping delay t _v / tim ON-delay ON- and OFF-delay ON- or OFF-delay (De) Output contacts n/o contacts c/o contacts Indication of operational states LED(s) Replacement for / conversion table	fix mes fix	fix 1	fix fix	fix fix	fix 1	fix	■ fix ℃	■ ■ fix	• • • • • • • • •	• •	 2 	 2 	• • • • • • • • • • • • •	• • • • • • • • • • • • • • •		• • • • • • • • • • • •	 ₽ ■ /ul>		 ₽ ■ ■ ₽ 2⁴) 		■ ■ ● ●
Undervoltage Unbalance Neutral ²⁾ Thresholds Timing function for tripping delay t _v / ti ON-delay ON- and OFF-delay (D) Output contacts n/o contacts c/o contacts Indication of operational states LED(s) Replacement for / conversion table CM-PSS (1SVR 430 784 R2300)	fix mes fix	fix 1	fix fix	fix fix	fix 1	fix	fix	■ ■ fix 1 2 3	• • • • • • • • • •	• •	 2 	 2 	• • • • • • • • • • • •	• • • • • • • • • • • • • • •		• • • • • • • • • • • •	 ₽ ■ /ul>		 ₽ ■ ■ ₽ 2⁴) 		■ ■ ● ●
Undervoltage Unbalance Neutral ²⁾ Thresholds Thresholds Timing function for tripping delay t _v / tii ON-delay ON- and OFF-delay (De) Output contacts n/o contacts c/o contacts c/o contacts Indication of operational states LED(s) Replacement for / conversion table CM-PSS (1SVR 430 784 R3300)	fix mes fix	fix 1	fix fix	fix fix	fix 1	fix	■ fix ℃	■ ■ fix		• •	 2 	 2 	• • • • • • • • • • • •	• • • • • • • • • • • • • • •		• • • • • • • • • • • •	 ₽ ■ /ul>		 ₽ ■ ■ ₽ 2⁴) 		■ ■ ● ●
Undervoltage Unbalance Neutral ²⁾ Thresholds Thresholds Timing function for tripping delay t _v / tir ON-delay ON- and OFF-delay ON- or OFF-delay (De) Output contacts n/o contacts c/o contacts Indication of operational states LED(s) Replacement for / conversion table CM-PSS (1SVR 430 784 R2300) CM-PSS (1SVR 430 784 R3300) CM-PVS (1SVR 430 794 R1300)	fix mes fix	fix 1	fix fix	fix fix	fix 1	fix	■ fix ℃	■ ■ fix 1 2 3	• • • • • • • • •		 2 	 2 	• • • • • • • • • • • •	• • • • • • • • • • • • • • •		• • • • • • • • • • • •	 ₽ ■ /ul>		 ₽ ■ ■ ₽ 2⁴) 		■ ■ ● ●
Undervoltage Unbalance Neutral ²⁾ Thresholds Thresholds Timing function for tripping delay t _v / ti ON-delay ON- and OFF-delay ON- or OFF-delay (De) Output contacts n/o contacts c/o contacts Indication of operational states LED(s) Replacement for / conversion table CM-PSS (1SVR 430 784 R2300) CM-PSS (1SVR 430 784 R3300) CM-PVS (1SVR 430 794 R1300) CM-PVS (1SVR 430 794 R3300)	fix mes fix	fix 1	fix fix	fix fix	fix 1	fix	■ fix ℃	■ ■ fix 1 2 3		• •		 2 	• • • • • • • • • • • •	• • • • • • • • • • • • • • •		• • • • • • • • • • • •	 ₽ ■ /ul>		 ₽ ■ ■ ₽ 2⁴) 		■ ■ ● ●
Undervoltage Unbalance Neutral ²⁾ Thresholds Timing function for tripping delay t _v / timestic ON- delay ON- and OFF-delay ON- or OFF-delay (₯) Output contacts n/o contacts c/o contacts Indication of operational states LED(s) Replacement for / conversion table CM-PSS (1SVR 430 784 R2300) CM-PSS (1SVR 430 794 R3300) CM-PVS (1SVR 430 794 R3300) CM-PVS (1SVR 430 794 R3300) CM-PAS (1SVR 430 774 R1300)	fix mes fix	fix 1	fix fix	fix fix	fix 1	fix	■ fix ℃	■ ■ fix 1 2 3			 2 	 ₽ 2 3 	• • • • • • • • • • • •	• • • • • • • • • • • • • • •		• • • • • • • • • • • •	 ₽ ■ /ul>		 ₽ ■ ■ ■ 2⁴) 		■ ■ ● ●
Undervoltage Unbalance Neutral ²⁾ Thresholds Timing function for tripping delay t _v / tir ON-delay ON- and OFF-delay (₯) Output contacts n/o contacts c/o contacts LED(s) Replacement for / conversion table CM-PSS (1SVR 430 784 R2300) CM-PSS (1SVR 430 784 R3300) CM-PVS (1SVR 430 794 R1300) CM-PAS (1SVR 430 774 R1300) CM-PAS (1SVR 430 774 R1300)	fix mes fix	fix 1	fix fix	fix fix	fix 1	fix	■ fix ℃	■ ■ fix 1 2 3				 2 	• • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • •		• • • • • • • • • • • •	 ₽ ■ /ul>		 ₽ ■ ■ ■ 2⁴) 		■ ■ ● ●
Undervoltage Unbalance Neutral ²⁾ Thresholds Thresholds Timing function for tripping delay t _v / tir ON-delay ON- and OFF-delay (De) Output contacts n/o contacts c/o contacts LED(s) Replacement for / conversion table CM-PSS (1SVR 430 784 R2300) CM-PSS (1SVR 430 784 R3300) CM-PVS (1SVR 430 794 R1300) CM-PVS (1SVR 430 774 R1300) CM-PAS (1SVR 430 774 R1300) CM-PAS (1SVR 430 885 R1300)	fix mes fix	fix 1	fix fix	fix fix	fix 1	fix	■ fix ℃	■ ■ fix 1 2 3				 ₽ 2 3 	• • • • • • • • • • • •			• • • • • • • • • • • •	 ₽ ■ /ul>		 ₽ ■ ■ ■ 2⁴) 		■ ■ ● ●
Undervoltage Unbalance Neutral ²⁾ Thresholds Timing function for tripping delay t _v / tir ON-delay ON- and OFF-delay (₯) Output contacts n/o contacts c/o contacts LED(s) Replacement for / conversion table CM-PSS (1SVR 430 784 R2300) CM-PSS (1SVR 430 784 R3300) CM-PVS (1SVR 430 794 R1300) CM-PVS (1SVR 430 794 R1300) CM-PAS (1SVR 430 774 R1300) CM-PAS (1SVR 430 774 R1300) CM-PAS (1SVR 430 855 R1300) CM-MPS (1SVR 430 885 R1300) CM-MPS (1SVR 430 885 R1300)	fix mes fix	fix 1	fix fix	fix fix	fix 1	fix	■ fix ℃	■ ■ fix 1 2 3				 ₽ 2 3 	• • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • •		• • • • • • • • • • • •	 ₽ ■ /ul>		 ₽ ■ ■ ₽ 2⁴) 		■ ■ ● ●
Undervoltage Unbalance Neutral ²⁾ Thresholds Thresholds Timing function for tripping delay t _v / tii ON-delay ON- and OFF-delay ON- and OFF-delay ON- or OFF-delay (DP) Output contacts n/o contacts c/o contacts LED(s) Replacement for / conversion table CM-PSS (1SVR 430 784 R2300) CM-PSS (1SVR 430 784 R2300) CM-PVS (1SVR 430 794 R1300) CM-PVS (1SVR 430 774 R1300) CM-PAS (1SVR 430 774 R3300) CM-PAS (1SVR 430 855 R1300)	fix mes fix	fix 1	fix fix	fix fix	fix 1	fix	■ fix ℃	■ ■ fix 1 2 3	• • • • • • • • • • • • • • • • • • •			 ₽ 2 3 	• • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • •	 ₽ ■ /ul>		 ₽ ■ ■ ₽ 2⁴) 		■ ■ ● ●

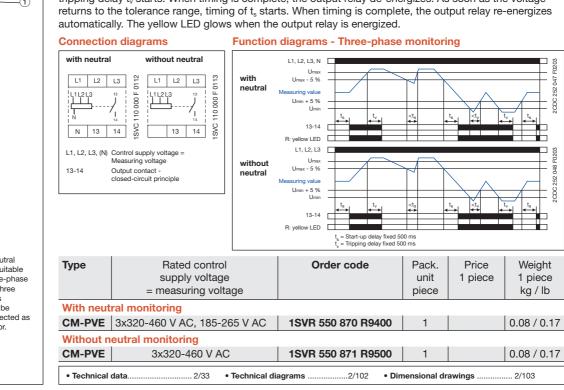
¹⁾ Devices with neutral monitoring are also suitable for monitoring single-phase mains, for example control circuits. For this, all three external conductors L1, L2 and L3 have to be jumpered and connected as one single conductor. If available, phase sequence monitoring has to be deactivated and the threshold value for phase unbalance has to be set to the maximum (25 %).

 $^{\scriptscriptstyle 2)}$ $\,$ The external conductor voltage towards the neutral conductor is measured.

³⁾ Interruppted neutral monitoring

Operating mode 1x2 or 2x1 c/o (SPDT) contact can be selected. (2x1 c/o contact is only possible with over- and undervoltage monitoring 4) and is compulsory for automatic phase sequence correction).

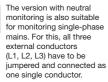
Three-phase monitoring relays CM-PBE and CM-PVE Ordering details


Single- and three-phase monitoring relays for phase failure detection

The **CM-PBE** is used to monitor supply voltages for phase failure ($U_{meas} < 60 \% x U_N$). If all phases (and the neutral) are present, the output relay energizes after the start-up delay t_s is complete. If a phase failure occurs, the tripping delay t_v starts. When timing is complete, the output relay de-energizes. As soon as the voltage returns to the tolerance range, timing of t_s starts. When timing is complete, the output relay re-energizes automatically. The yellow LED glows when the output relay is energized.

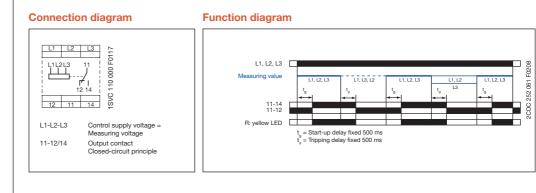
Single- and three-phase monitoring relays for over- / undervoltage and phase failure detection

The **CM-PVE** is used to monitor supply voltages for over- and undervoltage and phase failure. If all phases (and the neutral) are present with correct voltage, the output relay energizes after the start-up delay t_s is complete. If the voltage exceeds or falls below the fixed threshold value or if a phase failure occurs, the tripping delay t_v starts. When timing is complete, the output relay de-energizes. As soon as the voltage returns to the tolerance range, timing of t_s starts. When timing is complete, the output relay de-energizes automatically. The yellow LED glows when the output relay is energized.



 R: yellow LED relay status

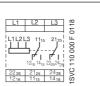
The version with neutral monitoring is also suitable for monitoring single-phase mains. For this, all three external conductors (L1, L2, L3) have to be jumpered and connected as one single conductor.


i

Three-phase monitoring relays CM-PFE and CM-PFS Ordering details

Three-phase monitoring relays for phase sequence monitoring and phase failure detection

The **CM-PFE** is used to monitor three-phase mains for incorrect phase sequence and phase failure. If all phases are present with the correct phase sequence, the output relay energizes after the start-up delay t_s is complete. If a phase failure or a phase sequence error occurs, the tripping delay t_v starts. When timing is complete, the output relay de-energizes. The yellow LED glows when the output relay is energized. In case of motors which continue running with only two phases, the CM-PFE detects phase failure if the reverse fed voltage is less than 60 % of the originally applied voltage.


Туре	Rated control supply voltage = measuring voltage	Order code	Pack. unit piece	Price 1 piece	Weight 1 piece kg / lb
CM-PFE	3x208-440 V AC	1SVR 550 824 R9100	1		0.08 / 0.17

Three-phase monitoring relays for phase sequence monitoring and phase failure detection

The **CM-PFS** is used to monitor three-phase mains for incorrect phase sequence and phase failure. If all phases are present with the correct phase sequence, the output relay energizes after the start-up delay t_s is complete. If a phase failure or a phase sequence error occurs, the output relay de-energizes instantaneous. The yellow LED glows when the output relay is energized.

In case of motors which continue running with only two phases, the CM-PFS detects phase failure if the reverse fed voltage is less than 60 % of the originally applied voltage.

Connection diagram

L1-L2-L3 Control supply voltage = Measuring voltage

11₁₅-12₁₆/14₁₈, Output contact -21₂₅-22₂₆/24₂₈ Closed-circuit principle

Function diagram

ATTENTION

If several CM-PFS units are placed side by side and the control supply voltage is higher than 415 V, spacing of at least 10 mm has to be kept between the individual units.

For applications where a reverse fed voltage > 60% is expected, we recommend to use our three-phase monitoring relays for unbalance CM-PAS.xx.

Туре	Rated control supply voltage = measuring voltage	Order code	Pack. unit piece	Price 1 piece	Weight 1 piece kg / lb
CM-PFS	3x200-500 V AC	1SVR 430 824 R9300	1		0.15 / 0.33
	data2/33 diagrams2/102 • Dimensional	drawings2/103 • Acc	cessories		2/104

SVR 550 824 F9100

(1) R: yellow LED -

relay status

i

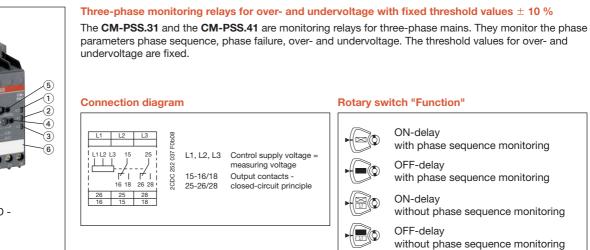
ISVR 430 824 F9300

CM-PFS

(1) R: yellow LED -

relay status

(2) Marker label


For applications where a reverse fed voltage > 60%

is expected, we recommend to use our three-phase monitoring relays for unbalance CM-PAS.xx.

1

-(1)

Three-phase monitoring relays CM-PSS.x1 and CM-PVS.x1 Ordering details

Туре Rated control Order code Pack. Price Weight supply voltage = unit 1 piece 1 piece measuring voltage piece kg / lb CM-PSS.31 3x380 V AC 1SVR 630 784 R2300 0.13 / 0.29 1 CM-PSS.41 3x400 V AC 1SVR 630 784 R3300 0.13 / 0.29 1

Three-phase monitoring relays for over- and undervoltage with adjustable threshold values

The CM-PVS.31 and the CM-PVS.41 are monitoring relays for three-phase mains. They monitor the phase parameters phase sequence, phase failure, over- and undervoltage. The threshold values for over- and undervoltage are adjustable.

Connection diagram

Rotary switch "Function"

ON-delay with phase sequence monitoring 252 037 L1, L2, L3 Control supply voltage = **OFF-delay** measuring voltage with phase sequence monitoring CDC 15-16/18 Output contacts -26 2 25-26/28 closed-circuit principle **ON-delay** without phase sequence monitoring OFF-delay without phase sequence monitoring

Туре	Rated control supply voltage = measuring voltage	Order code	Pack. unit piece	Price 1 piece	Weight 1 piece kg / lb
CM-PVS.31 CM-PVS.41	3x160-300 V AC 3x300-500 V AC	1SVR 630 794 R1300 1SVR 630 794 R3300	1 1		0.13 / 0.29 0.13 / 0.29
		5			

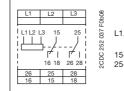
CM-PSS.x1

- (1) R/T: yellow LED relay status, timing
- (2) F1: red LED fault message
- ③ F2: red LED fault message
- ④ Adjustment of the tripping delay t_v
- (5) Function selection (see rotary switch "Function")
- (6) Marker label

CM-PVS.x1

- (1) R/T: yellow LED relay status, timina
- (2) F1: red LED fault message ③ F2: red LED -
- fault message
- ④ Adjustment of the tripping delay t_v (5) Function selection (see
- rotary switch "Function")
- (6) Adjustment of the threshold value for overvoltage
- (7) Adjustment of the threshold value for undervoltage
- (8) Marker label

Three-phase monitoring relays CM-PAS.x1 and CM-MPS.x1 Ordering details


Three-phase monitoring relays for phase unbalance

The **CM-PAS.31** and the **CM-PAS.41** are monitoring relays for three-phase mains. They monitor the phase parameters phase sequence, phase failure and phase unbalance. The threshold value for phase unbalance is adjustable.

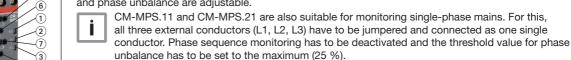
Connection diagram

(2 (4

> 3 6

 L1, L2, L3
 Control supply voltage = measuring voltage

 15-16/18
 Output contacts closed-circuit principle


Туре	Rated control supply voltage = measuring voltage	Order code	Pack. unit piece	Price 1 piece	Weight 1 piece kg / lb
CM-PAS.31	3x160-300 V AC	1SVR 630 774 R1300	1		0.13 / 0.29
CM-PAS.41	3x300-500 V AC	1SVR 630 774 R3300	1		0.13 / 0.29

Multifunctional three-phase monitoring relays

The **CM-MPS.x1** are multifunctional monitoring relays for three-phase mains. They monitor the phase parameters phase sequence, phase failure, over- and undervoltage and phase unbalance. CM-MPS.11 and CM-MPS.21 also monitor the neutral for interruption. The threshold values for over- and undervoltage and phase unbalance are adjustable.

F0b08

2CDC 252 037

Connection diagram

25

L1, L2, L3, (N)

15-16/18

25-26/28

L3 80 90 g

252 036

CDC 3

Control supply voltage =

closed-circuit principle

measuring voltage

Output contacts -

3 4

CM-MPS.x1

2CDC 251 048 F0t08

2CDC 251 046 F0t08

CM-PAS.x1

delay t_v

(6) Marker label

 Adjustment of the threshold value for phase unbalance

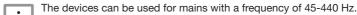
 R/T: yellow LED relay status, timing
 F1: red LED fault message
 F2: red LED fault message
 Adjustment of the tripping

- R/T: yellow LED relay status, timing
- (2) F1: red LED fault message
- ③ F2: red LED fault message
- (4) Adjustment of the tripping delay t_v
- Adjustment of the threshold value for overvoltage
- 6 Adjustment of the threshold value for undervoltage
- ⑦ Adjustment of the threshold value for phase unbalance
 ⑧ Function selection
- (see DIP switch functions) / Marker label

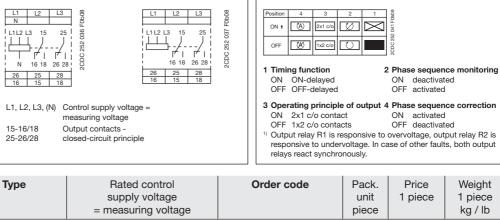
DIP switch functions

Timing function2 PhasONON-delayedONOFFOFF-delayedOFF

2 Phas	e sequence	monitorina
÷	deactivated activated	


Туре	Rated control supply voltage = measuring voltage	Order code	Pack. unit piece	Price 1 piece	Weight 1 piece kg / lb					
With interrup	oted neutral monitoring									
CM-MPS.11	3x90-170 V AC	1SVR 630 885 R1300	1		0.13 / 0.29					
CM-MPS.21	3x180-280 V AC	1SVR 630 885 R3300	1		0.13 / 0.29					
Without inter	rupted neutral monitoring									
CM-MPS.31	3x160-300 V AC	1SVR 630 884 R1300	1		0.13 / 0.29					
CM-MPS.41	3x300-500 V AC	1SVR 630 884 R3300	1		0.13 / 0.29					
	Conversion table									

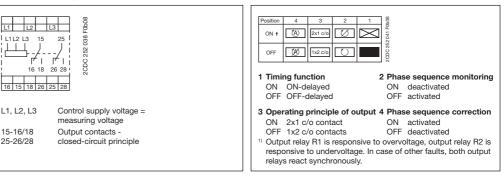
Three-phase monitoring relays CM-MPS.x3 and CM-MPN.x2 Ordering details


The **CM-MPS.x3** are multifunctional monitoring relays for three-phase mains. They monitor the phase parameters phase sequence, phase failure, over- and undervoltage and phase unbalance. CM-MPS.23 also monitors the neutral for interruption. The threshold values for over- and undervoltage and phase unbalance are adjustable.

CM-MPS.23 is also suitable for monitoring single-phase mains. For this, all three external conductors (L1, L2, L3) have to be jumpered and connected as one single conductor. Phase sequence monitoring has to be deactivated and the threshold value for phase unbalance has to be set to the maximum (25 %).

Connection diagram

DIP switch functions



		= measuring voltage		piece	. p.000	kg / lb
Wi	th interrup	ted neutral monitoring				
CN	1-MPS.23	3x180-280 V AC	1SVR 630 885 R4300	1		0.13 / 0.29
Wi	thout inter	rupted neutral monitoring				
CN	I-MPS.43	3x300-500 V AC	1SVR 630 884 R4300	1		0.13 / 0.29
-						

Multifunctional three-phase monitoring relays, automatic phase sequence correction and separate monitoring of over- and undervoltage (window monitoring) configurable

The **CM-MPN.52**, **CM-MPN.62** and **CM-MPN.72** are multifunctional monitoring relays for three-phase mains. They monitor the phase parameters phase sequence, phase failure, over- and undervoltage and phase unbalance. The threshold values for over- and undervoltage and phase unbalance are adjustable.

Connection diagram

DIP switch functions

Туре	Rated control supply voltage = measuring voltage	Order code	Pack. unit piece	Price 1 piece	Weight 1 piece kg / lb
CM-MPN.52	3x350-580 V AC	1SVR 650 487 R8300	1		0.13 / 0.29
CM-MPN.62	3x450-720 V AC	1SVR 650 488 R8300	1		0.13 / 0.29
CM-MPN.72	3x530-820 V AC	1SVR 650 489 R8300	1		0.13 / 0.29
		5			

CM-MPS.x3

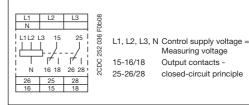
- R/T: yellow LED relay status, timing
- F1: red LED fault message
- ③ F2: red LED fault message
- Adjustment of the tripping delay t_v
- Adjustment of the threshold value for overvoltage
- 6 Adjustment of the threshold value for undervoltage
- Adjustment of the threshold value for phase unbalance
- ⑧ Function selection
- (see DIP switch functions) / Marker label

CM-MPN.x2

- R/T: yellow LED relay status, timing
- F1: red LED fault message
- F2: red LED fault message
 Adjustment of the second - (4) Adjustment of the tripping delay $t_{\!\scriptscriptstyle \nu}$
- Adjustment of the threshold value for overvoltage
- 6 Adjustment of the threshold value for undervoltage
- ⑦ Adjustment of the threshold value for phase unbalance
 ⑧ Function selection
- (see DIP switch functions) / Marker label

Three-phase monitoring relays CM-UFS Ordering details

CM-UFS.1


- 1 R/T: yellow LED -
- relay status, timing
- (2) F1: red LED fault message
- ③ F2: red LED fault message
- ④ Adjustment of the thresholdvalue for the 10 minutes average value
- Selection of neutral conductor, connected or not
- (6) Marker label

Application

The CM-UFS.1 is a monitoring relay for feeding in three-phase mains. The device is connected between decentral electrical energy source such as photovoltaic systems, wind turbines, block-type thermal power stations, and the public grid. In case the public grid is disconnected due to any reason, for instance during maintance work, the CM-UFS.1 recognizes this powerless situation. Then, in conjunction with a switching device, the CM-UFS.1 disconnects the decentral electrical energy source from the public grid. The device detects overvoltage and undervoltage (voltage increase and decrease protection) as well as any changes in grid frequency (frequency increase and decrease protection) in accordance with DIN V VDE V 0126-1-1. The connection of the neutral conductor is configurable. The threshold value for the 10 minutes average value is adjustable. The CM-UFS.1 is also suitable for monitoring single-phase mains. For this, all three external conductors (L1, L2, L3) have to be jumpered and connected as one single conductor.

- Monitoring of three-phase mains for grid feeding
- Type-tested in accordance with DIN V VDE V 0126-1-1: February 2006
- Neutral conductor connection configurable
- Can also be used to monitor single-phase mains
- Threshold value for the 10 minutes average value
- adjustable (110-115% of U_s) ■ Start-up delay t_{s1} prior to first grid connection and after a short-term interruption, 30 s fixed
- Restart delay t_{s2}, 30 s fixed
- Powered by the measuring circuit
- True RMS measuring principle
- 2 c/o (SPDT) contacts3 LEDs for status indication

Connection diagram

Туре	Rated control supply voltage = measuring voltage	Order code	Pack. unit piece	Price 1 piece	Weight 1 piece kg / lb
CM-UFS.1	3 x 400 V AC (L-L) / 230 V AC (L-N)	1SVR 630 736 R0300	1		0.14 / 0.31

Application

The CM-UFS.2 is a monitoring relay for feeding in three-phase mains. The device is connected between decentral electrical energy source such as photovoltaic systems, wind turbines, block-type thermal power stations, and the public grid. In case the public grid is disconnected due to any reason, for instance during maintance work, the CM-UFS.2 recognizes this powerless situation. Then, in conjunction with a switching device, the CM-UFS.2 disconnects the decentral electrical energy source from the public grid. The device detects overvoltage and undervoltage (voltage increase and decrease protection) as well as any changes in grid frequency (frequency increase and decrease protection) in accordance with the Guideline for connections ENEL distribution network, December 2008, Ed. I. The connection of the neutral conductor and the frequency threshold values are configurable. The CM-UFS.2 is also suitable for monitoring single-phase mains. For this, all three external conductors (L1, L2, L3) have to be jumpered and connected as one single conductor.

Connection diagram

16 18

FOHOF

036

252

CDC

15-16/18

25-26/28

L1, L2, L3, N Control supply voltage =

Measuring voltage

Output contacts -

closed-circuit principle

- Monitoring of three-phase mains for grid feeding
- Type-tested in accordance with the Guideline for connections to ENEL distribution network, December 2008, Ed. I
- Neutral conductor connection configurable
- Can also be used to monitor single-phase mains
- Frequency threshold values configurable
- (± 0.3 Hz / ± 1Hz)
- Start-up delay tS1 prior to first grid connection and after a short-term interruption, 1 s fixed
- Restart delay tS2, adjustable (0 s; 0.1-30 s)
- Powered by the measuring circuit
- True RMS measuring principle
- 2 c/o (SPDT) contacts
- 3 LEDs for status indication

(

Туре	Rated control supply voltage = measuring voltage	Order code	Pack. unit piece	Price 1 piece	Weight 1 piece kg / lb
CM-UFS.2	3 x 400 V AC (L-L) / 230 V AC (L-N)	1SVR 630 736 R1300	1		0.14 / 0.31
		grams CM-UFS.22/ 32 drawing2/103 • Act	cessories		2 /104

2CDC 251 015 F0t09

- R/T: yellow LED relay status, timing
- F1: red LED fault message
- ③ F2: red LED fault message
- (4) Selection of the frequency threshold values
- (5) Adjustment of the restart delay tS2
- 6 Selection of neutral conductor, connected or not
- Marker label

ABB

Phase sequence and phase failure monitoring CM-PSS.xx, CM-PVS.xx, CM.PAS.xx, CM-MPS.xx, CM-MPN.xx

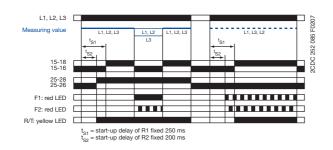
Applying control supply voltage begins the fixed start-up delay $t_{\rm S}.$ When $t_{\rm S}$ is complete and all phases are present with correct voltage, the output relays energize and the yellow LED R/T glows.

Phase sequence monitoring

If phase sequence monitoring is activated, the output relays deenergize as soon as a phase sequence error occurs. The fault is displayed by alternated flashing of the LEDs F1 and F2. The output relays re-energize automatically as soon as the phase sequence is correct again.

Phase failure monitoring

The output relays de-energize instantaneous if a phase failure occurs. The fault is indicated by lightning of LED F1 and flashing of LED F2. The output relays re-energize automatically as soon as the voltage returns to the tolerance range.


Automatic phase sequence correction CM-MPS.x3, CM-MPN.x2

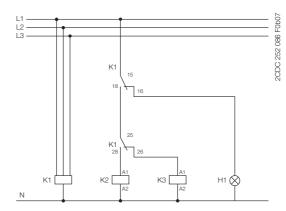
This function can be selected only if phase sequence monitoring is activated $\hfill \hfill

Applying control supply voltage begins the fixed start-up delay t_{s_1} . When t_{s_1} is complete and all phases are present with correct voltage, output relay R1 energizes. Output relay R2 energizes when the fixed start-up delay t_{s_2} is complete and all phases are present with correct phase sequence. Output relay R2 remains de-energized if the phase sequence is incorrect.

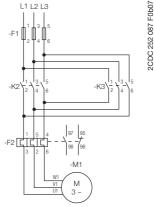
If the voltage to be monitored exceeds or falls below the set threshold values for phase unbalance, over- or undervoltage or if a phase failure occurs, output relay R1 de-energizes and the LEDs F1 and F2 indicate the fault.

Output relay R2 is responsive only to a false phase sequence. In conjunction with a reversing contactor combination, this enables an automatic correction of the rotation direction. See circuit diagrams on the right.

Interrupted neutral monitoring CM-MPS.11, CM-MPS.21, CM-MPS.23


The interruption of the neutral in the main to be monitored is detected by means of phase unbalance evaluation.

Determined by the system, in case of unloaded neutral, i.e. symmetrical load between all three phases, it may happen that an interruption of the neutral will not be detected.


If the star point is displaced by asymmetrical load in the three-phase main, an interrupted neutral will be detected.

Displacement of the star point

Control circuit diagram (K1 = CM-MPS.xx or CM-MPN.xx)

Power circuit diagram

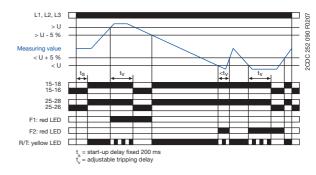
Over- and undervoltage monitoring 1x2 c/o

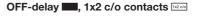
CM-PSS.xx¹, CM-PVS.xx², CM-MPS.xx², CM-MPN.xx²

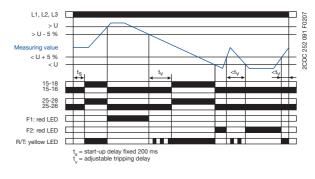
Applying control supply voltage begins the fixed start-up delay t_s . When t_s is complete and all phases are present with correct voltage and with correct phase sequence, the output relays energize and the yellow LED R/T glows.

Type of tripping delay = ON-delay

If the voltage to be monitored exceeds or falls below the fixed $^{\rm i)}$ or set $^{\rm 2)}$ threshold value, the output relays de-energize after the set tripping delay t_v is complete. The LED R/T flashes during timing and turns off as soon as the output relays de-energize.


The output relays re-energize automatically as soon as the voltage returns to the tolerance range, taking into account a fixed hysteresis of 5 % and the LED R/T glows.


Type of tripping delay = OFF-delay


If the voltage to be monitored exceeds or falls below the fixed $^{\rm i)}$ or set $^{\rm 2}$ threshold value, the output relays de-energize instantaneously and the LED R/T turns off.

As soon as the voltage returns to the tolerance range, taking into account a fixed hysteresis of 5 %, the output relays re-energize automatically after the set tripping delay t_v is complete. The LED R/T flashes during timing and turns steady when timing is complete.

ON-delay 2, 1x2 c/o contacts

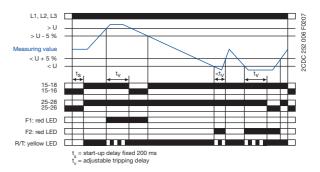
Over- and undervoltage monitoring 2x1 c/o

CM-MPS.x3, CM-MPN.x2

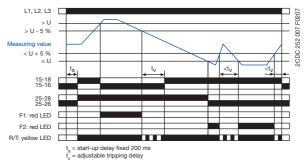
Applying control supply voltage begins the fixed start-up delay t_s . When t_s is complete and all phases are present with correct voltage and with correct phase sequence, the output relays energize. The yellow LED R/T glows as long as at least one output relay is energized.

Type of tripping delay = ON-delay

If the voltage to be monitored exceeds or falls below the set threshold value, output relay R1 (overvoltage) or output relay R2 (undervoltage) de-energizes after the set tripping delay $t_{\rm v}$ is complete. The LED R/T flashes during timing.


The corresponding output relay re-energizes automatically as soon as the voltage returns to the tolerance range, taking into account a fixed hysteresis of 5 %.

Type of tripping delay = OFF-delay


If the voltage to be monitored exceeds or falls below the set threshold value, output relay R1 (overvoltage) or output relay R2 (undervoltage) de-energizes instantaneously.

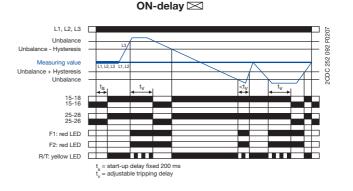
As soon as the voltage returns to the tolerance range, taking into account a fixed hysteresis of 5 %, the corresponding output relay re-energizes automatically after the set tripping delay $t_{\rm v}$ is complete. The LED R/T flashes during timing.

ON-delay 🖂, 2x1 c/o contact 🖂

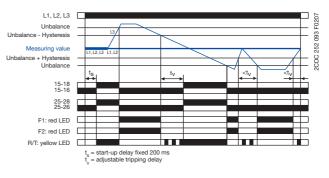
Phase unbalance monitoring CM-PAS.xx, CM-MPS.xx, CM-MPN.xx

Applying control supply voltage begins the fixed start-up delay t_s . When t_s is complete and all phases are present with correct voltage and with correct phase sequence, the output relays energize and the yellow LED R/T glows.

Type of tripping delay = ON-delay


If the voltage to be monitored exceeds or falls below the set phase unbalance threshold value, the output relays de-energize after the set tripping delay $t_{\rm V}$ is complete. The LED R/T flashes during timing and turns off as soon as the output relays de-energize.

The output relays re-energize automatically as soon as the voltage returns to the tolerance range, taking into account a fixed hysteresis of 20 % and the LED R/T glows.


Type of tripping delay = OFF-delay

If the voltage to be monitored exceeds or falls below the set phase unbalance threshold value, the output relays de-energize instantaneously and the LED R/T turns off.

As soon as the voltage returns to the tolerance range, taking into account a fixed hysteresis of 20 %, the output relays re-energize automatically after the set tripping delay t_v is complete. The LED R/T flashes during timing and turns steady when timing is complete.

LED functions CM-PSS.xx, CM-PSV.xx, CM-PAS.xx, CM-MPS.xx, CM-MPN.xx

Function	R/T: yellow LED	F1: red LED	F2: red LED
Control supply voltage applied, output relay energized	,	-	-
Tripping delay t _v active	лл	-	-
Phase failure	-	<u>ا</u>	лл
Phase sequence	-	л. п. а	Iternating
Overvoltage	-		-
Undervoltage	-	-	<u>ا</u>
Phase unbalance	-		
Interruption of the neutral	-		лл
Adjustment error 1)		лл	лл

¹⁾ Possible misadjustments of the front-face operating controls:

Overlapping of the threshold values: An overlapping of the threshold values is given, if the threshold value for overvoltage is set to a smaller value than the threshold value for undervoltage.

DIP switch 3 = OFF and DIP switch 4 = ON: Automatic phase sequence correction is activated and selected operating mode is 1x2 c/o contacts DIP switch 2 and 4 = ON: Phase sequence detection is deactivated and the automatic phase sequence correction is actived

Type of tripping delay CM-PSS.xx, CM-PSV.xx, CM-PAS.xx, CM-MPS.xx, CM-MPN.xx

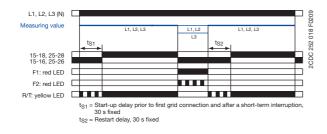
The type of tripping delay \square / \square can be adjusted via a rotary (CM-PxS.xx) or a DIP switch (CM-MPx.xx).

Switch position ON-delay

In case of a fault, the de-energizing of the output relays and the respective fault message are suppressed for the adjusted tripping delay t_{ν}

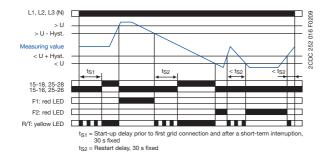
Switch position OFF-delay

In case of a fault, the output relays de-energize instantaneously and a fault message is displayed and stored for the length of the adjusted tripping delay t_{ν} . Thereby, also momentary undervoltage conditions are recognized.



Function of the yellow LED

The yellow LED is flashing during timing and turns steady as soon as the output relays are energized.


Phase failure monitoring

Applying control supply voltage begins the fixed start-up delay $t_{\rm S1}$. When $t_{\rm S1}$ is complete and all phases are present with correct voltage and frequency, the output relays energize. They de-energize instantaneously if a phase failure occurs. The fault is indicated by LEDs. As soon as all 3 phases are present again, the output relays re-energize automatically after the fixed restart delay $t_{\rm S2}$ is complete.

Over- and undervoltage monitoring

Applying control supply voltage begins the fixed start-up delay t_{s_1} . When t_{s_1} is complete and all phases are present with correct voltage and frequency, the output relays energize. If the voltage to be monitored exceeds or falls below the fixed threshold value, the output relays de-energize instantaneously. The fault type is indicated by LEDs. As soon as the voltage returns to the tolerance range, taking into account a fixed hysteresis of 5 %, the output relays re-energize after the fixed restart delay t_{s_2} is complete.

R/T:

yellow

LED

лл

_

_

_

_

_

E1-

red LED

Г

Г

лл

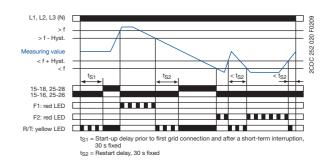
F2·

red LED

_

лл

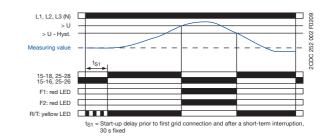
пп


Г

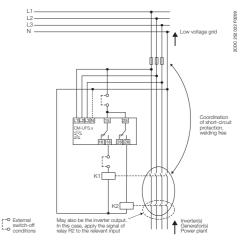
Over- and underfrequency monitoring

Applying control supply voltage begins the fixed start-up delay $t_{\rm S1}$. When $t_{\rm S1}$ is complete and all phases are present with correct voltage and frequency, the output relays energize.

If the frequency to be monitored exceeds or falls below the fixed threshold value, the output relays deenergize instantaneously. The fault type is indicated by LEDs.


As soon as the frequency returns to the tolerance range, taking into account a fixed hysteresis, the output relays re-energize after the fixed restart delay t_{s2} is complete.

10 minutes average value monitoring


Applying control supply voltage begins the fixed start-up delay $t_{\rm S1}$. When $t_{\rm S1}$ is complete and all phases are present with correct voltage and frequency, the output relays energize.

The voltages of the individual phases are measured over a period of 10 minutes and the average value is calculated. If the 10 minutes average value of a phase exceeds the set threshold value, the output relays de-energize instantaneously. The fault is indicated by LEDs. As soon as the 10 minutes average value drops again below the set threshold value, the output relays re-energize instantaneously.

Function diagram legend

Control supply voltage not applied / Output contact open / LED off Control supply voltage applied / Output contact closed / LED glowing

Automatized grid connection instead of a permanently accessible switching point with a disconnection function

value

LEDs Eunction

Output relay energized

Delay active

Overvoltage

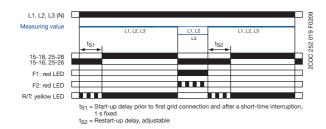
Undervoltage

Overfrequency

Underfrequency

Phase failure

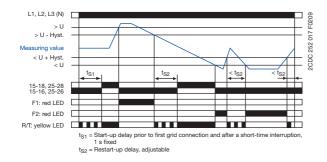
Exceedance of the average


Grid feeding monitoring relays CM-UFS.2 Function description / -diagrams

Function of the yellow LED

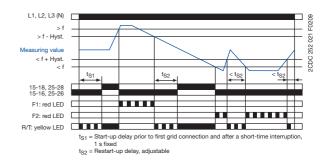
The yellow LED is flashing during timing and turns steady as soon as the output relays are energized.

Phase failure monitoring


Applying control supply voltage begins the fixed start-up delay $t_{\rm S1}$. When $t_{\rm S1}$ is complete and all phases are present with correct voltage and frequency, the output relays energize. They de-energize instantaneously if a phase failure occurs. The fault is indicated by LEDs. As soon as all 3 phases are present again, the output relays re-energize automatically after the set restart delay $t_{\rm S2}$ is complete.

Over- and undervoltage monitoring

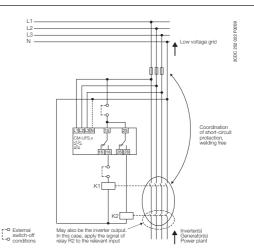
Applying control supply voltage begins the fixed start-up delay $t_{\rm S1}$. When $t_{\rm S1}$ is complete and all phases are present with correct voltage and frequency, the output relays energize.


If the voltage to be monitored exceeds or falls below the fixed threshold value, the output relays de-energize instantaneously. The fault type is indicated by LEDs. As soon as the voltage returns to the tolerance range, taking into account a fixed hysteresis of 5 %, the output relays re-energize after the set restart delay t_{sp} is complete.

Over- and underfrequency monitoring

Applying control supply voltage begins the fixed start-up delay $t_{\rm S1}.$ When $t_{\rm S1}$ is complete and all phases are present with correct voltage and frequency, the output relays energize.

If the frequency to be monitored exceeds or falls below the fixed threshold value, the output relays deenergize instantaneously. The fault type is indicated by LEDs. As soon as the frequency returns to the tolerance range, taking into account a fixed hysteresis, the output relays re-energize after the set restart delay t_{s_2} is complete.



Function diagram legend

Control supply voltage not applied / Output contact open / LED off Control supply voltage applied / Output contact closed / LED glowing

LED Funktionen

Function	R/T: yellow LED	F1: red LED	F2: red LED
Output relay energized		-	-
Delay active	лл	-	-
Overvoltage	-		-
Undervoltage	-	-	
Overfrequency	-	лл	-
Underfrequency	-	-	лл
Phase failure	-		лл

Automatized grid connection instead of a permanently accessible switching point with a disconnection function

Three-phase monitoring relays CM-PBE, CM-PVE, CM-PFE and CM-PFS Technical data

Data at $T_a = 25$ °C and rated values, unless otherwise indicated

Туре		CM-PBE ¹⁾	CM-PBE	CM-PVE ¹⁾	CM-PVE	CM-PFE	CM-PFS	
Supply circuit = measuring circuit	rcuit	L1-L2-L3-N	L1-L2-L3	L1-L2-L3-N	L1-L2-L3	L1-L	2-L3	
Rated control supply voltage U		3x380-		3x320-				
· · · · · · · · · · · · · · · · · · ·	,	440 V AC,	3x380-	460 V AC,	3x320-	3x208-	3x200-	
		220-240 V AC	440 V AC	185-265 V AC	460 V AC	440 V AC	500 V AC	
Power consumption				100 200 1110		approx	. 15 VA	
Rated control supply voltage U	tolerance	-15 -	+15 %	-15	L ⊧10 %	-10+10 %		
Rated frequency			0 Hz		0 Hz (-10+1		50/60 Hz	
		50/0	0112		0 112 (- 10+ 0 %	0 70)	30/00112	
Duty time		14 10 10 1	141010		r	141	010	
Measuring circuit		L1-L2-L3-N	L1-L2-L3	L1-L2-L3-N	L1-L2-L3	L1-L	.2-L3	
Monitoring functions	phase failure							
	phase sequence	-	-	-	-	-	•	
	over- / undervoltage	-	-			-	-	
	neutral	-	-	=	-	-	-	
Measuring ranges		3x380-	0.000	3x320-	0,000	0000	2,000	
0 0		440 V AC,	3x380-	460 V AC,	3x320-	3x208-	3x200-	
		220-240 V AC	440 V AC	185-265 V AC	460 V AC	440 V AC	500 V AC	
Thresholds	U _{min}		1	fixed	fixed		1	
	Umin			185 V / 320 V	320 V			
	U _{max}	0.6	x U _N	fixed	fixed	0.6	x U _N	
	U _{max}	х			460 V			
		C 150((265 V / 460 V	460 V			
Hysteresis related to the thresh	old value		elease value	fixed	5 %			
		= 0.65			- ,-	ļ		
Measuring voltage frequency				<u>0 %+10 %)</u>		50/6)/60 Hz	
Response time		40	ms	80	ms	500	ms	
Accuracy within the rated contr	ol supply voltage tolerance					$\Delta U \leq$	0.5 %	
Accuracy within the temperatur	e range				$\Delta U \leq 0.$	06 % / °C		
Timing circuit	Ŭ							
Start-up delay t _s			fixed 500 n	ns (+20 %)		fixed ^r	500 ms	
Tripping t _v		fixed 1	50 ms	at over-/un	donvoltago	fixed 500		
					0		-	
In the other state of the second state of the		(±2)	0 %)	fixed 500 n	ns (±20 %)	ms		
Indication of operational state								
Relay status	R: yellow LED			l Output	relay energiz	ed		
Output circuits							11(15)-	
			13	-14		11-12/14	12(16)/14(18)	
			10	14		11 12/14	21(25)-	
							22(26)/24(28)	
Kind of output			1 n/o o	contact		1 c/o contact	2 c/o contacts	
Operating principle 2)				closed-circ	uit principle			
Contact material				AgCdO	· · ·		AgNi	
Rated operational voltage U _e	IEC/EN 60947-1			•	0 V			
				20				
Minimum switching voltage / M	inimum switching current							
NAOVIDUM OWITODING VOITOGO					/-			
Maximum switching voltage				250 V AC	, 250 V DC			
Rated operational current Ie	AC12 (resistive) 230 V			250 V AC 4	, 250 V DC A			
	AC12 (resistive) 230 V AC15 (inductive) 230 V			250 V AC 4	, 250 V DC			
Rated operational current Ie				250 V AC 4 3	, 250 V DC A			
Rated operational current Ie	AC15 (inductive) 230 V DC12 (resistive) 24 V			250 V AC 4 3 4	, 250 V DC A A A			
Rated operational current I _e (IEC/EN 60947-5-1)	AC15 (inductive) 230 V			250 V AC 4 3 4 2	, 250 V DC A A A A A			
Rated operational current I _e (IEC/EN 60947-5-1) Mechanical lifetime	AC15 (inductive) 230 V DC12 (resistive) 24 V DC13 (inductive) 24 V			250 V AC 4 3 4 2 30 x 10 ⁶ swi	, 250 V DC A A A A tching cycles			
Rated operational current I _e (IEC/EN 60947-5-1) Mechanical lifetime Electrical lifetime (AC12, 230 V,	AC15 (inductive) 230 V DC12 (resistive) 24 V DC13 (inductive) 24 V 4 A)			250 V AC 4 3 4 2	, 250 V DC A A A A tching cycles			
Rated operational current I _e (IEC/EN 60947-5-1) Mechanical lifetime Electrical lifetime (AC12, 230 V, Max. fuse rating to achieve	AC15 (inductive) 230 V DC12 (resistive) 24 V DC13 (inductive) 24 V			250 V AC 4 3 4 2 30 x 10 ⁶ swi	A A A A A tching cycles		4 A fast-	
Rated operational current I _e (IEC/EN 60947-5-1) Mechanical lifetime Electrical lifetime (AC12, 230 V,	AC15 (inductive) 230 V DC12 (resistive) 24 V DC13 (inductive) 24 V 4 A) n/c contact		1	250 V AC 4 3 4 2 30 x 10 ⁶ swi 0.1 x 10 ⁶ swi	A A A A A tching cycles		acting	
Rated operational current I _e (IEC/EN 60947-5-1) Mechanical lifetime Electrical lifetime (AC12, 230 V, Max. fuse rating to achieve	AC15 (inductive) 230 V DC12 (resistive) 24 V DC13 (inductive) 24 V 4 A)			250 V AC 4 3 4 2 30 x 10 ⁶ swi 0.1 x 10 ⁶ swi 0 A fast-actir	, 250 V DC A A A A tching cycles itching cycles		acting 6 A fast-	
Rated operational current I _e (IEC/EN 60947-5-1) Mechanical lifetime Electrical lifetime (AC12, 230 V, Max. fuse rating to achieve short circuit protection	AC15 (inductive) 230 V DC12 (resistive) 24 V DC13 (inductive) 24 V 4 A) n/c contact n/o contact			250 V AC 4 3 4 30 x 10 ⁶ swi 0.1 x 10 ⁶ swi 0 A fast-actir 0 A fast-actir	A A A A tching cycles itching cycles		acting	
Rated operational current I _e (IEC/EN 60947-5-1) Mechanical lifetime Electrical lifetime (AC12, 230 V, Max. fuse rating to achieve short circuit protection AC ratingUtilization cr	AC15 (inductive) 230 V DC12 (resistive) 24 V DC13 (inductive) 24 V 4 A) n/c contact			250 V AC 4 3 4 30 x 10 ⁶ swi 0.1 x 10 ⁶ swi 0 A fast-actir 0 A fast-actir 8	A A A A tching cycles itching cycles		acting 6 A fast-	
Rated operational current I _e (IEC/EN 60947-5-1) Mechanical lifetime Electrical lifetime (AC12, 230 V, Max. fuse rating to achieve short circuit protection	AC15 (inductive) 230 V DC12 (resistive) 24 V DC13 (inductive) 24 V 4 A) n/c contact n/o contact			250 V AC 4 3 4 30 x 10 ⁶ swi 0.1 x 10 ⁶ swi 0 A fast-actir 0 A fast-actir 8	A A A A tching cycles itching cycles		acting 6 A fast-	
Rated operational current I _e (IEC/EN 60947-5-1) Mechanical lifetime Electrical lifetime (AC12, 230 V, Max. fuse rating to achieve short circuit protection AC rating (UL 508)	AC15 (inductive) 230 V DC12 (resistive) 24 V DC13 (inductive) 24 V 4 A) n/c contact n/o contact ategory (Control Circuit Rating Code)			250 V AC 4 3 4 30 x 10 ⁶ swi 0.1 x 10 ⁶ swi 0 A fast-actir 0 A fast-actir 8 300	A A A A tching cycles itching cycles		acting 6 A fast-	
Rated operational current I _e (IEC/EN 60947-5-1) Mechanical lifetime Electrical lifetime (AC12, 230 V, Max. fuse rating to achieve short circuit protection AC rating (UL 508)	AC15 (inductive) 230 V DC12 (resistive) 24 V DC13 (inductive) 24 V 4 A) n/c contact n/o contact ategory (Control Circuit Rating Code) max. rated operational voltage			250 V AC 4 3 4 2 30 x 10 ⁶ swi 0.1 x 10 ⁶ swi 0 A fast-actir 0 A fast-actir 0 A fast-actir 8 3 300	A A A A tching cycles itching cycles itching cycles 19 19 300 V AC A		acting 6 A fast-	
Rated operational current I _e (IEC/EN 60947-5-1) Mechanical lifetime Electrical lifetime (AC12, 230 V, Max. fuse rating to achieve short circuit protection AC rating (UL 508) max. max. max. max. max.	AC15 (inductive) 230 V DC12 (resistive) 24 V DC13 (inductive) 24 V 4 A) n/c contact n/o contact ategory (Control Circuit Rating Code) max. rated operational voltage continuous thermal current at B 300			250 V AC 4 3 4 2 30 x 10 ⁶ swi 0.1 x 10 ⁶ swi 0 A fast-actir 0 A fast-actir 0 A fast-actir 8 3 300	A A A A tching cycles itching cycles ig g 300 V AC		acting 6 A fast-	
Rated operational current I _e (IEC/EN 60947-5-1) Mechanical lifetime Electrical lifetime (AC12, 230 V, Max. fuse rating to achieve short circuit protection AC rating (UL 508) max. max. making General data	AC15 (inductive) 230 V DC12 (resistive) 24 V DC13 (inductive) 24 V 4 A) n/c contact n/o contact ategory (Control Circuit Rating Code) max. rated operational voltage continuous thermal current at B 300			250 V AC 4 3 4 2 30 x 10 ⁶ swi 0.1 x 10 ⁶ swi 0 A fast-actir 0 A fast-actir 0 A fast-actir 8 3 300	A A A A tching cycles itching cycles itching cycles 19 19 300 V AC A		acting 6 A fast- acting	
Rated operational current I _e (IEC/EN 60947-5-1) Mechanical lifetime Electrical lifetime (AC12, 230 V, Max. fuse rating to achieve short circuit protection AC rating (UL 508) max. max. max. max. max.	AC15 (inductive) 230 V DC12 (resistive) 24 V DC13 (inductive) 24 V 4 A) n/c contact n/o contact ategory (Control Circuit Rating Code) max. rated operational voltage continuous thermal current at B 300		1	250 V AC 4 3 2 30 x 10 ⁶ swi 0.1 x 10 ⁶ swi 0 A fast-actir 0 A fast-actir 0 A fast-actir 8 300 5 3600/	A A A A A tching cycles itching cycles itching cycles ag ag ag 300 V AC A 360 VA		acting 6 A fast- acting 22.5 x 78 x	
Rated operational current I _e (IEC/EN 60947-5-1) Mechanical lifetime Electrical lifetime (AC12, 230 V, Max. fuse rating to achieve short circuit protection AC rating (UL 508) max. max. making General data	AC15 (inductive) 230 V DC12 (resistive) 24 V DC13 (inductive) 24 V 4 A) n/c contact n/o contact ategory (Control Circuit Rating Code) max. rated operational voltage continuous thermal current at B 300		22.	250 V AC 4 3 30 x 10 ⁶ swi 0.1 x 10 ⁶ swi 0 A fast-actir 0 A fast-actir 0 A fast-actir 8 3 300 5 3600/ 5 x 78 x 78.5	A A A A A tching cycles itching cycles itching cycles ag ag ag 300 V AC A 360 VA mm		acting 6 A fast- acting 22.5 x 78 x 100 mm	
Rated operational current I _e (IEC/EN 60947-5-1) Mechanical lifetime Electrical lifetime (AC12, 230 V, Max. fuse rating to achieve short circuit protection AC rating (UL 508) max. max. making General data	AC15 (inductive) 230 V DC12 (resistive) 24 V DC13 (inductive) 24 V 4 A) n/c contact n/o contact ategory (Control Circuit Rating Code) max. rated operational voltage continuous thermal current at B 300		22.	250 V AC 4 3 2 30 x 10 ⁶ swi 0.1 x 10 ⁶ swi 0 A fast-actir 0 A fast-actir 0 A fast-actir 8 300 5 3600/	A A A A A tching cycles itching cycles itching cycles ag ag ag 300 V AC A 360 VA mm		acting 6 A fast- acting 22.5 x 78 x 100 mm (0.89 x 3.07 >	
Rated operational current I _e (IEC/EN 60947-5-1) Mechanical lifetime Electrical lifetime (AC12, 230 V, Max. fuse rating to achieve short circuit protection AC rating Utilization c (UL 508) 	AC15 (inductive) 230 V DC12 (resistive) 24 V DC13 (inductive) 24 V 4 A) n/c contact n/o contact ategory (Control Circuit Rating Code) max. rated operational voltage continuous thermal current at B 300		22.	250 V AC 4 3 30 x 10 ⁶ swi 0.1 x 10 ⁶ swi 0 A fast-actir 0 A fast-actir 0 A fast-actir 8 3 300 5 3600/ 5 x 78 x 78.5 9 x 3.07 x 3.0	A A A A A tching cycles itching cycl		acting 6 A fast- acting 22.5 x 78 x	
Rated operational current I _e (IEC/EN 60947-5-1) Mechanical lifetime Electrical lifetime (AC12, 230 V, Max. fuse rating to achieve short circuit protection AC rating (UL 508) Max. max. making General data Dimensions (W x H x D)	AC15 (inductive) 230 V DC12 (resistive) 24 V DC13 (inductive) 24 V 4 A) n/c contact n/o contact ategory (Control Circuit Rating Code) max. rated operational voltage continuous thermal current at B 300 /breaking apparent power at B 300		22.	250 V AC 4 3 3 4 2 30 x 10 ⁶ swi 0 A fast-actir 0 A fast-actir 0 A fast-actir 8 300 5 3600/ 5 5 x 78 x 78.5 9 x 3.07 x 3.0 a	, 250 V DC A A A A tching cycles itching cycles itching cycles itching cycles 09 09 300 V AC A 360 VA mm 19 in)		acting 6 A fast- acting 22.5 x 78 x 100 mm (0.89 x 3.07 >	
Rated operational current I _e (IEC/EN 60947-5-1) Mechanical lifetime Electrical lifetime (AC12, 230 V, Max. fuse rating to achieve short circuit protection AC rating (UL 508) max. max. making General data	AC15 (inductive) 230 V DC12 (resistive) 24 V DC13 (inductive) 24 V 4 A) n/c contact n/o contact ategory (Control Circuit Rating Code) max. rated operational voltage continuous thermal current at B 300		22.	250 V AC 4 3 3 4 2 30 x 10 ⁶ swi 0 A fast-actir 0 A fast-actir 0 A fast-actir 8 300 5 3600/ 5 5 x 78 x 78.5 9 x 3.07 x 3.0 a IP50	A A A A A tching cycles itching cycl		acting 6 A fast- acting 22.5 x 78 x 100 mm (0.89 x 3.07)	

2

Three-phase monitoring relays CM-PBE, CM-PVE, CM-PFE and CM-PFS Technical data

Туре		CM-PBE ¹⁾	CM-PBE	CM-PVE ¹⁾	CM-PVE	CM-PFE	CM-PFS
Electrical cor	nnection					·	
Wire size	fine-strand with wire end ferrule						2 x 0.75-
			_	x 0.75-1.5 mr			2.5 mm ²
		(2 x 18-16 AWG)			(2 x 18-		
-							14 AWG)
	fine-strand without wire end ferrule			0 1 1 5			2 x 0.75-
				2 x 1-1.5 mm ² 2 x 18-16 AW(2.5 mm ² (2 x 18-
			(2	2 X 10-10 AVV	a)		14 AWG)
-	rigid						2 x 0.5-
	ngia		2	x 0.75-1.5 mr	m²		4mm ²
			_	2 x 18-16 AW			(2 x 20-
			X		- /		12 AWG)
Stripping leng	th		1	10 mm (0.39 ir	ו)		7 mm (0.28 in)
Tightening tor			0.6-0	.8 Nm		(0.20 11)	
Environmenta	•						
Ambient temp	erature range operation / storage	-20+60 °C / -40+85 °C					
Environmental	I testing (IEC 68-2-30)	24 h cycle time, 55 °C, 93 % rel., 96 h					
Operational re	liability (IEC 68-2-6)			6 g			4 g
Mechanical re	sistance (IEC 68-2-6)	10 g				6 g	
Isolation data							
	on volt. between supply, measuring and output 110, IEC 60947-1)	400 V 50		50	0 V		
Rated impulse circuits (VDE 0	e withstand voltage U _{imp} between all isolated 0110, IEC 664)	4 kV / 1.2 - 50 μs					
Test voltage b	etween all isolated circuits	2.5 kV, 50 Hz, 1 min.					
Pollution cate	gory (VDE 0110, IEC/EN 60664, IEC 255-5)	3					
Overvoltage ca	ategory (VDE 0110, IEC/EN 60664, IEC 255-5)						
Standards							
Product stand	ard	IEC 255-6, EN 60255-6					
Low Voltage D	Directive	2006/95/EC					
EMC Directive)	2004/108/EC					
Electromagne	etic compatibility						
Interference in	nmunity to				00-6-2		
electrostatio	c discharge IEC/EN 61000-4-2			Level 3 -	6 kV/ 8 kV		
	o-frequency, electromagnetic field IEC/EN 61000-4-3			Level 3	- 10 V/m		
electrical fas	st transient / burst IEC/EN 61000-4-4	Level 3 - 2 kV / 5 kHz					
surge	IEC/EN 61000-4-5	Level 4 - 2 kVL-L					
conducted disturb	bances, induced by radio-frequency fields IEC/EN 61000-4-6						
Interference er	mission			EN 610	00-6-4		

1) Device with neutral monitoring: The external conductor voltage towards the neutral conductor is measured.

2) Closed-circuit principle: Output relay is de-energized if the measured value exceeds/drops below the adjusted threshold.

• Approvals ...

.. **2**/6

Three-phase monitoring relays CM-PSS.xx, CM-PVS.xx and CM-PAS.xx Technical data

Data at $T_a = 25$ °C and rated values, unless otherwise indicated

Туре		CM- PSS.31	CM- PSS.41	CM- PVS.31	CM- PVS.41	CM- PAS.31	CM- PAS.41	
Input circuit = Measuri	ng circuit			L1, L	2, L3			
Rated control supply vol	tage U _s = measuring voltage	3x380 V AC	3x400 V AC	3x160- 300 V AC	3x300- 500 V AC	3x160- 300 V AC	3x300- 500 V AC	
Rated control supply vol	tage U _s tolerance			-15	⊦10 %			
Rated frequency		50/60 Hz						
Frequency range				45-6	5 Hz			
Typical current / power c	consumption	25 mA / 18 VA (380 V AC)	25 mA / 18 VA (400 V AC)	25 mA / 10 VA (230 V AC)	25 mA / 18 VA (400 V AC)	25 mA / 10 VA (230 V AC)	25 mA / 18 VA (400 V AC)	
Measuring circuit			<u>`</u>	L1, L	2, L3			
Monitoring functions	Phase failure							
Ũ	Phase sequence		can be sw	vitched off				
	Automatic phase sequence correction	-	-	-	-	-	-	
	Over- / undervoltage					-	-	
	Phase unbalance							
	Neutral	-	_	_		-	-	
Measuring range	Overvoltage	3x418 V AC	3x440 V AC	3x220- 300 V AC	3x420- 500 V AC	-	-	
	Undervoltage	3x342 V AC	3x360 V AC	3x160- 230 V AC	3x300- 380 V AC	-	-	
	Phase unbalance	-	-	-	-	2-25 % c of phase		
Thresholds	Overvoltage	fix	ed	adjust. within	meas. range	-	-	
	Undervoltage		ed	adjust. within		-	_	
	Phase unbalance (switch-off value)	-	-	-	-	adiust within	meas. range	
Hysteresis related to	Over- / undervoltage		fixed			uujuot. Within	-	
the threshold value	Phase unbalance	-	-	-	-	fixed	20.04	
		-	-		 0 Hz	lixeu	20 70	
Rated frequency of the n								
Frequency range of the r				5 Hz				
Maximum measuring cyc		100 ms $\Delta U \le 0.5 \text{ \%}$						
•	d control supply voltage tolerance							
Accuracy within the temp	perature range	$\Delta U \le 0.06 \% / °C$ True RMS						
Measuring method				Irue	RMS			
Timing circuit				<i></i>				
Start-up delay t _s		fixed 200 ms						
Tripping delay t _v		ON- or OFF-delayON- delay0; 0.1-30 s adjustable0; 0.1-30 s adjustable						
Accuracy within the rated	d control supply voltage tolerance			$\Delta t \leq 0$	0.5 %			
Accuracy within the temp	perature range			$\Delta t \leq 0.0$	6 % / °C			
Indication of operation	al states	Details see function description / -diagrams						
Output circuits		15-16/18, 25-26/28						
Kind of output				2x1 c/o cont	acts (Relays)			
Operating principle 1)				closed-circ	uit principle			
Contact material				AgNi allo	y, Cd free			
Rated operational voltag	IEC/EN 60947-1				0 V			
Minimum switching pow				24 V /	10 mA			
Maximum switching volt					imit curve			
Rated operational currer	<u> </u>				A			
(IEC/EN 60947-5-1)	AC15 (inductive) 230 V				A			
	DC12 (resistive) 24 V				A			
	DC12 (lesistive) 24 V				A			
AC rating	Utilization category							
(UL 508)	(Control Circuit Rating Code)			B3	300			
	max. rated operational voltage			300	V AC			
	max. continuous thermal current at B 300							
	max. continuous thormal suffering at b 500							

Three-phase monitoring relays CM-PSS.xx, CM-PVS.xx and CM-PAS.xx Technical data

Data at T_a = 25 °C and rated values, unless otherwise indicated

Mechanical lifetime Electrical lifetime (AC12, 230 V, 4 A) Max. fuse rating to achieve n/c contact Short circuit protection n/o contact General data Duty time Duty time Dimensions (W x H x D) Weight Mounting Mounting position horizontal / vertical Degree of protection enclosure / terminals Electrical connection for the tit (c the date of the tit)	10 A fast-acting 100 % 22.5 x 78 x 100 mm (0.89 x 3.07 x 3.94 in) 0.13 kg (0.29 lb) DIN rail (IEC/EN 60715), snap-on mounting without any tool any					
Max. fuse rating to achieve short circuit protection n/c contact short circuit protection n/o contact General data	6 A fast-acting 10 A fast-acting 100 % 22.5 x 78 x 100 mm (0.89 x 3.07 x 3.94 in) 0.13 kg (0.29 lb) DIN rail (IEC/EN 60715), snap-on mounting without any tool any					
short circuit protection n/o contact General data Duty time Dimensions (W x H x D) Weight Mounting Mounting position Minimum distance to other units horizontal / vertical Degree of protection enclosure / terminals Electrical connection	10 A fast-acting 100 % 22.5 x 78 x 100 mm (0.89 x 3.07 x 3.94 in) 0.13 kg (0.29 lb) DIN rail (IEC/EN 60715), snap-on mounting without any tool any					
General data Duty time Dimensions (W x H x D) Weight Mounting Mounting position Minimum distance to other units horizontal / vertical Degree of protection enclosure / terminals Electrical connection	100 % 22.5 x 78 x 100 mm (0.89 x 3.07 x 3.94 in) 0.13 kg (0.29 lb) DIN rail (IEC/EN 60715), snap-on mounting without any tool any					
Duty time Dimensions (W x H x D) Weight Mounting Mounting position Minimum distance to other units horizontal / vertical Degree of protection enclosure / terminals Electrical connection	22.5 x 78 x 100 mm (0.89 x 3.07 x 3.94 in) 0.13 kg (0.29 lb) DIN rail (IEC/EN 60715), snap-on mounting without any tool any					
Dimensions (W x H x D) Weight Mounting Mounting position Minimum distance to other units horizontal / vertical Degree of protection enclosure / terminals Electrical connection	22.5 x 78 x 100 mm (0.89 x 3.07 x 3.94 in) 0.13 kg (0.29 lb) DIN rail (IEC/EN 60715), snap-on mounting without any tool any					
Weight Mounting Mounting position Minimum distance to other units horizontal / vertical Degree of protection enclosure / terminals Electrical connection	0.13 kg (0.29 lb) DIN rail (IEC/EN 60715), snap-on mounting without any tool any					
Mounting Mounting position Minimum distance to other units horizontal / vertical Degree of protection enclosure / terminals Electrical connection	DIN rail (IEC/EN 60715), snap-on mounting without any tool any					
Mounting position Minimum distance to other units Degree of protection enclosure / terminals Electrical connection	any					
Minimum distance to other units horizontal / vertical Degree of protection enclosure / terminals Electrical connection	-					
Degree of protection enclosure / terminals Electrical connection						
Electrical connection	none / none					
	IP50 / IP20					
Wire size fine-strand with(out) wire end ferrule	2 x 0.75-2.5 mm² (2 x 18-14 AWG)					
rigid	2 x 0.5-4 mm ² (2 x 20-12 AWG)					
Stripping length	7 mm (0.28 in)					
Tightening torque	0.6-0.8 Nm					
Environmental data						
Ambient temperature ranges operation / storage	-25+60 °C / -40+85 °C					
Damp heat (IEC 60068-2-30)	55 °C, 6 cycles					
Climatic category	3K3					
Vibration (sinusoidal) (IEC/EN 60255-21-1)	Class 2					
Shock (IEC/EN 60255-21-2)	Class 2					
Isolation data						
Rated insulation input circuit / output circuit	600 V					
voltage U _i output circuit 1 / output circuit 2						
Rated impulse withstand voltage U _{imp} input circuit						
(VDE 0110, IEC/EN 60664) output circuit						
Test voltage between all isolated circuits (type test)	2.5 kV, 50 Hz, 1 s					
Basis isolation input circuit / output circuit						
Protective separation (VDE 0106 input circuit / part 101 and 101/A, IEC/EN 61140) output circuit	_					
Pollution degree (VDE 0110, IEC/EN 60664, UL 508)	3					
Overvoltage category (VDE 0110, IEC 60664, UL 508)						
Standards						
Product standard	IEC/EN 60255-6, EN 50178					
Low Voltage Directive	2006/95/EG					
EMC directive	2004/108/EG					
RoHS directive	2002/95/EG					
Electromagnetic compatibility						
Interference immunity to	EN 61000-6-1, EN 61000-6-2					
electrostatic discharge IEC/EN 61000-4-2	Level 3 (6 kV / 8 kV)					
radiated, radio-frequency, electromagnetic field IEC/EN 61000-4-3	Level 3 (10 V/m)					
electrical fast transient / burst IEC/EN 61000-4-4	Level 3 (2 kV / 2 kHz)					
surge IEC/EN 61000-4-5	Level 4 (2 kV L-L)					
conducted disturbances, induced by radio-frequency fields IEC/EN 61000-4-6	Level 3 (10 V)					
harmonics and interharmonics IEC/EN 61000-4-13	Class 3					
Interference emission	EN 61000-6-3, EN 61000-6-4					
high-frequency radiated IEC/CISPR 22, EN 50022	Class B					
high-frequency radiated IEC/CISPR 22, EN 50022 high-frequency conducted IEC/CISPR 22, EN 50022	Class B Class B					

¹⁾ Closed-circuit principle: Output relay(s) de-energize(s) if measured value exceeds or falls below the adjusted threshold value

• Approvals2/6

Three-phase monitoring relays CM-MPS.x1 Technical data

Data at T_a = 25 $^\circ C$ and rated values, unless otherwise indicated

Туре		CM-MPS.11	CM-MPS.21	CM-MPS.31	CM-MPS.41		
Input circuit = Measuri	ng circuit	L1, L2	, L3, N	L1, L	.2, L3		
Rated control supply vo	Itage U _s = measuring voltage	3x90-170 V AC	3x180-280 V AC	3x160-300 V AC	3x300-500 V AC		
Rated control supply vo	Itage U _s tolerance		-15	+10 %			
Rated frequency		50/60 Hz					
Frequency range		45-65 Hz					
Typical current / power of	consumption	25 mA / 10 VA	25 mA / 18 VA	25 mA / 10 VA	25 mA / 18 VA		
		(115 V AC)	(230 V AC)	(230 V AC)	(400 V AC)		
Measuring circuit		L1, L2	, L3, N	L1, L	.2, L3		
Monitoring functions	Phase failure						
	Phase sequence		can be sw	vitched off			
	Automatic phase sequence correction	-	-	-	-		
	Over- / undervoltage		•				
	Phase unbalance		•				
	Interrupted neutral		•	-	-		
Measuring range	Overvoltage	3x120-170 V AC	3x240-280 V AC	3x220-300 V AC	3x420-500 V AC		
	Undervoltage	3x90-130 V AC	3x180-220 V AC	3x160-230 V AC	3x300-380 V AC		
	Phase unbalance		2-25 % of average	of phase voltages			
Thresholds	Overvoltage		adjustable within	measuring range			
	Undervoltage	adjustable within measuring range					
	Phase unbalance (switch-off value)	adjustable within measuring range					
Hysteresis related to	Over- / undervoltage		fixed	5 %			
the threshold value	Phase unbalance	fixed 20 %					
Rated frequency of the r	measuring signal	50/60 Hz					
Frequency range of the measuring signal			45-6	5 Hz			
Maximum measuring cycle time			100	ms			
Accuracy within the rate	d control supply voltage tolerance		$\Delta U \leq$	0.5 %			
Accuracy within the tem	perature range	$\Delta U \leq 0.06 \ \% \ / \ ^{\circ}C$					
Measuring method		True RMS					
Timing circuit							
Start-up delay t _s		fixed 200 ms					
Tripping delay t_v		ON- or OFF-delay 0; 0.1-30 s adjustable					
Accuracy within the rate	d control supply voltage tolerance		$\Delta t \leq$	0.5 %			
Accuracy within the tem	perature range		$\Delta t \leq 0.0$	6 % / °C			
Indication of operation	al states	De	tails see function d	escription / -diagra	ms		
Output circuits			15-16/18,	25-26/28			
Kind of output			1x2 c/o cont	acts (Relays)			
Operating principle 1)			closed-circ	uit principle			
Contact material			AgNi allo	y, Cd free			
Rated operational voltage	ge U _e IEC/EN 60947-1		25	0 V			
Minimum switching pow	/er	24 V / 10 mA					
Maximum switching volt		see load limit curve					
Rated operational currer			4	A			
(IEC/EN 60947-5-1)	AC15 (inductive) 230 V		3	A			
	DC12 (resistive) 24 V		4	A			
	DC13 (inductive) 24 V		2	A			
AC rating	Utilization category		D	300			
(UL 508)	(Control Circuit Rating Code)						
	max. rated operational voltage			V AC			
	max. continuous thermal current at B 300		5	A			
	max. making/breaking apparent power	1		360 VA			

Three-phase monitoring relays CM-MPS.x1 Technical data

Data at T_{a} = 25 $^{\circ}C$ and rated values, unless otherwise indicated

Туре	CM-MPS.11	CM-MPS.21	CM-MPS.31	CM-MPS.41
Mechanical lifetime		30 x 10 ⁶ swi	tching cycles	
Electrical lifetime (AC12, 230 V, 4 A)		0,1 x 10 ⁶ switching cycles		
Max. fuse rating to achieve n/c contac	:t	6 A fast-acting		
short circuit protection n/o contac	rt 🛛	10 A fa:	st-acting	
General data				
Duty time		100 %		
Repeat accuracy (constant paramaters)		< ±0.2 %		
Dimensions (W x H x D)	2	22.5 x 78 x 100 mm (0.89 x 3.07 x 3.94 in)		
Weight	0.14 kg	g (0.31 lb)	0.13 kg	(0.29 lb)
Mounting	DIN rail (II	EC/EN 60715), snap	-on mounting with	out any tool
Mounting position		a	ny	-
Minimum distance to other units horizontal / vertical		none	/ none	
Degree of protection enclosure / terminal	s	IP50	/ IP20	
Electrical connection				
Wire size fine-strand with(out) wire end ferrul	e	2 x 0.75-2.5 mm	² (2 x 18-14 AWG)	
rigi	b	2 x 0.5-4 mm ²	(2 x 20-12 AWG)	
Stripping length		7 mm	(0.28 in)	
Tightening torque		0.6-0	.8 Nm	
Environmental data				
Ambient temperature ranges operation / storag	e	-25+60 °C	/ -40+85 °C	
Damp heat (IEC 60068-2-30)		55 °C,	6 cycles	
Climatic category		3K3		
Vibration (sinusoidal) (IEC/EN 60255-21-1)	Class 2			
Shock (IEC/EN 60255-21-2)	Class 2			
Isolation data				
Rated insulation input circuit / output circu	it	60	0 V	
voltage U _i output circuit 1 / output circuit 1		30	0 V	
Rated impulse withstand voltage U _{imp} input circu		6 kV; 1	.2/50 µs	
(VDE 0110, IEC/EN 60664) output circu	it	4 kV; 1	.2/50 µs	
Test voltage between all isolated circuits (type test)		2.5 kV, 50 Hz, 1 s		
Basis isolation input circuit / output circu	it	600 V		
Protective separation (VDE 0106 input circuit	1			
part 101 and 101/A, IEC/EN 61140) output circu	it S	/es		-
Pollution degree (VDE 0110, IEC/EN 60664, UL 508)			3	
Overvoltage category (VDE 0110, IEC 60664, UL 508)		III		
Standards				
Product standard		IEC/EN 6025	5-6, EN 50178	
Low Voltage Directive		2006/	'95/EG	
EMC directive		2004/	108/EG	
RoHS directive			′95/EG	
Electromagnetic compatibility				
Interference immunity to		EN 61000-6-1	, EN 61000-6-2	
electrostatic discharge IEC/EN 61000-4-2			kV / 8 kV)	
radiated, radio-frequency, electromagnetic field IEC/EN 61000-4-3			(10 V/m)	
electrical fast transient / burst IEC/EN 61000-4-4			kV / 2 kHz)	
surge IEC/EN 61000-4-5	Level 4	(2 kV L-N)		2 kV L-L)
conducted disturbances, induced by radio-frequency fields IEC/EN 61000-4-6		, ,	3 (10 V)	
harmonics and interharmonics IEC/EN 61000-4-13			ss 3	
Interference emission			, EN 61000-6-4	
high-frequency radiated IEC/CISPR 22, EN 50022			ss B	
high-frequency conducted IEC/CISPR 22, EN 50022			ss B	

¹⁾ Closed-circuit principle: Output relay(s) de-energize(s) if measured value exceeds or falls below the adjusted threshold value

• Approvals2/6

Three-phase monitoring relays CM-MPS.x3 and CM-MPN.x2 Technical data

Data at T_a = 25 $^\circ\text{C}$ and rated values, unless otherwise indicated

Туре			CM-MPS.23	CM-MPS.43	CM-MPN.52	CM-MPN.62	CM-MPN.72	
Input circuit = Measuri	ing circuit		L1, L2, L3, N		L1, L	.2, L3		
Rated control supply vo	ltage U _s = meas	uring voltage	3x180-280 V AC	3x300-500 V AC	3x350-580 V AC	3x450-720 V AC	3x530-820 V AC	
Rated control supply vo	Itage U _s toleran	ce			-15+10 %			
Rated frequency			50/60/	400 Hz		50/60 Hz		
Frequency range			45-4	40 Hz		45-65 Hz		
Typical current / power	consumption		5 mA / 4 VA	5 mA / 4 VA	29 mA / 41 VA	29 mA / 52 VA	29 mA / 59 VA	
	-		(230 V AC)	(400 V AC)	(480 V AC)	(600 V AC)	(690 V AC)	
Measuring circuit			L1, L2, L3, N		L1, L	.2, L3		
Monitoring functions		Phase failure	re 🛛 🔹 🖉 🖷		•			
		Phase sequence		Ca	in be switched	off		
	Automatic p	hase sequence correction			configurable			
		Over- / undervoltage						
		Phase unbalance			•			
		Interrupted neutral		-	-	-	-	
Measuring range		Overvoltage	3x240-280 V AC	3x420-500 V AC	3x480-580 V AC	3x600-720 V AC	3x690-820 V AC	
		Undervoltage	3x180-220 V AC	3x300-380 V AC	3x350-460 V AC	3x450-570 V AC	3x530-660 V AC	
		Phase unbalance		2-25 % of	average of pha	se voltages		
Thresholds		Overvoltage		adjustabl	e within measu	ring range		
		Undervoltage	adjustable within measuring range					
	Phase ur	balance (switch-off value)						
Hysteresis related to		Over- / undervoltage			fixed 5 %	ed 5 %		
the threshold value		Phase unbalance			fixed 20 %			
Rated frequency of the	measuring signa	1	50/60/400 Hz 50/60 Hz					
Frequency range of the	0 0		45-4	40 Hz		45-65 Hz		
Maximum measuring cycle time				100 ms				
Accuracy within the rate		voltage tolerance			$\Delta U \leq 0.5 \%$			
Accuracy within the terr				Δ	$U \le 0.06 \% / ^{\circ}$	С		
Measuring method			True RMS					
Timing circuit								
Start-up delay ts and ts2					fixed 200 ms			
Start-up delay t _{s1}			fixed 250 ms					
Tripping delay t _v			ON- or OFF-delay ON-delay					
				0.1-30 s adjusta			adjustable	
Accuracy within the rate	d control supply	voltage tolerance	,		$\Delta t \leq 0.5 \%$,	,	
Accuracy within the terr					$\Delta t \le 0.06 \% / \%$	C		
Indication of operation			Details see function description / -diagrams					
Output circuits			15-16/18, 25-26/28					
Kind of output				2x1 or 1x2 c/o	contacts confid	gurable (Relays))	
Operating principle 1)			closed-circuit principle					
Contact material			AgNi alloy, Cd free					
Rated operational voltage	ne U.	IEC/EN 60947-1						
Minimum switching pov	· · · ·		230 V 24 V / 10 mA					
Maximum switching vol				SE	e load limit cur	ve		
Rated operational curre	<u> </u>	AC12 (resistive) 230 V		30	4 A			
(IEC/EN 60947-5-1)	.6	AC15 (inductive) 230 V			3 A			
		DC12 (resistive) 24 V						
		DC13 (inductive) 24 V						
AC rating	Itilization catego	ory (Control Circuit Rating Code)			B 300			
(UL 508)		max. rated operational voltage			300 V AC			
. ,	may cont	inuous thermal current at B 300						
	max. making/bre	eaking apparent power at B 300	3600/360 VA					

Data at T_a = 25 $^\circ C$ and rated values, unless otherwise indicated

contact	6 A fast-	0,1 x -acting	10 ⁶ switching c 10 ⁶ switching c 10 A fast-acting	ycles 10 A fast-acting	
	22.5 x 78 x	-acting	1	10 A fast-acting	
	22.5 x 78 x	0			
contact			10 A fast-acting		
			100 %		
			$<\pm0.2$ %		
				5 x 78 x 100 mn ′8 x 3.07 x 3.94	
	0.14 kg (0.31 lb)	0.13 kg (0.29 lb)		0.22 kg (0.49 lb)	
	DIN rail	(IEC/EN 6071	5), snap-on mou	inting without a	ny tool
			any		
rtical			none / none		
minals			IP50 / IP20		
ferrule		2 x 0.75-2	2.5 mm² (2 x 18-	-14 AWG)	
rigid		2 x 0.5-	4 mm² (2 x 20-1	2 AWG)	
			7 mm (0.28 in)		
			0.6-0.8 Nm		
torage		-25	+60 °C / -40+	85 °C	
			55 °C, 6 cycles		
			3K3		
	Class 2				
			Class 2		
circuit	600	V		1000 V	
ircuit 2			300 V		
circuit	6 kV; 1.2	2/50 µs		8 kV; 1.2/50 μs	
circuit			4 kV; 1.2/50 μs		
circuits		2	.5 kV, 50 Hz, 1 s	S	
circuits	2.5 kV, 50) Hz, 1 s	4	4 kV, 50 Hz, 1 s	
circuit	600	V		1000 V	
			-		
	3				
			111		
		IEC/E	N 60255-6, EN \$	50178	
			2006/95/EG		
	2004/108/EG				
			2002/95/EG		
		EN 610	00-6-1, EN 610	00-6-2	
-4-2		Le	vel 3 (6 kV / 8 k	:V)	
-4-3			_evel 3 (10 V/m))	
-4-4		Le	/el 3 (2 kV / 2 kl	Hz)	
-4-5	Level 4 (2 kV L-N)		Level 4 (2	2 kV L-L)	
-4-6			Level 3 (10 V)		
4-13			Class 3		
		EN 610	00-6-3, EN 610	00-6-4	
022			Class B		
022			Class B		
d value e	exceeds or falls bel	low the adjusted	threshold value		
	ferrule rigid torage circuit c	ferrule rigid rigid itorage circuit cir	ferrule 2 x 0.75-2 rigid 2 x 0.5-4 2 x 0.5 2	ferrule $2 \times 0.75 - 2.5 \text{ mm}^2 (2 \times 18)$ rigid $2 \times 0.5 - 4 \text{ mm}^2 (2 \times 20 - 1)$ 7 mm (0.28 in) 0.6 - 0.8 Nm torage $-25+60 \text{ °C} / -40+$ 55 °C, 6 cycles 3K3 Class 2 3K3 Class 2 Class 2 circuit 600 V ircuit 2 300 V circuit 6 kV; 1.2/50 µs circuit 2.5 kV, 50 Hz, 1 s circuit 2.5 kV, 50 Hz, 1 s - circuit 600 V - circuit 2.5 kV, 50 Hz, 1 s - circuit 600 V - sircuits 2.5 kV, 50 Hz, 1 s circuit 7 - circuit 8 - 2.5 kV, 50 Hz, 1 s - circuit 9 - 3 - 100 V - circuit 2.5 kV, 50 Hz, 1 s - circuit 3.25 kV, 50 Hz, 1 s - circuit 4.600 V - circuit 2.5 kV, 50 Hz, 1 s -	ferrule 2 x 0.75-2.5 mm² (2 x 18-14 AWG) rigid 2 x 0.5-4 mm² (2 x 20-12 AWG) 7 mm (0.28 in) 0.6-0.8 Nm torage -25+60 °C / -40+85 °C S °C, 6 cycles 3K3 Class 2 Class 2 circuit 600 V 1000 V circuit 600 V circuit 600 V circuit 600 V circuit 600 V circuit circuit

• Approvals 2/6

Data at $T_a = 25$ °C and rated values, unless otherwise indicated

Туре		CM-	UFS.1	CM-	UFS.2	
Input circuit - Measuring circuit		L1, L2, L3	L-N	L1, L2, L3	L-N	
Rated control supply voltage U_s = mea	suring voltage	3 x 400 V AC	3 x 230 V AC	3 x 400 V AC	3 x 230 V AC	
Rated control supply voltage tolerance	Us Us			+20 %		
Control supply voltage range		3 x 300-500 V AC 3 x 180-280 V AC 3 x 300-500 V AC 3 x 180-280 V A				
Rated frequency		50 Hz				
Frequency range		45-55 Hz				
Typical current / power consumption		23 mA / 16 VA				
Power failure buffering time			min.	20 ms		
Input circuit - measuring circuit		L1, L2, L3	L-N	L1, L2, L3	L-N	
Monitoring functions	Phase failure		l			
	Over-/ undervoltage					
	Over-/ underfrequency		l	•		
	10 minutes average value				_	
Measuring range	Voltage range	3 x 320-460 V AC	3 x 184-264,5 V AC	3 x 320-480 V AC	3 x 184-276 V AC	
	Frequency range		45-5	5 Hz		
Thresholds	Overvoltage	fix, 115	% of U_s	fix, 120	% of U _s	
	Undervoltage	fix, 80	% of U _s	fix, 80	% of U_s	
	Overfrequency	fix, 5	0,2 Hz		z, configurable	
	Underfrequency	fix, 4	7,5 Hz	49,7 or 49 Hz	z, configurable	
	10 minutes average value	adjustable, 11	10-115 % of U _s		-	
Hysteresis related to	Over-/ undervoltage		fix	5 %		
the threshold value	Over-/ underfrequency	fix 20 mHz				
Rated frequency of the measuring sign	nal	50 Hz				
Frequency range of the measuring sign	nal	45-55 Hz				
Maximum measuring cycle time		50 ms				
Maximum reaction time	Over-/ undervoltage	< 120 ms				
(time between fault detection and	Over-/ underfrequency		< 10	0 ms		
change of switching status of the relay)	10 minutes average value	withou	ut delay		_	
Accuracy within the rated control supply voltage tolerance			, 	0,5 %		
Accuracy within the temperature range			$\Delta U \leq 0,06 \% / °C$			
Measuring method		True BMS				
Timing circuit						
Start-up delay t_{s1} prior to grid connect	ion after a short					
interruption		fix, 30 s fix, 1 s		, 1 s		
Restart delay t _{s2}		fix,	30 s	adjustable, 0 s; 0,1 – 30 s		
Accuracy within the rated control supp	ly voltage tolerance		$\Delta t \leq$	0,5 %		
Accuracy within the temperature range		$\Delta t \leq 0,06 \% / °C$				
Indication of operational states		1 yellow LED, 2 red LEDs				
		Details see	operation mode an	d function descript	ion/diagrams	
Output circuits			15-16/18	, 25-26/28		
Kind of output			Relais, 1 x 2	changeover		
Operation principle 1)			closed-circ	uit principle		
Contact material			AgNi allo	y, Cd free		
Rated operational voltage $\rm U_{e}$ (IEC/EN $\rm G$	60947-1)	250 V				
Minimum switching voltage / switching	•		24 V /	10 mA		
Maximum switching voltage / switchin	g current		see load	limit curve		
Rated operational current Ie	AC12 (resistive) 230 V		4	A		
(IEC/EN 60947-5-1)	AC15 (inductive) 230 V		3	A		
	DC12 (resistive) 24 V		4	A		
	DC13 (inductive) 24 V			A		
Mechanical lifetime			30 x 10 ⁶ swi	tching cycles		
Electrical lifetime (AC12, 230 V, 4 A)			0,1 x 10 ⁶ sw	itching cycles		
Max. fuse rating to achieve	n/c contact		6 A fas	t-acting		
short circuit protection	n/o contact	1	10 A for	st-acting		

¹⁾ Closed-circuit principle: Output relay(s) de-energize(s) if measured value exceeds or falls below the adjusted threshold value

Grid feeding monitoring relays CM-UFS.x Technical data

Data at $T_a = 25$ °C and rated values, unless otherwise indicated

Туре	CM-UFS.1	CM-UFS.2	
General data			
Duty time	100	0 %	
Repeat accuracy (constant parameters)	< ± 0,5 %		
Dimensions (W x H x D)	22,5 x 78 x 100 mm		
	(0,89 x 3,07 x 3,94 in)		
Weight	0,14 kg (0,31 lb)		
Mounting	DIN-Rail (EN 60715), snap-on mounting without any tool		
Mounting position	a	ny	
Minimum distance to other units	not ne	cessary	
Degree of protection enclosure / terminals	IP50	/ IP20	
Electrical connection			
Wire size fine-strand with/without wire end ferrule	2 x 0,75 – 2,5 mm	² (2 x 18-14 AWG)	
rigid	2 x 0,5 – 4 mm ²	(2 x 20-12 AWG)	
Stripping length	7 mm ((0,28 in)	
Tightening torque	0,6 – 0,8 Nm (5	5,31 – 7,08 in.lb)	
Environmental data			
Ambient temperature range operation / storage	-25+60 °C	/ -40+85 °C	
Damp heat, cyclic (IEC/EN 60068-2-30)	2 x 12 h cycle,	55 °C, 95 % RH	
Climatic category (IEC/EN 60721-3-1)	31	K3	
Vibration (sinusoidal) (IEC/EN 60255-21-1)	Cla	ss 2	
Shock (IEC/EN 60255-21-2)	Cla	ss 2	
Isolation data			
Rated impulse with- input circuit / output circuit	60	0 V	
stand voltage U _i output circuit 1 / output circuit 2	300 V		
Rated impulse withstand voltage U _{imp} input circuit	6 kV; 1	,2/50 μs	
(VDE 0110, IEC/EN 60664) output circuit	circuit 4 kV; 1,2/50 µs		
Test voltage between all isolated circuits (type test)	2,5 kV, 50 Hz, 1 s		
Basis isolation input circuit / output circuit	600 V		
Protective separation (VDE 0160 Part input circuit /			
101 and 101/A, IEC/EN 61140) output circuit	y'	es	
Pollution degree (VDE 0110, IEC/EN 60664, UL 508)	3		
Overvoltage category (VDE 0110, IEC 60664, UL 508)	III		
Standards			
Product standard	IEC/EN 60255-6, DIN V VDE V 0126-1-1: February 2006	Type-tested in accordance with the "Guideline for Connections to ENEL distribution network" December 2008, Ed. I	
Further standards	EN 50178	, EN 61727	
Low Voltage Directive		95/EG	
EMV-Directive	2004/-	108/EG	
RoHS-Directive	2002/	95/EG	
Electromagnetic compatibility			
Interference immunity to	IEC/EN 61000-6-1	, IEC/EN 61000-6-2	
electrostatic discharge IEC/EN 61000-4-2		kV / 8 kV)	
radiated, radio-frequency, electromagnetic field IEC/EN 61000-4-3		(10 V/m)	
electrical fast transient / burst IEC/EN 61000-4-4		kV / 2 kHz)	
surge IEC/EN 61000-4-5	· · · · · · · · · · · · · · · · · · ·	<v l-l,="" l-n)<="" td=""></v>	
conducted disturbances, induced by radio-frequency fields IEC/EN 61000-4-6		3 (10 V)	
harmonics and interharmonics IEC/EN 61000-4-13		ss 3	
Interference emission		, IEC/EN 61000-6-4	
high-frequency radiated IEC/CISPR 22, EN 50022		ss B	
high-frequency conducted IEC/CISPR 22, EN 50022		ss B	

¹⁾ Closed-circuit principle: Output relay(s) de-energize(s) if measured value exceeds or falls below the adjusted threshold value

Insulation monitors for unearthed supply systems

Content

Insulation monitoring in IT systems	2/	44
Conversion table	2/	46
Ordering details		
CM-IWS.2	2/	47
CM-IWS.1	2/	48
CM-IWN.1	2/	49
CM-IVN	2/	50
Technical data		
CM-IWS.2	2/	51
CM-IWS.1	2 /	51
CM-IWN.1	2/	51
CM-IVN	2/	55
Approvals and marks	2 /	6
Technical diagrams	2/	102
Dimensional drawings		103
Accessories	2 /	104

2

Insulation monitors for unearthed supply systems Overview

ABB developed a totally new range of insulation monitoring relays. With this new generation of measuring and monitoring relays of the CM range ABB consolidates its strengths in innovative control products.

The new products are in accordance to IEC/EN 61557-1 and to IEC/EN 61557-8.

That means the monitoring relays can be used directly to measure the insulation resistance in unearthed AC and DC mains with a voltage up to 690 V AC and 1000 V DC!

Furthermore the products feature a new prognostic measuring principle which decreases the measuring and response time significantly.

Insulation monitors for unearthed pure AC systems: Characteristics

- For monitoring the insulation resistance of unearthed IT system: up to U_n = 400 V AC
- According to IEC/EN 61227-8 "Electrical safety in low voltage distribution systems up to 1000 V AC and 1500 V DC – Equipment for testing, measuring o der monitoring of protective measures – Part 8: Insulation monitoring devices for IT systems"
- Rated control supply voltage 24–240 V AC/DC
- Superimposed DC signal
- One measuring range 1–100 kΩ
- Precise adjustment of the threshold value in 1 kΩ steps
- Interrupted wire detection
- Fault storage/latching configurable by control input
- 1 c/o contact, closed-circuit principle
- 22.5 mm [0.89 in] width
- 3 LEDs for status indication

Standardisation background:

- EC/EN 61557-1 "Electrical safety in low voltage distribution system up to 1000 V AC and 1500 V DC – Equipment for testing, measuring or monitoring of protective measures – Part 1: General requirements"
- IEC/EN 61557-8 "Electrical safety in low voltage distribution system up to 1000 V AC and 1500 V DC – Equipment for testing, measuring or monitoring of protective measures – Part 1: Insulation monitoring devices for IT systems"

Insulation monitors for unearthed AC, DC or mixed AC/DC systems: Characteristics

- For monitoring the insulation resistance of unearthed IT systems up to U_n= 250 V AC and 300 V DC or U_n= 400 V AC and 600 V DC
- According to IEC/EN 61227-8 "Electrical safety in low voltage distribution systems up to 1000 V AC and 1500 V DC – Equipment for testing, measuring oder monitoring of protective measures – Part 8: Insulation monitoring devices for IT systems"
- Rated control supply voltage 24-240 V AC/DC
- Prognostic measuring principle with superimposed square wave signal
- 1 or 2 measuring ranges (1-100k Ω or 1-100 k Ω + 2-200 kOhm)¹⁾
- 1 or 2 (configurable) c/o contact¹⁾
- Precise adjustmemt of the measuring value in 1 or 2 kΩ steps¹)
- (non-volatile) fault storage, configurable latching, interrupted wire protection, open- or closed-circuit principle selectable¹⁾
 22.5 or 45 mm width
- 22.5 or 45 mm width3 LEDs for status indication
- ¹⁾ depending on device

Insulation monitors for unearthed supply systems Insulation monitoring in IT systems

In electricity supply systems, an earthing system defines the electrical potential of the conductors relative to that of the earth's conductive surface. The choice of earthing system has implications for the safety and electromagnetic compatibility of the power supply. Note that regulations for earthing (grounding) systems vary considerably among different countries.

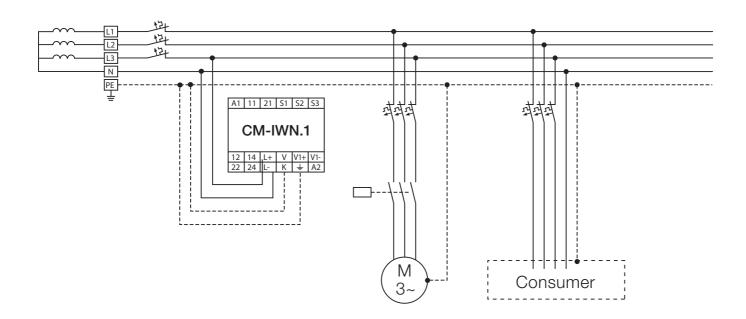
The international standard IEC 60364 distinguishes three families of earthing arrangements, using the two-letter codes TN, TT and IT.

The first letter indicates the connection between earth and the power-supply equipment (generator or transformer):

- T: direct connection of a point with earth (Latin: terra)
- I: no point is connected with earth (insulation), except perhaps via a high impendance

The second letter indicates the connection between earth and the electrical device being supplied:

T: direct connection of a point with earth N: direct connection to neutral at the origin of installation, which is connected to the earth


IT supply systems

The IT system is supplied either by an isolation transformer or a voltage source, such as battery or a generator.

In this system no active conductor is directly connected to earth potential. The advantage of this is that only a small fault current can flow in case of an insulation fault. This current is essentially caused by the system's leakage capacitance.

The systems's fuse or MCB does not respond, thus maintaining the voltage supply and therefore operation even in case of a phase-to-earth fault. The high reliability of an IT system is guaranteed thanks to continous insulation monitoring.

The insulation monitoring device recognizes insulation faults as they develop, and immediately reports that the value has fallen below the minimum. This prevents operational interruptions caused by a second more severe insulation fault.

Insulation monitors for unearthed supply systems Selection and Conversion table

2

		CM-IWS.2
	Measuring resistance range	
	1 – 100 kΩ	
AC and DC	2 – 200 kΩ	
AC and DC range	Measuring voltage range	
range	0 – 460 V AC	
	0 – 287,5 V AC	
	0 – 793,5 V AC	
	0 – 345 V AC	
	0 – 690 V AC	
	0 – 1150 V AC	
	Measuring frequency range	
	45 – 65 Hz	

13,5 – 440 Hz

System leakage capacitance max 10 µF

20 µF

Rated supply voltage

Benefits of ABB's new range of insulation monitoring relays:

- Extended measuring voltage range AC and DC
- All devices with wide supply voltage range
- Reduced number of references

		24 – 240 V AC/DC			
Conversion		Measuring voltage			
1SAR470020R0004	C558.01	90 – 132 V AC			
1SAR470020R0005	C558.01	230 V AC			
1SAR471020R0004	C558.02	90 – 132 V AC			
1SAR471020R0005	C558.02	systems > 400 V AC / 600 V AC			
1SAR471020R0005	C558.02	230 V AC			
1SAR471020R0006	C558.02	systems > 400 V AC / 600 V AC			
1SAR472020R0004	C558.03	90 – 132 V AC			
1SAR472020R0004	C558.03	systems > 400 V AC / 600 V AC			
1SAR472020R0005	C558.03	230 V AC			
1SAR472020R0005	C558.03	systems > 400 V AC / 600 V AC			
1SAR477000R0100	C558.10	external k Ω meter	no r	eplace	nent
1SVR450065R0000	CM-IWN-DC	24 – 240 V AC/DC			
1SVR450071R0000	CM-IWN-AC	110 – 130 / 220 – 240 AC/DC			
1SVR450075R0000	CM-IWN-AC	24 – 240 V AC/DC			

CM-IWN.1

CM-IVN

CM-IWS.1

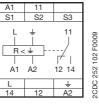
Insulation monitors for unearthed supply systems Insulation monitoring relay CM-IWS.2

For unearthed AC systems up to $U_n = 400 \text{ V AC}$

- (1) Test and reset button
- (2) Status indication U: green LED - control supply voltage F: red LED - fault message R: yellow LED - relay status
- (3) Configuration and setting Front-face rotary switches for threshold value adjustment:

R.1 for R1 tens figures: 0, 10, 20, 30, 40, 50, 60, 70, 80, 90 kΩ in ten kΩ steps R.2 for R1 units figures: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 k Ω in one k Ω steps

- (4) Marker label
- For monitoring the insulation resistance of unearthed IT systems up to $U_{n} = 400 \text{ V AC}$
- According to IEC/EN 61557-8 "Electrical safety in low voltage distribution systems up to 1000 V AC and 1500 V DC -Equipment for testing, measuring or monitoring of protective measures -Part 8: Insulation monitoring devices for IT systems"
- Rated control supply volt-age 24-240 V AC/DC
- Measuring principle with suerimposed DC voltage
- One measuring range 1-100 kΩ
- Precise adjustment of the threshold value in 1 k Ω steps
- Fault storage / latching configurable by control input
- 1 c/o contact, closedcircuit principle
- 22.5 mm [0.89 in] width
- 3 LEDs for status indica-tion


Application / monitoring function

The CM-IWS.2 serves to monitor insulation resistance in accordance with IEC 61557-8 in unearthed IT AC systems. The insulation resistance between system lines and system earth is measured. If this falls below the adjustable threshold values, the output relay de-energizes. The device can monitor control circuits (single-phase) and main circuits (3-phase). Supply systems with voltages $U_n = 0.400$ V AC (45-65 Hz) can be directly connected to the measuring inputs and their insulation resistance being monitored. For systems with voltages above 400 V AC the insulation monitoring relay CM-IWN.1 with or without the coupling unit CM-IVN can be used.

Measuring principle

A superimposed DC measuring signal is used for measurement. From the superimposed DC measuring voltage and its resultant current the value of the insulation resistance of the system to be monitored is calculated.

Connection diagram

A1-A2	Control supply voltage
S1-S3	Remote test
S2-S3	Remote reset
L	Measuring circuit/input, system connection
÷	Measuring circuit/input, earth connections
11-12/14	Output relay, closed-circuit principle

Operating state indication

LEDs, status information and fault messages

Operational state	LED U (green)	LED F (red)	LED R (yellow)
Start-up	лл	OFF	OFF
No fault		OFF	
Insulation fault (below threshold value)		,	OFF
Invalid measuring result	,	л_л_	OFF
Internal system fault	OFF	nnn	OFF
Test function	ллл	OFF	OFF
No fault after fault storage ¹⁾		2)	IUUU

¹⁾ The device has triggered after an insulation fault. The fault has been stored and the insulation resistance has returned

Operating mode

The system to be monitored is connected to terminal L. The earth potential is connected to terminal 4. The device operates according to the closed-circuit principle (fault state: relay de-energized). Once the control supply voltage has been applied the insulation monitoring relay runs through a system test routine. The system is diagnosed and the settings are tested. If no internal or external faults are found after this test routine is completed, the output relay energizes. If the measured value drops below the set threshold value, the output relay de-energizes. If the measured value exceeds the threshold value plus hysteresis, the output relay re-energizes. All operating states are signalled by the front-face LEDs. See table "LEDs, status information and fault messages".

Test function

The test function is only possible when there is no fault.

By pressing the front-face combined test/reset button a system test routine is executed. The output relay remains de-energized as long as the test/reset button is pressed, the control contact S1-S3 is closed or the test functions are processed. The test function can be activated either with the front-face combined test/reset button or with a remote test button connected.

Fault storage, reset function and remote reset

The output relay remains de-energized and only energizes after the combined test/reset button is pressed or after the remote reset (terminals S2-S3) is activated, and when the insulation resistance is higher than the set threshold value plus hysteresis.

Configuration and settings

Rotary switches R.1 and R.2 (treshold value)

By means of two separate 10 position rotary switches 💬 with direct reading scales, the threshold value for the insulation resistance R_F of the systems to be monitored can be adjusted.

With the R.1 rotary switch the tens figure is set and with the R.2 rotary switch the units figure is set. The set threshold value is then the addition of the two values. For example, R1.1 set to 70 and R1.2 set to 8 leads to a threshold value for R1 of 78 k Ω .

Order data

Туре	Nominal voltage U_n of the distribution system to be monitored	Rated control supply voltage	Order code	Pack. unit piece	Price 1 piece
CM-IWS.2	0-400 V AC	24-240 V AC/DC	1SVR 630 670 R0200	1	

to a higher value than the threshold value plus hysteresis ²⁾ Depending on the fault.

Insulation monitors for unearthed supply systems CM-IWS.1 for unearthed AC, DC and mixed AC/DC systems

up to $U_n = 250$ V AC and 300 V DC

251 078 S0009 2 C D C

- (1) Test and reset button
- (2) Status indication U: green LED - control supply voltage F: red LED - fault message R: yellow LED - relay status
- (3) Configuration and setting Front-face rotary switches for threshold value adjustment: R.1 for R1 tens figures: 0, 10, 20, 30, 40, 50, 60, 70, 80, 90 kΩ

in ten kΩ steps R.2 for R1 units figures: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 k Ω in one k Ω steps

- (4) Marker label
- For monitoring the insu-lation resistance of unearthed IT systems up to $U_n = 250 \text{ V AC}$ and 300 V DC
- According to IEC/EN 61557-8 "Electrical safety in low voltage distribution systems up to 1000 V a.c. and 1500 V d.c. - Equipment for testing, measuring or monitoring of protective measures - Part 8: Insulation monitoring devices for IT systems
- Rated control supply voltage 24-240 V AC/DC
- Prognostic measuring principle with superimposed square wave signal
- One measuring range 1-100 kQ
- Precise adjustment of the threshold value in 1 k Ω steps
- Interrupted wire detection Fault storage / latching
- configurable by control input
- 1 c/o [SPDT] contact, closed-circuit principle
- 22.5 mm [0.89 in] width 3 LEDs for status indica-
- tion

Application / monitoring function

The CM-IWS.1 serves to monitor insulation resistance in accordance with IEC 61557-8 in unearthed IT AC systems, IT AC systems with galvanically connected DC circuits, or unearthed IT DC systems. The insulation resistance between system lines and system earth is measured. If this falls below the adjustable threshold value, the output relay de-energizes. The device can monitor control circuits (singlephase) and main circuits (3-phase). Supply systems with voltages $U_n = 0.250$ V AC (15-400 Hz) or 0-300 V DC can be directly connected to the measuring inputs and their insulation resistance being monitored. For systems with voltages above 250 V AC and 300 V DC the insulation monitoring relay CM-IWN.1 with or without the coupling unit CM-IVN can be used.

Measuring principle

A pulsating measuring signal is fed into the system to be monitored and the insulation resistance calculated. This pulsating measuring signal alters its form depending on the insulation resistance and system leakage capacitance. From this altered form the change in the insulation resistance is forecast. When the forecast insulation resistance corresponds to the insulation resistance calculated in the next measurement cycle and is smaller than the set threshold value, the output relay de-energizes. This measuring principle is also suitable for the detection of symmetrical insulation faults.

Connection diagram

A1	11	KE	
S1	S2	S3	
L+ L- A1		11 	2CDC 252 103 F0009
L+	L-	÷	8
14	12	A2	20
A1-A2		Con	trol s

A1-A2	Control supply voltage
S1-S3	Remote test
S2-S3	Remote reset
L+, L-	Measuring circuit/input, system connection
., KE	Measuring circuit/input, earth connections
11-12/14	Output relay, closed-circuit principle

Operating state indication

LEDs, status information and fault messages

Operational state	LED U (green)	LED F (red)	LED R (yellow)
Start-up	лл	OFF	OFF
No fault		OFF	
Insulation fault (below threshold value)	<u>г</u>		OFF
KE/ $_{\downarrow}$ wire interruption		ллл	OFF
System leakage capaci- tance too high / invalid measurement result	<u></u>	л_л_	OFF
Internal system fault	OFF	nnn	OFF
Test function	nnn	OFF	OFF
No fault after fault storage ¹⁾	<u>г</u>	2)	nn

¹⁾ The device has triggered after an insulation fault.

The fault has been stored and the insulation resistance has

returned to a higher value than the threshold value plus hysteresis. ²⁾ Depending on the fault.

Additional monitoring functions

The CM-IWS.1 cyclically monitors the measuring circuit connections + and KE for wire interruption. In case of a wire interruption in one of the connections, the output relay de-engergizes. In addition, the unearthed AC-, DC- or AC/DC system is monitored for inadmissible system leakage capacitance. If the system leakage capacitance is too high, the output relay de-energizes.

Configuration and settings

Rotary switches R.1 and R.2 (treshold value) By means of two separate 10 position rotary switches with direct reading scales, the threshold value

for the insulation resistance R_F of the systems to be monitored can be adjusted. With the R.1 rotary switch the tens figure is set and with the R.2 rotary switch the units figure is set. The set threshold value is then the addition of the two values. For example, R1.1 set to 70 and R1.2 set to 8 leads to a threshold value for R1 of 78 k Ω .

Operating mode

The system to be monitored is connected to terminals L+ and L-. The earth potential is connected to termi-nals + and KE. The device operates according to the closed-circuit principle (fault state: relay de-energized). Once the control supply voltage has been applied the insulation monitoring relay runs through a system test routine. The system is diagnosed and the settings are tested. If no internal or external faults are found after this test routine is completed, the output relay energizes. If the measured value drops below the set threshold value, the output relay de-energizes. If the measured value exceeds the threshold value plus hysteresis, the output relay re-energizes. All operating states are signalled by the front-face LEDs. See table "LEDs, status information and fault messages"

Test function

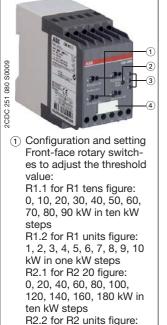
The test function is only possible when there is no fault.

By pressing the front-face combined test/reset button a system test routine is executed. The output relay remains deenergized as long as the test/reset button is pressed, the control contact S1-S3 is closed or the test functions are processed. The test function can be activated either with the front-face combined test/ reset button or with a remote test button connected.

Fault storage, reset function and remote reset

The output relay remains de-energized and only energizes after the combined test/reset button is pressed or after the remote reset (terminals S2-S3) is activated, and when the insulation resistance is higher than the set threshold value plus hysteresis.

Order data


oraci aata					
Туре	Nominal voltage U _n of the distribution system to be monitored	Rated control supply voltage	Order code	Pack. unit piece	Price 1 piece
CM-IWS.1	0-250 V AC / 0-300 V DC	24-240 V AC/DC	1SVR 630 660 R0100	1	

Insulation monitors for unearthed supply systems CM-IWN.1 for unearthed AC, DC and mixed AC/DC systems up to $U_n = 400$ V AC and 600 V DC

18, 20 kW in two kW steps (2) Test and reset button

2, 4, 6, 8, 10, 12, 14, 16,

- (3) Status indication U: green LED - control supply voltage F: red LED - fault message R: yellow LED - relav status
- (4) Function selection and marker label See "DIP switches"
- For monitoring the insulation resistance of unearthed IT systems up to $U_n =$ 400 V AC and 600 V DC
- Rated control supply voltage 24-240 V AC/DC
- Prognostic measuring prin-ciple with superimposed square wave signal
- Two measuring ranges 1-100 kW and 2-200 k Ω
- One (1 x 2 c/o) or two (2 x 1 c/o) threshold values Ran1/R11) (final switch-off) and Ran2/R21) (prewarning) configurable
- Precise adjustment of the threshold values in 1 k Ω steps (R1) and 2 kΩ steps (R2)
- Interrupted wire detection configurable
- Non-volatile fault storage configurable
- Open- or closed-circuit principle configurable
- 3 LEDs for status indication
- 45 mm [1.77 in] width
- 1) term. acc. to IEC/EN 61557-8
- 2) R2 only active with 2 x 1 c/o configuration

Application / monitoring function

The CM-IWN.1 serves to monitor insulation resistance in accordance with IEC 61557-8 in unearthed IT AC systems, IT AC systems with galvanically connected DC circuits, or unearthed IT DC systems. The insulation resistance between system lines and system earth is measured. If this falls below the adjustable threshold values, the output relays switch into the fault state. The device can monitor control circuits (single-phase) and main circuits (3-phase). Supply systems with voltages $U_n = 0.400$ V AC (15-400 Hz) or 0-600 V DC can be directly connected to the measuring inputs and their insulation resistance being monitored. For systems with voltages above 400 V AC and 600 V DC the coupling unit CM-IVN can be used for the expansion of the CM-IWN.1 voltage range.

Measuring principle

A pulsating measuring signal is fed into the system to be monitored and the insulation resistance calculated. This pulsating measuring signal alters its form depending on the insulation resistance and system leakage capacitance. From this altered form the change in the insulation resistance is forecast. When the forecast insulation resistance corresponds to the insulation resistance calculated in the next measurement cycle and is smaller than the set threshold value, the output relays are activated or deactivated, depending on the device configuration. This measuring principle is also suitable for the detection of symmetrical insulation faults.

Operating state indication

Cor	nne	ctio	n d	iag	ram	
A1	11	21	S1	S2	S3	
L+	L- K	Εų	11	I	21	8
1						FOO
	₹<∔		7	ΙP	Ζ	104 F0009
~			10 1	1 22	24	2

12 14 L+ VS V1+ V1-

22 24 L- KE	<u>↓ A2</u> 0
A1-A2	Control supply voltage
S1-S3	Remote test
S2-S3	Remote reset
L+, L− ⊥, KE	Measuring circuit/input, system connection
VS, V1+, V1-	Measuring circuit/input, earth connections
11-12/14 21-22/24	Connections for the coupling unit (if used)
	Output relay 1, open- or closed-circuit principle
	Output relay 2, open- or closed-circuit principle

B

LEDs, status information and fault messages					
Operational state	LED U (green)	LED F (red)	LED R (yellow)		
Start-up	лл	OFF	OFF		
No fault		OFF			
Prewarning		лл	лл		
Insulation fault (below threshold value)		<u> </u>	1)		
KE/+ wire interruption			1)		
L+/L- wire interruption during system start-up / test function		лπ	1)		
System leakage capaci- tance too high / invalid measurement result	<u></u>	л_г_	1)		
Internal system fault	1)	ллл	1)		
Setting fault ²⁾	лл	лл	лл		
Test function	nnn	OFF	1)		
No fault after fault storage ³⁾		4)	nnn		

1SVR 650 660 R0200

 Depending on the configuration
 Possible faulty setting: The threshold value for final switch-off is set at a higher value than the threshold value for prewarning.
 The device has triggered after an insulation fault. The fault has been stored and the insulation resistance has returned to a higher value than the threshold value plus hysteresis

OFF (default)

4) Depending on the fault

Additional monitoring functions

When interrupted wire detection as is activated, the CM-IWN.1 automatically controls the system/measuring circuit connections L+ and L- when the system starts up. This can be repeated at any time by activating the test function

The CM-IWN.1 cyclically monitors the measuring circuit connections + and KE for wire interruption. In case of a wire interruption in one of the connections, the output relays switch to the fault state. In addition, the unearthed AC-, DC- or AC/DC system is monitored for inadmissible system leakage capacitance. If the system leakage capacitance is too high, the output relays switch to the fault state. Also incorrect settings that could cause a faulty function of the device are monitored. When the device detects such an

incorrect setting, the output relays switch to the fault state.

Configuration 1 x 2 c/o contacts [12:0] (final switch-off)

0-400 V AC / 0-600 V DC

With this configuration the settings for the threshold value for prewarning (R2) have no influence on the operating function. If the measured value drops below the set threshold value, the output relays switch into the fault state. If the measured value exceeds the threshold value plus hysteresis, the output relays switch back into their original state.

Configuration 2 x 1 c/o contact 2000 (prewarning and final switch-off)

If the measured value drops below the set threshold value for prewarning the second output relay 21-22/24 switches. If the measured value drops below the threshold value for final switch-off, the first output relay 11-12/14 switches. If the measured value exceeds the threshold value for final switch-off plus hysteresis, the first output relay 11-12/14 switches back into its original state. If the measured value exceeds the threshold value for prewarning plus hysteresis, also the second output relay 21-22/24 switches back to its original state.

ON

DIP switches

CM-IWN.1

Di Switche	3	თ		UN		OFF (default)		
Position 4 ON + 2x1 c/o		Operatin Ope	DIP switch 1 Operating principle of the output relays		-circuit principle -circuit principle -circuit principle is selected, the relays de-energize in case a fault ring. In non-fault state the relays rgized.	Open-circuit principle 🖃 If open-circuit principle is selected, the output relays energize in case a fault is occuring. In non-fault state the relays are de-energized.		
OFF 1x2 c/o			Non-volatile fault storage If the fault storage function is activated, Ia the output relays remain in tripped position If until a reset is done either by the front-face a button or by the remote reset connection I to					
			Interrupted wire detection With this configuration, the CM-IWN.1		Interrupted wire detection de-activated With this configuration the inter- rupted wire detection is de-activated.			
Order data		DIP swi 2 x 1 c/c	ch 4 2 x 1 c/o (SPDT) contact E 1 x 2 c/o If operating principie 2 x 1 c/o contact is selected, the output relay R1 (11-12/14) re- acts to threshold value R1 (final switch-off) and the output relay R2 (12-22/24) reacts to threshold value R2 (prewarning)					
						1		
Туре	Nominal voltage U _n of the distribution system to be moni		Rated control supply voltage	Order code		Pack. unit piece	Price 1 piece	

24-240 V AC/DC

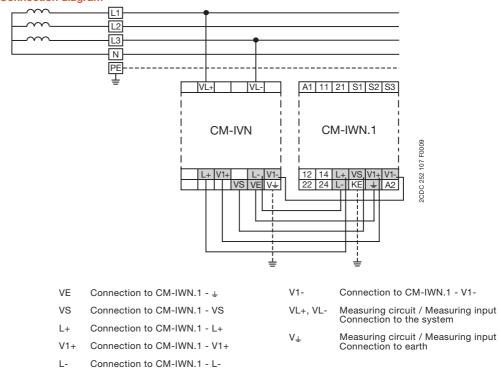
1

Insulation monitors for unearthed supply systems CM-IVN for expansion of the insulation monitoring relay

CM-IWN.1 measuring range up to $U_n = 690$ V AC and 1000 V DC

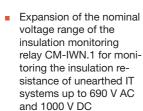
Application / monitoring function

The coupling unit CM-IVN is designed to extend the nominal voltage range of the insulation monitoring relay CM-IWN.1 up to 690 V AC and 1000 V DC. The coupling unit can be connected to the system to be monitored by means of the terminals VL+ and VL-. The terminal V $_{\pm}$ has to be connected to the earth potential. The terminals L+, V1+, L-, V1-, VS and VE have to be connected to the CM-IWN.1 as shown in the connection diagrams below. Supply systems with voltages U_n = 0-690 V AC (15-400 Hz) or 0-1000 V DC can be connected.


Measuring principle

081 S0009

251


With CM-IWN.1 a pulsating measuring signal is fed into the system to be monitored and the insulation resistance calculated. This pulsating measuring signal alters its form depending on the insulation resistance and system leakage capacitance. From this altered form the change in the insulation resistance is forecast. When the forecast insulation resistance corresponds to the insulation resistance calculated in the next measurement cycle and is smaller than the set threshold value, the output relays are activated or deactivated, depending on the device configuration. This measuring principle is also suitable for the detection of symmetrical insulation faults.

Connection diagram

Coupling unit

Туре	Nominal voltage U_n of the distribution system to be monitored	Rated control supply voltage	Order code	Pack. unit piece	Price 1 piece
CM-IVN	0-690 V AC / 0-1000 V DC	Passive device, no control supply voltage needed	1SVR 650 669 R9400	1	

- According to IEC/EN 61557-8 "Electrical safety in low voltage distribution systems up to 1000 V AC and 1500 V DC – Equipment for testing, measuring or monitoring of protective measures – Part 8: Insulation monitoring devices for IT systems"
- Passive device, no supply voltage needed
- 45 mm [1.77 in] width

Insulation monitors for unearthed supply systems CM-IWS.2, CM-IWS.1 and CM-IWN.1

Technical data

Technical data

Data at T_a = 25 °C and rated values, unless otherwise indicated

		CM-IWS.2	CM-IWS.1	CM-IWN.1
Input circuit - Supply circuit			A1 - A2	
Rated control supply voltage Us			24-240 V AC/DC	
Rated control supply voltage tolerance			-15+10 %	
Typical current / power consumption	24 V DC	30 mA / 0.7 VA	35 mA / 0.9 VA	55 mA / 1.3 VA
	115 V AC	12 mA / 1.4 VA	17 mA / 2.0 VA	20 mA / 2.3 VA
	230 V AC	12 mA / 2.8 VA	14 mA / 3.2 VA	15 mA / 3.5 VA
Rated frequency f _s			DC or 15-400 Hz	
Frequency range AC		13.5-440 Hz		
Power failure buffering time		20 ms		
Input circuit - Measuring circuit		L,	L+, L-, ≟, KE	L+, L-, ≟, KE
Monitoring function		insulation n	esistance monitoring of (IEC/EN 61557-8)	IT systems
Measuring principle		superimposed prognostic measuring principl DC voltage superimposed square wave s		
Nominal voltage U_{n} of the distribution system to be monitored		0-400 V AC 0-250 V AC / 0-300 V DC		400 V AC / 0-600 V DC
Voltage range of the distribution system to be monitored		0-460 V AC (tolerance +15 %)	0-287.5 V AC / 0-345 V DC (tolerance +15 %)	0-460 V AC / 0-690 V DC (tolerance +15 %)
Rated frequency $f_{\scriptscriptstyle N}$ of the distribution system to be monitored		50-60 Hz	DC or 15-400 Hz	DC or 15-400 Hz
Tolerance of the rated frequency f_N		45-65 Hz	13.5-440 Hz	13.5-440 Hz
System leakage capacitance C _e max.		10 µF		20 µF
Extraneous DC voltage $U_{\scriptscriptstyle fg}$ (when connected to an AC system)	max.	none	290 V DC	460 V DC
Number of possible response / threshold values		1		2
Adjustment range of the specified response value R_{an} (threshold)	minmax.	1-100 kΩ		-
	minmax. R1	-		1-100 kΩ
	minmax. R2	_		2-200 kΩ (activated / de-activated by DIP-switch)
Adjustment resolution		1 kΩ		
	R1	1	kΩ	1 kΩ
	R2		_	2 kΩ
Tolerance of the adjusted threshold value /	at 1-10 k Ω R $_{\rm F}$	±0.5	5 kΩ	_
Relative percentage uncertainty A at -5+45 °C, U _n = 0-115 %, U _s = 85-110 %, f _N , f _s , C _e = 1 μ F	at 10-100 k Ω $R_{\rm F}$	±6	%	_
	at 1-15 k Ω R _F		_	±1 kΩ*
	at 15-200 k Ω $R_{\rm F}$		_	±8 %
Hysteresis related to the threshold value			25 %; min. 2 k Ω	
Internal impedance Z _i	at 50 Hz	135 kΩ	100 kΩ	155 kΩ
Internal DC resistance R _i		185 kΩ	115 kΩ	185 kΩ
Measuring voltage U _m		15 V	22 V	24 V
Tolerance of measuring voltage U _m			+10 %	
Measuring current I _m	max.	0.1 mA	0.3 mA	0.15 mA
Response time t _{an}				
pure AC system 0.5 x R _a	_{in} and $C_e = 1 \ \mu F$		max. 10 s	
DC system or AC system with connected rectifiers		_	max.	15 s
Repeat accuracy (constant parameters)			< 0.1 % of full scale	

*in combination with CM-IVN $\pm 1.5~\text{k}\Omega$

Insulation monitors for unearthed supply systems CM-IWS.2, CM-IWS.1 and CM-IWN.1

Technical data

		CM-IWS.2	CM-IWS.1	CM-IWN.1
Accuracy of R _a (measured value) within the rated control supply voltage tolerance		< 0.05 % of full scale		
Accuracy of R _a (measured value) within	at 1-10 k Ω R _F		5 Ω / K	
the operation temperature range	at 10-100 k Ω $R_{\rm F}$	0.05	% / K	-
	at 10-200 k Ω $R_{\rm F}$	-	_	0.05 % / K
Transient over voltage protection (土 - terminal)		Z-diode	avalanc	he diode
Input circuit - Control circuits		S1 - S2 - S3		
Control inputs - volt free S1-S3 S2-S3			remote test remote reset	
Maximum switching current in the control circuit			1 mA	
Maximum cable length to the control inputs			50 m - 100 pF/m [164 ft - 30.5 pF/ft]	
Minimum control pulse length			150 ms	
No-load voltage at the control input		$24~V\pm5~\%$	≤ 24	V DC
User interface				
Indication of operational states				
Control supply voltage			LED U (green)*	
Fault message		LED F (red)*		
Relay status	LED R (yellow)*			
Output circuits				
Kind of output		relay, 1 c/o (S	SPDT) contact	2 x 1 or 1 x 2 c/c (SPDT) contacts configurable
Operating principle		closed-circuit principle ¹⁾ circuit princ		open- or closed- circuit principle ¹⁾ configurable
Contact material			AgNi alloy, Cd free	1
Rated voltage (VDE 0110, IEC 60947-1)			250 V AC / 300 V DC	
Min. switching voltage / Min. switching current			24 V / 10 mA	
Max. switching voltage / Max. switching current			see data sheet	
Rated operational current I _e	AC12 (resistive) at 230 V	4 A		
(IEC/EN 60947-5-1)	AC15 (inductive) at 230 V		3 A	
	DC12 (resistive) at 24 V	4 A		
	DC13 (inductive) at 24 V		2 A	
AC rating (UL 508)	Utilization category (Control Circuit Rating Code)	general	B 300, pilot duty purpose (250 V, 4 A, co	os φ 0.75)
	max. rated operational voltage		250 V AC	
	max. continuous thermal current at B 300	4 A		
	max. making/breaking apparent power at B 300		3600/360 VA	
Mechanical lifetime		3	0 x 10 ⁶ switching cycl	es
Electrical lifetime (AC12, 230 V, 4 A)		0.1 x 10 ⁶ switching cycles		
Max. fuse rating to achieve short-circuit protection	n/c contact n/o contact	6 A fast-acting 10 A fast-acting		
Conventional thermal current Ith (IEC/EN 60947-1)			4 A	

1) Closed-circuit principle: Output relay(s) de-energize(s) if measured value falls below the adjusted threshold value Ran

Insulation monitors for unearthed supply systems CM-IWS.2, CM-IWS.1 and CM-IWN.1

Technical data

		CM-IWS.2	CM-IWS.1	CM-IWN.1
General data				
Duty time			100 %	
Dimensions (W x H x D)				45 x 78 x 100 mm [1.78 x 3.07 x 3.94 in]
Weight	gross weight, with packaging and instruction sheet	0.149 kg [0.328 lb]	0.163 kg [0.359 lb]	0.258 kg [0.569 lb]
	net weight	0.127 kg [0.280 lb]	0.133 kg [0.293 lb]	0.231 kg [0.509 lb]
Mounting		DIN rail (EN 607	15), snap-on mounting	without any tool
Mounting position		any		
Minimum distance to other units	vertical		not necessary	
	horizontal	10 mm [0.4 in] at U _n > 240 V	not necessary	10 mm [0.4 in] at U _n > 400 V
Degree of protection	enclosure / terminal		IP50 / IP20	
Electrical connection				
Wire size fine-s	2 x 0.	75-2.5 mm² (2 x 18-14	AWG)	
	2 x	0.5-4 mm² (2 x 20-12 A	WG)	
Stripping length			7 mm [0.28 in]	
Tightening torque	0.	6-0.8 Nm [5.31-7.08 lb	.in]	
Environmental data				
Ambient temperature ranges	operation/storage/ transport	-25+6	60 °C/-40+85 °C/-40.	+85 °C
Climatic category	IEC/EN 60721-3-3	3 3K5 (no condensation, no ice formation)		
Damp heat, cyclic	IEC/EN 60068-2-30	6 x 24 h cycle, 55 °C, 95 % RH		
Vibration, sinusoidal	IEC/EN 60255-21-1	Class 2		
Shock, half-sine	IEC/EN 60255-21-2	Class 2		
Isolation data				
Rated impulse withstand voltage U _{imp}	supply / measuring circuit	6 kV		-
between all isolated circuits (IEC/EN 60947-1, IEC/EN 60664-1, VDE 0110-1)	supply / output circuit	6	kV	-
	measuring / output circuit	6	kV	-
	output 1 / output circuit 2		_	4 kV
Pollution degree (IEC/EN 60664-1, VDE 0110-1, UL 508)			3	
Overvoltage category (IEC/EN 60664-1, VDE 0110-1, UL 508)			Ш	
Rated insulation voltage U _i	supply / measuring circuit	400 V	300 V	600 V
(IEC/EN 60947-1, IEC/EN 60664-1, VDE 0110-1)	supply / output circuit		300 V	
	supply / measuring circuit	400 V	300 V	600 V
	output 1 / output circuit 2	-	-	300 V
Basis isolation for rated control supply voltage (IEC/EN 60664-1, VDE 0110-1)	supply / measuring circuit	400 V AC / 300 V DC	250 V AC / 300 V DC	400 V AC / 600 V DC
	supply / output circuit		250 V AC / 300 V DC	
	measuring / output circuit	400 V AC / 300 V DC	250 V AC / 300 V DC	400 V AC / 600 V DC
	output 1 / output 2		250 V AC / 300 V DC	
Protective separation	supply / output circuit		250 V AC / 250 V DC	
(IEC/EN 61140)	supply / measuring circuit	250 V AC / 250 V DC		
	measuring / output circuit		250 V AC / 250 V DC	

Insulation monitors for unearthed supply systems CM-IWS.2, CM-IWS.1 and CM-IWN.1

Technical data

		CM-IWS.2	CM-IWS.1	CM-IWN.1				
Test voltage between all isolated circuits, routine test	supply / output circuit	2.32 kV, 50 Hz, 2 s						
(IEC/EN 60255-5, IEC/EN 61010-1)	supply / measuring circuit	2.32 kV, 50 Hz, 2 s						
-	measuring / output circuit	2.2 kV, 5	2.53 kV, 50 Hz, 1 s					
Standards								
Product standard	IEC/E	EN 61557-8, IEC/EN 60	255-6					
Other standards			EN 50178					
Low Voltage Directive			2006/95/EC					
EMC Directive			2004/108/EC					
RoHS Directive			2002/95/EC					
Electromagnetic compability	· · · · ·							
Interference immunity to		IEC/EN 61000-6-	1, IEC/EN 61000-6-2,	EC/EN 61326-2-4				
electrostatic discharge	IEC/EN 61000-4-2		Level 3, 6 kV / 8 kV					
radiated, radio-frequency, electromagnetic field	IEC/EN 61000-4-3	Level 3, 10 V/m (1 GHz) / 3 V/m (2 GHz) / 1 V/m (2.7 GHz)						
electrical fast transient/burst	IEC/EN 61000-4-4	Level 3, 2 kV / 5 kHz						
surge	IEC/EN 61000-4-5	Level 3, installation class 3, supply circuit and measuring circuit 1 kV L-L, 2 kV L-earth						
conducted disturbances, induced by radio-frequency fields	IEC/EN 61000-4-6		Level 3, 10 V					
voltage dips, short interruptions and voltage variations	IEC/EN 61000-4-11	Level 3						
harmonics and interharmonics	IEC/EN 61000-4-13	Level 3						
Interference emission		IEC/EN 61000-6-3, IEC/EN 61000-6-4						
high-frequency radiated	IEC/CISPR 22, EN 50022		Class B					
high-frequency conducted	IEC/CISPR 22, EN 50022	Class B						

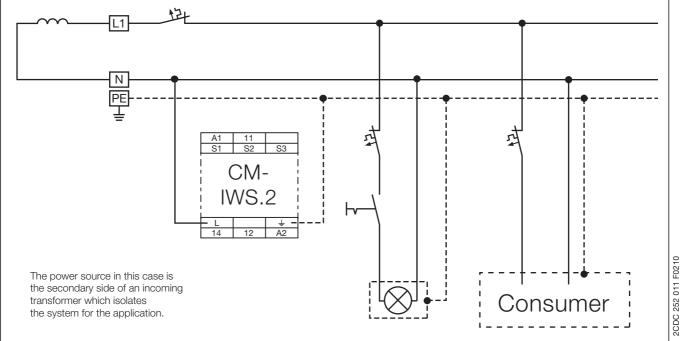
Insulation monitors for unearthed supply systems CM-IVN Technical data

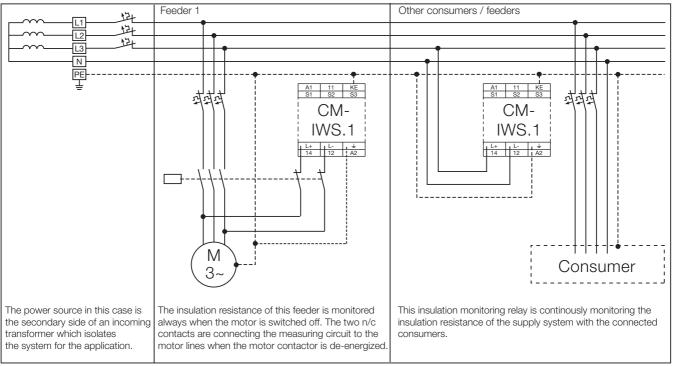
Technical data

Data at $T_a = 25$ °C and rated values, unless otherwise indicated

Input circuits									
Input circuit - Measuring circuit		VL+, VL-, V↓							
Function		expansion of the nominal voltage range of the insulation monitoring relay CM-IWN.1 to 690 V AC or 1000 V DC, max. length of connection cable 40 cm							
Measuring principle		see CM-IWN.1							
Nominal voltage U _n of the distribution system to be monitored		0-690 V AC / 0-1000 V DC							
Voltage range of the distribution system to be monitored		0-793.5 V AC / 0-1150 V DC (tolerance +15 %)							
Rated frequency f_N of the distribution system to be monitored		DC or 15-400 Hz							
Tolerance of the rated frequency $f_{\scriptscriptstyle N}$		13.5-440 Hz							
System leakage capacitance C _e	max.	20 μF							
Extraneous DC voltage U_{rg} (when connected to an AC system)	max.	793.5 V DC							
Tolerance of the adjusted threshold value /	at 1-15 k Ω R _F	±1.5 kΩ							
Relative percentage uncertainty A at -5+45 °C, U_n = 0-115 %, U_s = 85-110 %, f_N , f_s , C_e = 1µF	at 15-200 k Ω R _F	±8 %							
Internal impedance Z _i	at 50 Hz	195 κΩ							
Internal DC resistance R _i		200 kΩ							
Measuring voltage U _m		24 V							
Tolerance of measuring voltage U_{m}		+10 %							
Measuring current I _m		0.15 mA							
Input circuits									
General data									
MTBF		on request							
Duty time		100 %							
Dimensions (W x H x D)		45 x 78 x 100 mm [1.78 x 3.07 x 3.94 in]							
Weight	gross weight, with packaging and instruction sheet	0.200 kg [0.441 lb]							
	net weight	0.169 kg [0.373 lb]							
Mounting		DIN rail (IEC/EN 60715), snap-on mounting without any tool							
Mounting position		any							
Minimum distance to other units	vertical	not necessary							
	horizontal	10 mm [0.4 in] at U _n > 600 V							
Degree of protection		IP50 / IP20							
Electrical connection									
Wire size fine-st	rand with(out)wire end ferrule	2 x 0.75-2.5 mm² (2 x 18-14 AWG)							
	rigid	2 x 0.5-4 mm² (2 x 20-12 AWG)							
Stripping length		7 mm [0.28 in]							
Tightening torque		0.6-0.8 Nm [5.31-7.08 lb.in]							
Max. length of connection cable to CM- IWN.1		40 cm							

Insulation monitors for unearthed supply systems CM-IVN Technical data


Environmental data		
Ambient temperature ranges	operation	-25+60 °C
	storage	-40+85 °C
	transport	-40+85 °C
Climatic category	IEC/EN 60721-3-3	3K5 (no condensation, no ice formation)
Damp heat, cyclic	IEC/EN 60068-2-30	6 x 24 h cycle, 55 °C, 95 % RH
Vibration, sinusoidal	IEC/EN 60255-21-1	Class 2
Shock, half-sine	IEC/EN 60255-21-2	Class 2
Isolation data		
Rated impulse withstand voltage U _{imp} between all isolated circuits (IEC/EN 60947-1, IEC/EN 60664-1,VDE 0110-1)	input circuit / PE	8 kV
Pollution degree (IEC/EN 60664-1, VDE 0110-1, UL 508)		3
Overvoltage category (IEC/EN 60664-1, VDE 0110-1, UL 508)		III
Rated insulation voltage U _i (IEC/EN 60947-1, IEC/EN 60664-1,VDE 0110-1)	input circuit / PE	1000 V
Test voltage between all isolated circuits, routine test (IEC/EN 60255-5, IEC/EN 61010-1)	input circuit / PE	3.3 kV, 50 Hz, 1 s
Standards		
Product standard		IEC/EN 61557-8, IEC/EN 60255-6
Other standards		EN 50178
Low Voltage Directive		2006/95/EC
EMC Directive		2004/108/EC
RoHS Directive		2002/95/EC
Electromagnetic compability		
Interference immunity to		IEC/EN 61000-6-1, IEC/EN 61000-6-2, IEC/EN 61326-2-4
electrostatic discharge	IEC/EN 61000-4-2	Level 3, 6 kV / 8 kV
radiated, radio-frequency, electromagnetic field	IEC/EN 61000-4-3	Level 3, 10 V/m (1 GHz) / 3 V/m (2 GHz) / 1 V/m (2.7 GHz)
electrical fast transient/burst	IEC/EN 61000-4-4	Level 3, 2 kV / 5 kHz
surge	IEC/EN 61000-4-5	Level 3, installation class 3, supply circuit and measuring circuit 1 kV L-L, 2 kV L-earth
conducted disturbances, induced by radio-frequency fields	IEC/EN 61000-4-6	Level 3, 10 V
voltage dips, short interruptions and voltage variations	IEC/EN 61000-4-11	Level 3
harmonics and interharmonics	IEC/EN 61000-4-13	Level 3
Interference emission		IEC/EN 61000-6-3, IEC/EN 61000-6-4
high-frequency radiated	IEC/CISPR 22, EN 50022	Class B
high-frequency conducted	IEC/CISPR 22, EN 50022	Class B



Insulation monitors for unearthed supply systems Application examples

Application example CM-IWS.2

Application example CM-IWS.1

2CDC 252 014 F0210

Notes

2

	1	1	1	1	1																
	1																				
			1																		
								<u> </u>							<u> </u>						
		-	-																		
-	-																				
	-										ļ								L		ļ
	1										 										
			-																		
	-		-																		
	-		-																		
	-																				
			-																		
		<u> </u>																			
			<u> </u>																		
-	-																				
	-		-																		
			<u> </u>																		
L		1	1				I				 		1	I							
2 /58	}																			A	58

ABB Motor load monitors

2

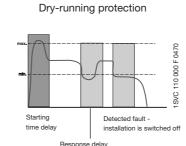
Content

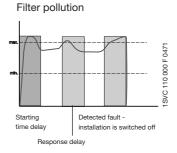
Fields of application	2 / 60
Ordering details	2 / 61
Technical data	
Approvals and marks	2 / 6
Technical diagrams	2 /102
Dimensional drawings	2 /103
Accessories	
Current transformers	2 /105

Motor load monitors Fields of application

The motor load monitor monitors the load states of single-phase and three-phase asynchronous motors.

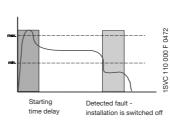
The evaluation of the phase angle between current and voltage allows a very precise monitoring of the load states.

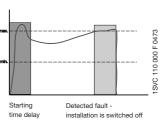

Compared with other conventional measuring principles (e.g. pressure transducers, current measurement), $\cos \varphi$ monitoring is a more precise and economical alternative. The motor is used as a sensor for its own load status.


Main applications

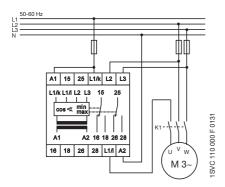
Pump monitoring

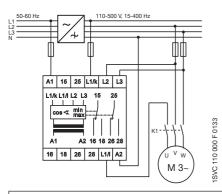
- Dry-running protection (underload)
- Closed valves (overload)
- Pipe break (overload)
- Heating, air-conditioning, ventilation
- Monitoring of filter pollution
- V-belt breakage (underload)
- Closed shutters/valves (overload)
- Air ventilating volume
- Agitating machines
 - High consistency within the tank (overload)
 - Pollution of the tank (overload)
- Transport/Conveyance
 - Congested conveyor belts (overload)
 - Jamming of belts (overload)
 - Material accumulation in spiral conveyors (overload)
 - Lifting platforms
- Machine installation
 - Wear of tools, e.g. worn saw blades in circular saws, etc. (overload)
 - Tool breakage (underload)
 - V-belt drives (breakage underload)

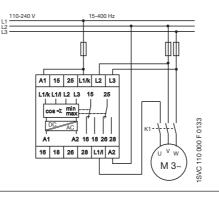


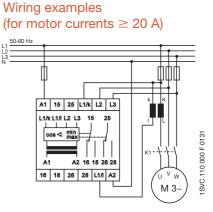


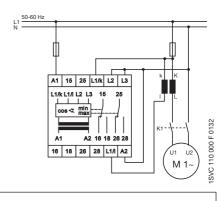
Ventilator monitoring


V-belt monitoring




Wiring examples (for motor currents \leq 20 A)





Current transformers 2/105

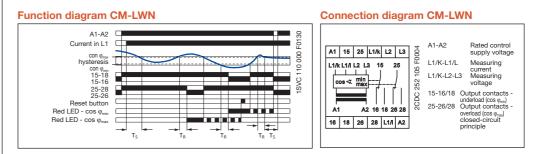
L1 50-60 Hz A1 16 26 L1/k L2 L3 L1/k L1/l L2 L3 15 26 L000 < min. A1 A2 16 18 26 28 16 18 26 28 L1/l A2 M 1~

Motor load monitors CM-LWN Ordering details

The CM-LWN module monitors the load status of inductive loads.

The primary application is the monitoring of single- or three-phase asynchronous motors (squirrel cage) under varying load conditions. The measuring principle is based on the evaluation of the phase shift (ϕ) between the voltage and the current in one phase.

The phase difference is nearly inversely proportional to the load. Therefore, $\cos \varphi$, measured relatively from 0 to 1, measures the relationship of effective power to apparent power. A value towards 0 indicates low load and a value towards 1 indicates high load.


Threshold values can be set individually for $\cos \phi_{max}$ and $\cos \phi_{min}$ If the set threshold value is reached, a LED lights up and the relay is de-energized.

If $\cos \varphi$ returns to the acceptable limits (taking into account the hysteresis), the relay is reset to its original state and the LED flashes permanently to indicate the occurrence of the trip event. This message can be deleted using the reset button or by switching off the supply.

A time delay (Time S) of 0.3 to 30 s can be set for the starting phase of the motor. It is also possible to set a response delay time (Time R) of 0.2 to 2 s to suppress unwanted tripping due to unavoidable short load changes during normal operation.

To guarantee correct operation of the response delay (Time R), the adjusted value for $\cos \phi_{max}$ has to be higher than the value for $\cos \phi_{min}$ plus the hysteresis. Consequently, the overload and underload indication must not be active at the same time.

Due to the internal electrical isolation of the supply circuit and the measuring circuit, it is also possible to use the device in systems with different supply voltages.

Туре	Rated control supply voltage	Order code	Pack. unit pieces	Price 1 piece	Weight 1 piece kg / lb				
Current ra	nge: 0.5-5 A								
CM-LWN	24-240 V AC/DC 110-130 V AC 220-240 V AC 380- 440 V AC 480-500 V AC	1SVR 450 335 R0000 1SVR 450 330 R0000 1SVR 450 331 R0000 1SVR 450 332 R0000 1SVR 450 334 R0000	1 1 1 1 1						
Current ra	nge: 2-20 A								
CM-LWN	24-240 V AC/DC 110-130 V AC 220-240 V AC 380-440 V AC	1SVR 450 335 R0100 1SVR 450 330 R0100 1SVR 450 331 R0100 1SVR 450 332 R0100	1 1 1 1		0.30 / 0.66 0.30 / 0.66 0.30 / 0.66 0.30 / 0.66				

1SVR 450 334 R0100

1

480-500 V AC

- Load status monitoring for asynchronous motors
- Under- and overload monitoring cos φ_{min} and cos φ_{max} in one unit
- Adjustable starting delay 0.3-30 s
- Direct measurement of currents up to 20 A
- Adjustable response time delay 0.2-2 s
- Single-phase or threephase monitoring
- 2 x 1 c/o contact,
- closed-circuit principle3 LEDs for status indication
- 3 LEDs for status indication

ISVR 450 335 F0100

CM-I WN

" $\cos \varphi_{min}$ " (3) $\cos \varphi_{max}$: red LED -

(1) Response delay "Time R"

(2) Threshold for load limit

 $\cos\phi_{\text{max}} \text{ exceeded}$

Control supply voltage

(7) Threshold for load limit

(8) Starting delay "Time S"

(4) cos ϕ_{min} : red LED -

below $\cos \phi_{min}$

(5) Reset button

"cos ϕ_{max} "

(9) Marker label

(6) U: green LED -

0.30 / 0.66

Motor load monitors CM-LWN Technical data

Type Input circuit Supply circu		CM-LWN A1-A2	
nput circuit - Supply circu			0.4.1/0.00/
Rated control supply voltag	e U _s - <u>A1-A2</u> <u>A1-A2</u>		. 8.4 VA/W x. 3.6 VA
	A1-A2		x. 3.6 VA
	A1-A2	U	x. 3.6 VA
	A1-A2		x. 3.6 VA
Rated control supply voltag		-15 %+10 %	X. 0.0 V/
Rated frequency	AC versions	50-60 Hz	
lated hequency	AC/DC versions	15-400 Hz or DC	
Duty time		100 %	
Measuring circuit		L1/L-L1/K-L2-L3	
Monitoring function		Motor load monitoring by cos φ	
/oltage range	L1/K-L2-L3	110-500 V AC single-phase or three-phase	
Current range	L1/L-L1/K		A version
Permissible overload of cur			D A for 3 s
Thresholds		$\cos \phi_{min}$ and $\cos \phi_{max}$ adjustable from 0 to 1	
lysteresis (related to phase	angle ω in °)	4°	
Frequency of measuring vol		15-400 Hz	
Response time		300 ms	
Timing circuits		indication of over- and undervoltage fault	
Start-up time (Time S)		0.3-30 s, adjustable	
Response delay (Time R)		0.2-2 s, adjustable	
	ontrol supply voltage tolerance	$\Delta t \le 0.5 \%$	
ccuracy within the tempera		$\Delta t = 0.0 \%$	
ndication of operational s			
Control supply voltage			
117 0		U: green LED	
		cos φ _{min} : red LED	
cos φ _{max} exceeded Output circuits		<u>cos</u> φ _{max} : red LED 15-16/18, 25-26/28	
		2 x 1 c/o contact	
			-
Deperational principle 1)		closed-circuit principle	-
Contact material Rated voltage (VDE 0110, IE		AgCdO 250 V	
	=C 664-1, IEC 947-1)		
Max. switching voltage Rated operational	AC12 (resistive) 230 V	400 V AC, 300 V DC 4 A	
current l		3 A	
(IEC/EN 60947-1)	AC15 (inductive) 230 V DC12 (resistive) 24 V	4 A	
	DC12 (resistive) 24 V	2 A	
AC rating	Utilization category (Control Circuit Rating Code)	B 300	
(UL 508)	max. rated operational voltage	300 V AC	
	max. continuous thermal current at B 300	5 A	
-	max. making/breaking apparent power at B 300	3600/360 VA	
Vechanical lifetime	max. making/breaking apparent power at B 500	30 x 10 ⁶ switching cycles	
Electrical lifetime	at AC12, 230 V, 4 A	0.1 x 10 ⁶ switching cycles	
Max. fuse rating to achieve s	, ,	10 A fast-acting / 10 A fast-acting	
General data		To A last doting / To A last doting	
Dimensions (W x H x D)		45 mm x 78 mm x 100 mm (1.77 inch x 3.07 inch x 3.9	0.1 inch)
		, , , , , , , , , , , , , , , , , , ,	94 INCH)
Mounting position Degree of protection	enclosure / terminals	any IP50 / IP20	
Ambient temperature range		-25+65 °C / -40+85 °C	
Mounting			
Electrical connection			
	fine_strand with wire and famula	$2 \times 2.5 \text{ mm}^2 (2 \times 14 \text{ AM/C})$	
Vire size	fine-strand with wire end ferrule	2 x 2.5 mm² (2 x 14 AWG)	
Standards			
Product standard		IEC 255-6, EN 60255-6	
Low Voltage Directive		2006/95/EC	
EMC Directive	*	2004/108/EC, 91/263/EEC, 92/31/EEC, 93/68/EEC, 93/	/0//EEU
Electromagnetic compatibili		EN 61000-6-2, EN 61000-6-4	
electrostatic discharge	IEC/EN 61000-4-2	Level 3 (6 kV / 8 kV)	
radiated, radio-frequency,		Level 3 (10 V/m)	
electrical fast transient / b		Level 3 (2 kV / 5 kHz) Level 4 (2 kV L-L)	
Surge	IEC/EN 61000-4-5		
conducted disturbances, induced by Operational reliability (IEC 6		Level 3 (10 V)	
	· · · · · · · · · · · · · · · · · · ·	5 g 10 g	
Mechanical resistance (IEC	· · · · · · · · · · · · · · · · · · ·	10 g 24 h cycle time 55 °C 93 % rel 96 h	
Environmental testing (IEC 6	00-2-30)	24 h cycle time, 55 °C, 93 % rel., 96 h	
solation data			
	1110, IEC 664-1, IEC 60255-5)		
	en supply-, measuring- and output circuit	250 V, 400 V, 500 V depending on the version	-
	Itage between all isolated circuits	4 kV / 1.2 - 50 μs	
Test voltage between all iso		2,5 kV, 50 Hz, 1 min.	
Pollution category		<u> </u>	
Overvoltage category			

2/62

Content

Benefits and advantages	64
Technical data	65

Motor control and protection UMC100-FBP

UMC100-FBP is a flexible, modular and expandable motor management system for constant-speed low-voltage range motors. It's most important tasks include motor protection, prevention of plant standstills and the reduction of down time. This is made possible by early information relating to possible motor problems which avoids unplanned plant standstills. Even if a motor trips, quick diagnosis of the cause of the fault serves to reduce downtime.

UMC100-FBP combines in a very compact unit:

Motor protection

- Overload, blocked rotor, low/high current
- Phase failure, unbalance, phase sequence
- Earth-leakage
- Thermistor protection
- One single version covers the rated motor current from 24 mA to 63 A

Motor control

- Integrated and easy to parametrize starter functions like direct, reversing, stardelta
- Free programmable logic for special, application-specific control functions
- Expansion modules for more or special I/Os

Further information UMC & FBP Catalogue UMC & FBP Brochure

2CDC 135 011 B0201

2CDC 190 022 D0201

Motor diagnostics

 Quick and comprehensive access to all data via control station, fieldbus and operator panel

Communication

- Communication-neutral basic device
- Freely selectable fieldbus protocol with FieldBusPlug

Typical applications

- oil & gas
- cement
- paper
- mining
- steel
- chemical industry
- water supply and distribution
- food and beverage

2/64

Motor control and protection UMC100-FBP

Basic device UMC100-FBP

Main power	
Voltage	max 1000 V AC
Frequency	45 to 65 Hz
Rated motor current	0.24 to 63 A, without accessories
	Greater currents with transformer
Transformer diameter	11 mm (max 25 mm2)
Tripping classes	5, 10, 20, 30, 40 in accordance with EN/IEC 60947-4-1
Short-circuit protection	Separate fuse on network side
Control unit	
Supply voltage	24 V DC
Reverse polarity protection	yes
Inputs	6 digital inputs 24 V DC
	1 PTC input
Outputs	3 relay outputs relay
	1 digital output transistor
Interfaces	1 for ABB FieldBusPlug
	1 for UMC100-PAN control station
	1 for expansion module
Parametric assignment	via fieldbus, control station and / or software
Addressing	Control station or addressing set
LEDs	3 LEDs: green, yellow, red
Environment and mechanical data	
Fastening	on DIN busbar (EN50022-35) or with 4 screws x M4
Dimensions (W x H x D)	70 x 105 x 110 mm (incl. FieldBusPlug and control panel)
Weight	0.39 kg
Terminal cross-section	max. 2.5 mm ² or 2 x 1.5 mm ²

Expansion modules DX111 / DX122

A DX111/122 expansion module can be connected per UMC100-FBP via a simple two-wire line Application also possible via simple parametric assignment (without programming), e.g. for error messages and warnings

Supply voltage		24 V DC							
Inputs	DX111	8 digital inputs 24 V DC							
	DX122	8 digital inputs 110/230 V AC							
Outputs		4 relay outputs relay 1 analogue output, 0/4 to 20 mA / 0 to 10 V configurable							
Fastening		on DIN busbar (EN50022-35)							
Dimensions (W x H x D)		45 x 77 x 100 mm (without terminal block)							

Control panel UMC100-PAN

Installation on the device or on the switching cabinet door Graphics-enabled and backlit display, 3 LEDs for status indication Freely configurable error messages Multilingual: German, English, French, Italian, Portuguese, Spanish

Notes

2

			r		1																	
																						<u> </u>
			<u> </u>	<u> </u>												<u> </u>						<u> </u>
																						<u> </u>
	-																					
	-																					
												 										<u> </u>
<u> </u>																						
-	-																					
-	-																					
	-	-																				
	-	-	-							<u> </u>			<u> </u>	<u> </u>				<u> </u>		<u> </u>		-
L	I		I	I	I	I	I	I	I	I		L		I	I	I				L		
2 /66																					A	58
																						_

Thermistor motor protection relays

Content

Benefits and advantages	2 / 68
Selection table	2 / 68
Ordering details	
CM-MSE	2 / 69
CM-MSS	2 / 69
CM-MSN	2 / 71
PTC sensor C011	2 / 72
Technical data	2 / 73
Approvals and marks	2 / 6
Technical diagrams	
Dimensional drawings	
Accessories	2 /104

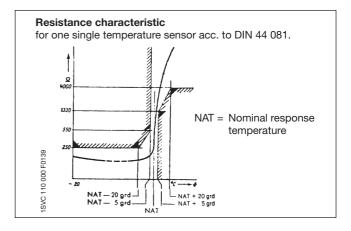
Thermistor motor protection relays CM-MSE, CM-MSS, CM-MSN Benefits and advantages, Selection table

Operating principle and fields of application for thermistor motor protection relays

The CM range of thermistor motor protection relays are used to control motors equipped with PTC temperature sensors. The PTC temperature sensors are incorporated in the motor windings to measure the motor heating. This enables direct control and evaluation of the following operating conditions:

- heavy duty starting increased switching frequency
- single-phase operation
- high ambient temperature
- insufficient cooling
- break operation
- unbalance

The relay is independent of the rated motor current, the insulation class and the method of starting.


The PTC sensors are connected in series to the terminals T_a and T_b (or T_a and T_{bx} without short-circuit detection). The number of possible PTC sensors per measuring circuit is limited by the sum of the individual PTC sensor resistances: $R_G = R_1 + R_2 + R_N \le 1.5 \text{ k}\Omega$. Under normal operating conditions the resistance is below the response threshold. If only one of the PTC resistors heats up excessively, the output relay de-energizes. If the autoreset function is configured, the output relay energizes automatically after cooling down.

Devices with manual (pushbutton on front-side) or remote reset configuration have to be controlled via the control input by the required signal.

Further applications:

Temperature monitoring of equipment with PTC sensors integrated, such as

- machine rolling bearings,
- hot-air ventilators.
- oil.
- air,
- heating installations, etc.

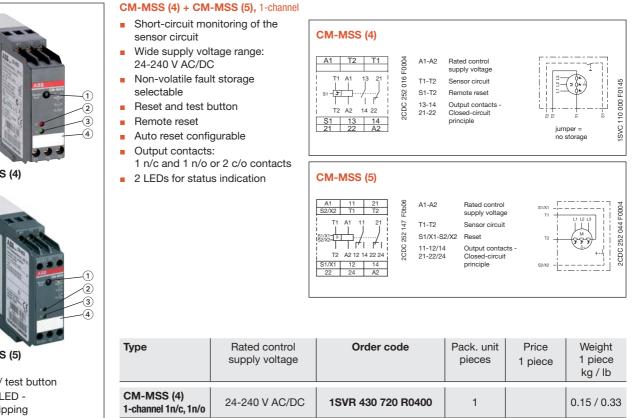
Туре	CM-MSE	CM-MSS (1)	CM-MSS (2)	CM-MSS (3)	CM-MSS (4)	CM-MSS (5)	CM-MSS (6)	CM-MSS (7)	CM-MSN
Function									
Measuring range									
Number of sensor circuits	1	1	1	1	1	1	2	3	6
Wire break monitoring	•	•	•	•	•	•	•	•	•
Short-circuit detection	-	-	-	• 1)	•	•	•	•	•
Non-volatile fault storage	-	-	-	-	• 2)	• 2)	-	• 2)	• 2)
Operation/Reset									
Auto reset	•	•	•	•	• 2)	• 2)	• 2)	• 2)	• 2)
Manual reset	-	-	•	•	•	•	•	•	•
Remote reset	-	-	•	•	•	•	•	•	•
Test button	-	-	-	-	•	•	•	•	•
Output contacts									
Operational principle				с	losed-circuit principl	e			
Number / type	1 c/o	1 n/o	2 c/o	2 c/o	1 n/o + 1 n/c	2 c/o	1 c/o per sensor circuit	1 n/o + 1 n/c accumulative evaluation	1 n/o + 1 n/c accumulative evaluation
Width of enclosure				22.5	mm				45 mm
Supply voltages and order codes									
24 V AC	1SVR550805R9300		1SVR430811R9300						
24 V AC/DC		1SVR430800R9100	1SVR430810R9300	1SVR430710R9300					
110-130 V AC	1SVR550800R9300		1SVR430811R0300	1SVR430711R0300					
220-240 V AC	1SVR550801R9300	1SVR430801R1100	1SVR430811R1300	1SVR430711R1300					
380-440 V AC				1SVR430711R2300					
24-240 V AC/DC					1SVR430720R0400	1SVR430720R0300	1SVR430710R0200	1SVR430720R0500	1SVR450025R0100

Selection table thermistor motor protection relays

1) configurable via terminals

2) Auto reset without non-volatile fault storage configurable by permanent jumpering of connecting terminals S1-T2 or S1/X1-S2/X2

2/68


Thermistor motor protection relays CM-MSE, CM-MSS Ordering details

CM-MSE =0140 1SVC 110 000 F0141 Auto reset CDC 251 012 F0b03 A1-A2 Rated control SVC 110 000 Connection of several sensors supply voltage (max. 6 sensors conn. in series) T1-T2 Sensor circuit Output contact -Closed-circuit principle Monitoring of bimetals 13-14 1 n/o contact Excellent cost / performance ratio Pack. unit Туре Rated control Order code Price Weight supply voltage pieces 1 piece 1 piece kg / lb **CM-MSE** 24 V AC 1SVR 550 805 R9300 0.11 / 0.24 1 110-130 V AC 1SVR 550 800 R9300 0.11 / 0.24 **CM-MSE** 1 220-240 V AC 1SVR 550 801 R9300 1 0.11 / 0.24 CM-MSS (1), 1 c/o contact 430 801 F1100 1SVC 110 000 F0141 110 000 F0142 Auto reset A1-A2 Rated contro Connection of several sensors supply voltage Monitoring of bimetals T1-T2 Sensor circuit ISVR 2 ISVC -1 c/o contact 11-12/14 Output contact Closed-circuit principle 2 LEDs for status indication -Order code Туре Rated control Pack. unit Weight Price supply voltage pieces 1 piece 1 piece kg / lb CM-MSS (1) **CM-MSS** 24 V AC/DC 1) 1SVR 430 800 R9100 0.15 / 0.33 1 (1) 220-240 V AC 1SVR 430 801 R1100 1 0.15 / 0.33 CM-MSS (2), 2 c/o contacts ISVR 430 811 F1300 Fault storage can be switched off F519 A1-A2 Rated control Auto reset configurable supply voltage F0b07 10 000 L1 L2 L3 T1-T2 Sensor circuit Reset button 123 S1-T2 X1-T2 SVC Remote reset Remote reset jumper = no stora 252 252 Monitoring of bimetals 11-12/14 21-22/24 Output contacts -Closed-circuit principle 2 c/o contacts 2 LEDs for status indication . 2 1 Type Order code Pack. unit Price Weight Rated control pieces 1 piece 1 piece supply voltage kg / lb CM-MSS (2) **CM-MSS** 24 V AC/DC 1) 1SVR 430 810 R9300 1 0.15 / 0.33 1SVR 430 811 R9300 0.15 / 0.33 24 V AC (2) 1 110-130 V AC 1SVR 430 811 R0300 0.15 / 0.33 1 1SVR 430 811 R1300 220-240 V AC 0.15 / 0.33 1 ISVR 430 711 F1300 CM-MSS (3), 2 c/o contacts, short-circuit monitoring configurable Fault storage can be switched off Auto reset configurable A1-A2 Rated control 4 supply voltage Reset button 00 F01 F0144 remote reset jumper = without storag S1-T2 Remote reset ISVC 110 000 9 T1-T2x Monitoring of bimetals measuring circuit without 4 short-circuit monitoring S S C S C 2 Short-circuit monitoring of the -T1-T2 measuring circuit with sensor circuit configurable short-circuit monitoring Output contacts Closed-circuit principle 2 c/o contacts 11-12/14 21-22/24 2 LEDs for status indication CM-MSS (3) Туре Rated control Order code Pack. unit Price Weight supply voltage pieces 1 piece 1 piece kg / lb CM-MSS 24 V AC/DC 1) 1SVR 430 710 R9300 1 0.15 / 0.33 (1) F: red LED -110-130 V AC 1SVR 430 711 R0300 0.15 / 0.33 (3) 1 fault tripping 220-240 V AC 1SVR 430 711 R1300 0.15 / 0.33 1 (2) U: green LED -380-440 V AC 1SVR 430 711 R2300 0.15 / 0.33 1 control supply voltage 1) not electrically isolated (3) Marker label • Accessories: PTC sensors ... 2/72 Technical data. 2/73 (4) Reset button Technical diagrams Dimensional drawings ..2/103 Accessories 2/104 . 2/102

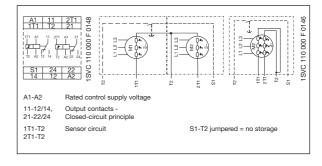
2/69

Thermistor motor protection relays **CM-MSS** Ordering details

(3) U: green LED control supply voltage

- (1) Reset button
- 2 to 3
- F1-F2: red LED fault tripping 1 to 2
- ④ U: green LED control supply voltage
- (5) Marker label

- CM-MSS (6), 2-channel, single evaluation
- Short-circuit monitoring for the sensor circuits


24-240 V AC/DC

- Wide supply voltage range: 24-240 V AC/DC
- 2 separate sensor circuits for monitoring of two motors or one motor with 2 sensor circuits (prewarning and final switch off) Reset button
- Auto reset configurable

CM-MSS (5)

1-channel 2 c/o

- Output contacts: 2 x 1 c/o contact
- 3 LEDs for status indication

1

Туре	Rated control supply voltage	Order code	Pack. unit pieces	Price 1 piece	Weight 1 piece kg / Ib
CM-MSS (6)	24-240 V AC/DC	1SVR 430 710 R0200	1		0.15 / 0.33

1SVR 430 720 R0300

• Accessories: PTC sensors 2/72 Technical data. 2/73 Technical diagrams 2/104 2/102 Dimensional drawings .2/103 Accessories

0.15 / 0.33

2CDC 251 077 F0t07

CM-MSS (5)

- (1) Reset / test button
- ② F: red LED fault tripping
- (4) Marker label

Thermistor motor protection relays CM-MSS, CM-MSN Ordering details

Short-circuit monitoring for the

Wide supply voltage range

Auto reset configurable

1 n/c and 1 n/o contact

4 LEDs for status indication

Reset and test button

Output contacts:

sensor circuits

24-240 V AC/DC

Remote reset

CM-MSS (7), 3 sensor circuits, accumulative evaluation

Non-volatile fault storage configurable

- (1) Reset / test button
- (2) to (4) F1-F3: red LED -
- fault tripping 1 to 3 (5) U: green LED -
- control supply voltage
- (6) Marker label

CM-MSN

(1) Reset / Test button

(2) to (7)

<u>a Br</u>

F1-F6: red LED -

fault tripping F1 to F6

8 U: green LED -

control supply voltage (9) Marker label

ircuits, accumulative evaluatio	on							
nitoring of the	A1 T2 3T	2T1 T2 1T1	F0150	;				
age range: ; t storage configurable	1111211611 3 12 12 12 12 13 14 21 22 12 12 12 14 14 12 12 12 12 13 14 12 12 12 13 14 14 12 12 12 13 14 14 14 14 14 14 14 14 14 14	┙┈╱╌┙┊	1SVC 110 000 FC	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			а а а а а	
gurable utton : act	A1-A2 13-14 21-22	Rated contro Output cont Closed-circu	acts -	ltage	1T16 S1-T2	F1-T2	Sensor circ Remote res jumper = n	set,
s indication								

Туре	Rated control supply voltage	Order code	Pack. unit pieces	Price 1 piece	Weight 1 piece kg / lb
CM-MSN	24-240 V AC/DC	1SVR 450 025 R0100	1		0.23 / 0.51

accumulative evaluation = if any input exceeds the threshold, the output relay will trip

Accessories: PTC sensors 2/72	• Technical data2/73	
Technical diagrams 2/102	Dimensional drawings2/103	• Accessories 2/104

SVC 110 000 F052

SVC 110 000 F0147

Туре	Rated control supply voltage	Order code	Pack. unit pieces	Price 1 piece	Weight 1 piece kg / lb
CM-MSS (7)	24-240 V AC/DC	1SVR 430 720 R0500	1		0.15 / 0.33

3T1 1T1 F0149

110 000 F

SVC

Rated control supply voltage

Output contacts -Closed-circuit principle

1T1-T2 2T1-T2 3T1-T2

S1-T2

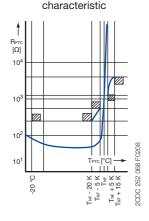
Sensor circuits

A1 2T1

S 2

A1-A2

13-14 21-22


CM-MSN, 6 sensor cit

- Short-circuit mon sensor circuit
- Wide supply volta 24-240 V AC/DC
- Non-volatile fault
- Remote reset
- Auto reset config
 - Reset and test bu
 - Output contacts: 1 n/c, 1 n/o conta
 - 7 LEDs for status

2/71

2

Thermistor motor protection PTC temperature sensors C011 Ordering details, technical data

Temperature sensor

15VC 110 000 F0531

The PTC temperature sensors (temperature-dependent with positive temperature coefficient) are selected by the manufacturer of the motor depending on:

- the motor insulation class according to IEC/EN 60034-11,
- the special characteristics of the motor, such as the conductor cross-section of the windings, the permissible overload factor etc.
- special conditions prescribed by the user, such as the permissible ambient temperature, risks resulting from locked rotor, extent of permitted overload etc.

One temperature sensor must be embedded in each phase winding. For instance, in case of three-phase squirrel cage motors, three sensors are embedded in the stator windings. For pole-changing motors with one winding (Dahlander connection), 3 sensors are also sufficient. Pole-changing motors with two windings, however, require 6 sensors. If an additional warning is required before the motor is switched off, separate sensors for a correspondingly lower temperature must be embedded in the winding. They have to be connected to a second control unit.

The sensors are suitable for embedding in motor windings with rated operating voltages of up to 600 V AC.

Conductor length: 500 mm per sensor.

A 14 V varistor can be connected in parallel to protect the sensors from overvoltage.

Due to their characteristics, the thermistor motor protection relays can also be used with PTC temperature sensors of other manufacturers which comply with DIN 44 081 and DIN 44 082.

Type Rated response temperature T _{NF} Color coding Order code	Pack. unit set	Price 1 set	Weight 1 piece kg / lb

Temperature sensor C011, standard version acc. to DIN 44081

1 set = 3 pie	eces					
C011-70	70 °C	white-brown	GHC 011 0003 R0001	1		0.02/0.044
C011-80	80 °C	white-white	GHC 011 0003 R0002	1		0.02/0.044
C011-90	90 °C	green-green	GHC 011 0003 R0003	1		0.02/0.044
C011-100	100 °C	red-red	GHC 011 0003 R0004	1		0.02/0.044
C011-110	110 °C	brown-brown	GHC 011 0003 R0005	1		0.02/0.044
C011-120	120 °C	gray-gray	GHC 011 0003 R0006	1		0.02/0.044
C011-130	130 °C	blue-blue	GHC 011 0003 R0007	1		0.02/0.044
C011-140	140 °C	white-blue	GHC 011 0003 R0011	1		0.02/0.044
C011-150	150 °C	black-black	GHC 011 0003 R0008	1		0.02/0.044
C011-160	160 °C	blue-red	GHC 011 0003 R0009	1		0.02/0.044
C011-170	170 °C	white-green	GHC 011 0003 R0010	1		0.02/0.044
Туре	Rated response	Color coding	Order code	Pack.	Price	Weight
	temperature T_{NF}			unit	1 piece	1 piece
				pieces		kg / lb

Triple temperature sensor C011-3

Triple temperature sensor C011-3							
C011-3-150 150	°C black-bl	ack GHC 011 0033	3 R0008 1	0.05/0.11			

Technical data

Т

Characteristic data		Sensor type C011				
Cold-state resistance		50 -100 Ω at 25 °C				
Warm-state resistance ± 5 of rated response tempera	•	10 000 Ω				
Thermal time constant, se	nsor open 1)		< 5 s			
Permitted ambient temper	ature		+180 °C			
Rated response tempe-	PTC resistan	ce R at PTC tem	peratures of:			
rature \pm tolerance $\mathbf{T}_{NF} \pm \Delta \mathbf{T}_{NF}$	-20 °C to T _{NF} - 20 K	$T_{ m NF}$ - $\Delta T_{ m NF}$ ($U_{ m PTC} \leq$ 2.5 V)	$T_{NF} + \Delta T_{NF}$ (U _{PTC} \leq 2.5 V)	$\begin{array}{c} T_{\text{NF}} + 15 \text{ K} \\ (\text{U}_{\text{PTC}} \leq 7.5 \text{ V}) \end{array}$		
70 ±5 °C		≤ 570 Ω	≥ 570 Ω			
80 ±5 °C		$\leq 570 \Omega$	$\geq 570 \Omega$	-		
90 ±5 °C						
100 ±5 °C						
110 ±5 °C						
120 ±5 °C	≤ 100 Ω	~ 550.0	> 1000 0	> 1000 0		
130 ±5 °C		≤ 550 Ω	≥ 1330 Ω	≥ 4000 Ω		
140 ±5 °C						
150 ±5 °C						
160 ±5 °C						
170 ±7 °C		$\leq 570 \ \Omega$	≥ 570 Ω	-		
¹⁾ Not embedded in winding	²⁾ For triple	temperature sen	sor take values x	3		

¹⁾ Not embedded in windings.

²⁾ For triple temperature sensor take values x 3.

Thermistor motor protection relays CM-MSE, CM-MSS, CM-MSN Technical data

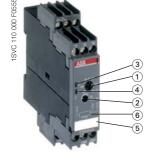
Туре		CM-MSE	CM-MSS	CM-MSN		
nput circuit						
Rated control supply voltage L	J _s - <u>A1-A2</u>		24 V AC approx. 1.5 VA			
power consumption	A1-A2		/ AC/DC approx. 1.1 VA / 0.6	W		
	A1-A2		30 V AC approx. 1.5 VA			
	A1-A2	220-2	40 V AC approx. 1.5 VA			
	A1-A2		40 V AC approx. 1.7 VA			
	A1-A2	24-240 \	/ AC/DC approx. 1.4-1.7 W /	approx. 3.5-5.7 VA		
Rated control supply voltage L	J _s tolerance		-15 % +10 %			
Rated frequency		AC: 50-6	0 Hz / 24-240 V AC/DC versions:	15-400 Hz		
Duty time			100 %			
Measuring circuit		T1-T2	T1-T2/T2x, 1T16T1-T2	1T16T1-T2		
Nonitoring function		tempera	ature monitoring by means of PTC	sensors		
Number of senor circuits		1	1, 2 oder 3 (see order. details)	6		
Short-circuit monitoring		-	see ordering details	yes		
Non-volatile fault storage		-	see ordering details	configurable		
Test function		_	see ordering details	yes		
Sensor circuit				,		
Temperature threshold (relay d	e-energizes)	2.7-3.7 kΩ	CM-MSS (1+2): 3050±550 Ω	3.6 kΩ ±5 %		
			CM-MSS (3-7): 3.6 k $\Omega \pm 5$ %	0.0 Naz ±0 /0		
Temperature hysteresis (relay e	energizes)	1.7-2.3 kΩ	CM-MSS (3-7): 3.0 KΩ2 ± 5 %	1.6 kΩ ±5 %		
inperature hystelesis (ieldy e	10191200)	1.1-2.3 K12		1.0 12 10 70		
			CM-MSS (3-7): 1.6 kΩ ±5 %			
Short circuit threshold (relay de			<20 Ω			
Short circuit hysteresis (relay e	<u> </u>		>40 Ω			
	ors connected in series (cold state)		≤1.5 kΩ			
Maximum sensor cable length	for short-circuit detection	2 x 10	00 m at 0.75 mm ² , 2 x 400 m at 2.5	5 mm²		
Response time			<100 ms			
Control circuit for storage an	nd hysteresis function					
Remote reset	S1-T2 or S1/X1-S2/X2	_	n/o co	ntact		
Maximum no-load voltage		_	approx. 25 V, 24-240 V;	AC/DC versions: 5.5 V		
Maximum cable length		_	≤ 50 m, 100-20			
ndication of operational stat	tes					
Control supply voltage	U: green LED	_				
Fault indication	F: red LED			ply voltage applied		
	F: red LED	-	: output relay de-energized			
Dutput circuits		13-14	11-12/14, 21-22/24,	13-14, 21-22		
			13-14, 21-22			
Kind of output		1 n/o contact	CM-MSS (1): 1 c/o contact	1 n/o + 1 n/c contact		
			CM-MSS (2,3,5): 2 c/o contacts			
			CM-MSS (4, 7): 1 n/o + 1 n/c			
			CM-MSS (6): 2x1 c/o contact			
Operational principle		closed-circuit principle (output relay de-energizes if the measured value exceeds/drops below the adjusted threshold)				
Contact material				•		
Jontact material		AgCdO	CM-MSS (1+2+6): AgCdO	AgNi		
Potod voltago		CM-MSS (3+4+5+7): AgNi 250 V				
	DE 0110, IEC 664-1, IEC 60947-1)					
Maximum switching voltage			250 V			
1 0	AC12 (resistive) 230 V		4 A			
IEC/EN 60947-5-1)	AC15 (inductive) 230 V		3 A			
	DC12 (resistive) 24 V		4 A			
	DC13 (inductive) 24 V		2 A (1.5 A - n/c contact ¹⁾)			
AC rating	Utilization category		B 300			
(UL 508)	(Control Circuit Rating Code)					
	max. rated operational voltage		300 V AC			
	max. continuous thermal		5 A			
	current at B 300					
	max. making/breaking apparent power at B 300		3600/360 VA			
Mechanical lifetime	power at b 500		30 (10 ¹⁾) x 10 ⁶ switching cycles			
Electrical lifetime (AC12, 230 V	(/					
	n/c contact	10 A fast acting	0.1 x 10 ⁶ switching cycles 4 A (10 A ¹⁾) fast-acting	10 A fact acting		
Max. fuse rating to achieve		10 A fast-acting		10 A fast-acting		
short circuit protection	n/o contact	10 A fast-acting	6 A (10 A ¹⁾) fast-acting	10 A fast-acting		
General data						
Dimensions (W x H X D)		22.5 x 78 x 78.5 mm	22.5 x 78 x 100 mm	45 x 78 x 100 mm		
		(0.89 x 3.07 x 3.09 in)	(0.89 x 3.07 x 3.94 in)	(1.77 x 3.07 x 3.94 in)		
· · ·		approx. 0.11 kg (0.24 lb)	approx. 0.15 kg (0.33 lb)	approx. 0.23 kg (0.51 lb		
Weight						
Weight Mounting position			any			
Weight Mounting position	enclosure / terminals		any IP50 / IP20			
Weight Mounting position Degree of protection	enclosure / terminals operation	-20		-25+65 °C		
Weight Mounting position Degree of protection Ambient temperature range		-20	IP50 / IP20	-25+65 °C		

¹⁾ 1SVR 430 710 R 0200, 1SVR 430 8xx R xxxx

Thermistor motor protection relays CM-MSE, CM-MSS, CM-MSN Technical data

lec	hni	Ical	d	2
		- Ca		1

Туре		CM-MSE	CM-MSS	CM-MSN	
Electrical connection			· · · · · · · · · · · · · · · · · · ·		
Wire size	fine strand with wire end ferrule	2 x 1.5 mm ²	2 x 1.5 mm ² 2 x 2.5 mm ²		
		(2 x 16 AWG)	(2 x 14 A	WG)	
	fine strand without wire end ferrule	2 x 0.75-1.5 mm ²	2 x 0.75-2.	5 mm ²	
		(2 x 18-16 AWG)	(2 x 18-14	/	
	rigid	2 x 1-1.5 mm ²	2 x 0.75-2.		
		(2 x 18-16 AWG)	(2 x 18-14	,	
Stripping length		2 x 0.75-1.5 mm ²	2 x 0.5-4		
		(2 x 18-16 AWG)	(2 x 20-12	/	
Tightening torque		10 mm (0.39 inch)	7 mm (0.2	3 inch)	
Standards					
Product standard		IEC 255-6, EN 60255-6			
Low Voltage Directive			2006/95/EC		
EMC Directive		2004/108/EC, 91/263/EEC, 92/31/EEC, 93/68/EEC, 93/67/EEC			
Electromagnetic compatibility		EN 61000-6-2, EN 61000-6-4			
electrostatic discharge IEC/EN 61000-4-2		Level 3 (6 kV / 8 kV)			
radiated, radio-frequency, elec	ctromagnetic field IEC/EN 61000-4-3	Level 3 (10 V/m)			
electrical fast transient / bur	rst IEC/EN 61000-4-4	Level 3 (2 kV / 5 kHz)			
surge	IEC/EN 61000-4-5	Level 3/4 (1/2 kV)			
conducted disturbances,		Level 3 (10 V)			
induced by radio-frequency	fields IEC/EN 61000-4-6				
Operational reliability (IEC 68-	-2-6)	6 g	4 g	5 g	
Resistance to vibration (IEC 6	i8-2-6)	10 g	6 g	10 g	
Environmental testing (IEC 68-2-30)		24 h cycle time, 55 °C, 93 % rel., 96 h			
Isolation data					
Rated voltage between supply, measuring and output circuit		250 V			
Rated impulse withstand voltage between all isolated circuits		4 kV / 1.2 - 50 μs			
Test voltage between all isola	ted circuits	2.5 kV, 50 Hz, 1 min.			
Pollution degree			3		
Overvoltage category			III		



Temperature monitors for PT100, PT1000, KTY83, KTY84 and NTC sensors

Content

Ordering details	2 / 76
Overview, functional description and diagrams	2 / 77
Connection diagrams, connection of resistance thermometer sensors	2 / 79
Technical data	2 / 79
Approvals and marks	2 / 6
Dimensional drawings	2 /102

Analog temperature monitoring relays C510 and C511 Ordering details

(1) Threshold value adjustment

(2) Hysteresis adjustment

control supply voltage

C510

3 LED:

④ LED ϑ:

relay status

(6) Circuit diagram

(5) Marker label

Analog tripping devices - C510 and C511

- Sensor types: PT100
- Measuring principle for 2- and 3-wire sensors
- Electrical isolation between the sensors and the power supply (except for 24 V AC/DC devices)
- Separate design for the crossing of the upper or lower threshold

C510

(

,

((

- 1 threshold ajdustable via absolute scale in °C
- Hysteresis adjustable from

2-20 %

- Depending on the version, measurement ranges for -50...+50 °C / 0...+100 °C / 0...+200 °C
- no storage
- Adjustment precision ± 5 %
- 22.5 mm enclosure with 12 terminals
- 1 n/o and 1 n/c contact
- 2 LEDs for status indication
- Closed-circuit principle

Туре	Rated control	Order code	Measuring	Pack	Price	Weight
	supply voltage		range	unit	1 piece	1 piece
				piece		kg / lb

Monitoring function: Overtemperature

C510.01-24	24 V AC/DC	1SAR 700 001 R0005	-50+50 °C	1	0.15/0.33
C510.01-K	110/230 V AC	1SAR 700 001 R0006	-50+50 °C	1	0.19/0.42
C510.02-24	24 V AC/DC	1SAR 700 002 R0005	0+100 °C	1	0.15/0.33
C510.02-K	110/230 V AC	1SAR 700 002 R0006	0+100 °C	1	0.19/0.42
C510.03-24	24 V AC/DC	1SAR 700 003 R0005	0+200 °C	1	0.15/0.33
C510.03-K	110/230 V AC	1SAR 700 003 R0006	0+200 °C	1	0.19/0.42

Monitoring function: Undertemperature

-					
C510.11-24	24 V AC/DC	1SAR 700 004 R0005	-50+50 °C	1	0.15/0.33
C510.11-K	110/230 V AC	1SAR 700 004 R0006	-50+50 °C	1	0.19/0.42
	24 V AC/DC 110/230 V AC	1SAR 700 005 R0005 1SAR 700 005 R0006	0+100 °C 0+100 °C	1 1	0.15/0.33 0.19/0.42
C510.13-24 C510.13-K	24 V AC/DC 110/230 V AC	1SAR 700 006 R0005 1SAR 700 006 R0006	0+200 °C 0+200 °C	1 1	0.15/0.33 0.19/0.42

C511

• Function diagrams

..... 2/78

• Technical data ..

4 5

1

-(6

3

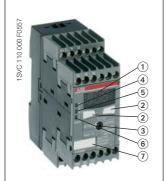
(7

2 8 9

- 2 thresholds (warning and switch-off) adjustable via absolute scale in °C
- Hysteresis for threshold 1 adjustable from 2-20 %
- Hysteresis for threshold 2 fixed 5 %
- 1 n/o and 1 c/o
- 3 LEDs for status indication
- Open- or closed-circuit principle selectable

Туре	Rated control supply voltage	Order code	Measuring range	Pack unit piece	Price 1 piece	Weight 1 piece kg / lb
Monitoring fu	nction: Overtem	perature				
C511.01-24	24 V AC/DC	1SAR 700 011 R0005	-50+50 °C	1		0.17/0.37
C511.01-W	24-240 V AC/DC	1SAR 700 011 R0010	-50+50 °C	1		0.18/0.40
C511.02-24	24 V AC/DC	1SAR 700 012 R0005	0+100 °C	1		0.17/0.37
C511.02-W	24-240 V AC/DC	1SAR 700 012 R0010	0+100 °C	1		0.18/0.40
C511.03-24	24 V AC/DC	1SAR 700 013 R0005	0+200 °C	1		0.17/0.37
C511.03-W	24-240 V AC/DC	1SAR 700 013 R0010	0+200 °C	1		0.18/0.40
Monitoring fu	nction: Underter	nperature				
C511.11-24	24 V AC/DC	1SAR 700 014 R0005	-50+50 °C	1		0.17/0.37
C511.11-W	24-240 V AC/DC	1SAR 700 014 R0010	-50+50 °C	1		0.18/0.40
C511.12-24	24 V AC/DC	1SAR 700 015 R0005	0+100 °C	1		0.17/0.37
C511.12-W	24-240 V AC/DC	1SAR 700 015 R0010	0+100 °C	1		0.18/0.40
C511.13-24	24 V AC/DC	1SAR 700 016 R0005	0+200 °C	1		0.17/0.37
C511.13-W	24-240 V AC/DC	1SAR 700 016 R0010	0+200 °C	1		0.18/0.40

..2/80



C511

- (1) Threshold value 1 (tripping) adjustment
- (2) Threshold value 2 (warning) adjustment
- (3) Hysteresis adjustment for threshold value 1
- (4) Selection switch for openor closed circuit principle
- 5 LED:
- control supply voltage (6) LED ϑ1: relay 1 energized
- ⑦ LED ϑ2: relay 2 energized
- (8) Marker label
- (9) Circuit diagram

• Dimensional drawings 2/103

Digital temperature monitoring relays C512 and C513 Ordering details

C512, C513

- 1 Display
- (2) Adjustment button
- (3) Menu selection switch
- ④ LED ϑ1:
- Threshold value 1 5 LED ϑ2: Threshold value 1
- 6 LED Ready: device in function
- (7) Marker label

Digital tripping devices - C512 und C513

- Adjustable sensor types: PT100, PT1000, KTY83, KTY84, NTC-B57227-K333-A1
- Measuring principle for 2-wire and 3-wire sensors
- Electrical isolation (except 24 V AC/DC devices)
- Adjustable over-, undertemperature monitoring or range monitoring function
- 2 thresholds
- Hysteresis for both thresholds (1-99 Kelvin)
- Adjustable time delay from 0-999 s affects to both thresholds

C512

Temperature monitor for 1 sensor circuit

- Storage function selectable via external signal (Y1-Y2)
- Non-volatile storage of parameter settings
- 1 n/o (for wire-break and short-circuit detection) and 2 c/o
- Multifunctional digital display
- 3 LEDs for status indication
- Open- or closed-circuit principle selectable
- 45 mm wide enclosure with 24 terminals

Туре	Rated control supply voltage	Order code	Measuring range	Pack unit piece	Price 1 piece	Weight 1 piece k g /lb
Monitoring fu	Monitoring function: Over- and undertemperature, range monitoring function					
C512-24 C512-W	24 V AC/DC 24-240 V AC/DC	1SAR 700 100 R0005 1SAR 700 100 R0010	-50+500 °C *) -50+500 °C *)	1 1		0.32/0.71 0.33/0.73

C513

- Temperature monitor for 1-3 sensor circuits
- In the 3-sensor version the status of the single sensors is displayed if the temperature exceeds or falls below the threshold.

This way it can be easily determined which one of the connected sensors has exceeded or dropped below either one or both threshold values.

Туре	Rated control supply voltage	Order code	Measuring range	Pack unit piece	Price 1 piece	Weight 1 piece kg / lb
Monitoring function: Over- and undertemperature, range monitoring function						
C513-W	24-240 V AC/DC	1SAR 700 110 R0010	-50+500 °C *)	1		0.34/0.75

Accessories - Replaceable cover marking for digital devices

Туре	use for	Order code	Language	Pack unit piece	Price 1 piece	Weight 1 piece kg / lb
C512-D C512-E	C512 C512	1SAR 700 101 R0100 1SAR 700 102 R0100	German English	5 5		
C513-D C513-E	C513 C513	1SAR 700 111 R0100 1SAR 700 112 R0100	German English	5 5		

*) The measuring range depends on the used sensor type:

PT100: -50...+500 °C -

NTC:

-

- KTY83: -50...+175 °C KTY84: -40...+300 °C
- PT1000: -50...+500 °C
 - +80...+160 °C

(Typ Siemens Matsushita B57272-A333-A1 - 100 °C: 1,8 kΩ, 25 °C: 32,762 kΩ)

• Function diagrams Technical data • Dimensional drawings 2/103 2/782/80

2/77

Overview

The C51x temperature monitoring relays can be used for temperature measurement in solid, liquid and gaseous media. The temperature is acquired by the sensor in the medium, evaluated by the device and monitored to determine whether it is within an operating range (range monitoring function) or has exceeded or fallen below a threshold.

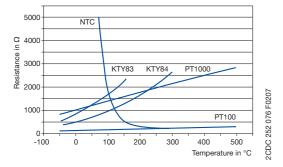
Functional description

Analog tripping devices

Once the temperature has reached the set threshold, output relay K1 changes its switching state. In devices with 2 thresholds relay K2 reacts correspondingly if the second threshold is reached. No time delay can be set (t = 0).

The relays immediately return to their original switching state if the temperature reaches the set hysteresis value.

Once the temperature has reached the upper threshold of v_1 , output relay K1 changes its switching state after the set time t. The relay immediately returns to its original switching state if the temperature reaches the set hysteresis value.


K2 reacts correspondingly at the lower threshold value of v2. Once the temperature has reached the set threshold of v1, output relay K1 changes its switching state after the set time t has elapsed. (K2 reacts in the same way at v2).

The relays return to their original state if the temperature drops below the set hysteresis value and the connection Y1-Y2 is interrupted for a short time.

Digital tripping devices

Once the temperature has reached the set threshold of v1, output relay K1 changes its switching state after the set time delay t has elapsed (K2 reacts in the same way for ν 2).

Characteristic curves of resistance sensors

The family is composed of analog adjustable devices with one or two thresholds, and digital devices which are a good alternative especially in the low-end range.

The output relay switches on or off at the thresholds, depending on the configured functionality (open- or closed-circuit principle selectable).

Function diagrams

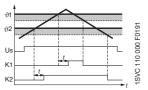
Overtemperature

Undertemperature

Open-circuit principle

Open-circuit principle

n

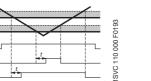

192

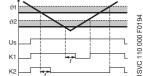
Us

K

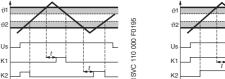
Kź

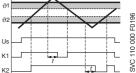
Open-circuit principle



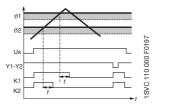


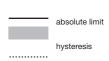
Closed-circuit principle


Closed-circuit principle



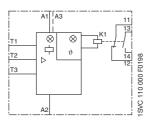
Range monitoring (only digital devices)

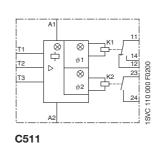

Closed-circuit principle



Function principle with storage function

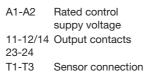
using overtemperature with closed-circuit principle as an example

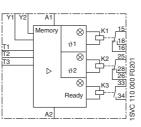




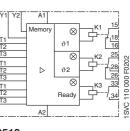
Temperature monitoring relays C51x range

Connection diagrams, connection of resistance thermometer sensors


Connection diagrams



A1/A3-A2 Rated control				
	suppy voltage			
11-12	Output contacts			
13-14				
T1-T3	Sensor connection			


C510

C512

A1-A2	Rated control suppy voltage	A1-A2
15-16/18 25-26/28 33-34	Output contacts	15-16/18 25-26/28 33-34
T1-T3 Y1-Y2	Sensor connection Connection for storage bridge	1T1-1T3 2T1-2T3 3T1-3T3 Y1-Y2

C513

A1-A2	Rated control suppy voltage
15-16/18	Output contacts
25-26/28	
33-34	
1T1-1T3	Sensor connection 1
2T1-2T3	Sensor connection 2
3T1-3T3	Sensor connection 3
Y1-Y2	Connection for storage bridge

Connection of resistance thermometer sensors

2-wire measurement

When using 2-wire temperature sensors the sensor resistance and the wire resistance are added together.

The resulting systematic errors must be taken into account when adjusting the tripping device.

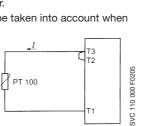
A jumper must be connected bet-

ween the terminals T2 and T3. The following table can be used for PT100 sensors to determine the temperature errors caused by the line length.

ATTENTION!

When using resistance sensors with two-wire connection a bridge must be inserted between terminals T2 and T3.

Error caused by the line

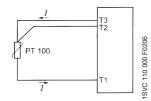

The error resulting from the line resistance amounts to approx. 2.5 Kelvin/Ohm. If the resistance of the line is not known and it is not possible to measure it, the error caused by the line can be estimated using the following table.

Temperature error

(depending on the line length and conductor cross section for PT100 sensors at an ambient temperature of 20 $^\circ\text{C},$ in K)

Line length	Wire size mm ²				
in m	0.50	0.75	1	1.5	
0	0.0	0.0	0.0	0.0	
10	1.8	1.2	0.9	0.6	
25	4.5	3.0	2.3	1.5	
50	9.0	6.0	4.5	3.0	
75	13.6	9.0	6.8	4.5	
100	18.1	12.1	9.0	6.0	
200	36.3	24.2	18.1	12.1	
500	91.6	60.8	45.5	30.2	

ABB



3-wire measurement

To minimize the influence of the wire resistance, a three-wire connection is usually used.

By means of the additional wire two measuring circuits are created. One of these two circuits is used

for reference. This way, the tripping device can calculate and take into account the wire resistance automatically.

Temperature monitoring relays C51x range Technical data

Туре	C510	C511	C512	C513
Input circuit				
Rated control supply voltage A1-A2		24 V AC/DC		-
U _s <u>A1-A2</u>	230 V AC		24-240 V AC/DC	1
A3-A2	110 V AC		-	
Power consumption AC	<	4 VA	< 1	7 VA
DC	<	2 W	< -	4 W
Rated control supply voltage Us tolerance		-15	+10 %	
Rated frequency AC		50/6	0 Hz	
Sensor circuit				
Sensor type	P	Г100	PT100, PT1000, K	(TY83, KTY84, NTC
Sensor current PT100		typ.	1 mA	
PT1000, KTY83, KTY84, NTC		-	typ. ().2 mA
Wire-break detection		no	yes (not	t for NTC)
Short-circuit detection		no	у	/es
3-wire connection	yes (2-wi	ire connection of sensors	with terminals T2 and 1	T3 bridged)
Measuring circuit				
Setting accuracy at $T_a = 20 \text{ °C} (T_{20})$	typ. < ± 5 % c	of full-scale value		± 1digit
Accuracy within the temperature range	<	2 %	0.05 °C / °C de	eviation from T ₂₀
Response time		-	500	0 ms
Hysteresis settings temperature 1	2-20 % of f	ull-scale value	1-99	kelvin
temperature 2	-	5 % of full-scale value	1-99	kelvin
Tripping delay		-	0-9	999 s
Output circuit				
Kind of output	1 n/o + 1 n/c	1 c/o + 1 n/o	2 c/o + 1n/o	2 c/o + 1 n/o
Rated operating AC12 (resistive) 230 V				
current I _e AC15 (inductive) 230 V		3	A	
(IEC/EN 60947-1-5) DC12 (resistive) 24 V		1	A	
DC13 (inductive) 24 V	0.1			
Mechanical lifetime	3 x 10 ⁶ swi	itching cycles		itching cycles
Electrical lifetime (AC15 at 3 A)		0.1 x 10⁵ swi	tching cycles	
Max. fuse rating to achieve short circuit protection		4 A, operating	g class gL/gG	
General data				
Dimensions (W x H x D)	22.5 x 101.6 x 86 n	nm (0.89 x 4 x 3.39 in)	45 x 105.9 x 86 mm	(1.77 x 4.17 x 3.39
Tightening torque		0.8-1	.2 Nm	
Mounting position			ny	
Degree of protection enclosure / terminals		IP 40 /		
Ambient temperature range operation			-60 °C	
storage			⊦80 °C	
Mounting		DIN rail (IEC	C/EN 60715)	
Electrical connection				
Wire size rigid	1 x 4 mm² (1 x 12 AWG), 2 x 2.5 mm² (2 x 14 AWG)			
fine-strand with wire end ferrule	1	x 2.5 mm ² (1 x 14 AWG),	2 x 1.5 mm ² (2 x 16 AV	VG)
Standards				
Environmental conditions			721-3-3	
Low Voltage Directive		IEC 60947-5		
Electromagnetic Interference immunity			000-6-2	
compatibility Interference emission			000-6-4	
Vibration resistance (IEC 68-2-6)			0.75 mm	
Shock resistance (IEC 68-2-27)		15 g /	11 ms	
Isolation data				
Rated insulation voltage		300	V AC	
Pollution degree		(3	

ABB Liquid level monitors and controls

Content

Ordering details		
CM-ENE MIN, CM-ENE MAX	2 /	82
CM-ENS	2 /	83
CM-ENS UP/DOWN	2 /	84
CM-ENN	2 /	85
CM-ENN UP/DOWN	2 /	86
Accessories for liquid level relays	2/	87
Technical data		
CM-ENE MIN, CM-ENE MAX	2 /	88
CM-ENS, CM-ENS UP/DOWN		
CM-ENN, CM-ENN UP/DOWN	2 /	90
Approvals and marks	2/	/ 6
Technical diagrams		102
Dimensional drawings		103
Accessories		104

Liquid level relays CM-ENE MIN, CM-ENE MAX Ordering details

MIN C

The liquid level relays CM-ENE MIN and CM-ENE MAX are used to monitor levels of conductive liquids, for example in pump control systems for dry-running or overflow monitoring.

The measuring principle is based on the occurring resistance change when moisting single-pole electrodes. The single-pole electrodes (see also section Accessories) are connected to the terminals C and MIN or MAX.

If the supply voltage is applied to A1-A2 and the electrodes are wet, the output relay of the CM-ENE MIN is energized and the output relay of the CM-ENE MAX is de-energized.

MIN

The output relay of the CM-ENE MIN de-energizes if the electrodes are no longer wet. The output relay of the CM-ENE MAX energizes if the electrodes are no longer wet.

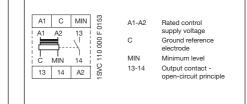
0151

1SVC 110 000 F

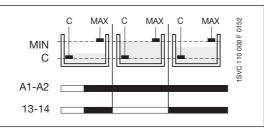
Function diagram CM-ENE MIN

МІМ С

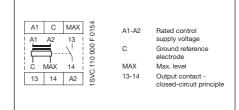
C


MIN

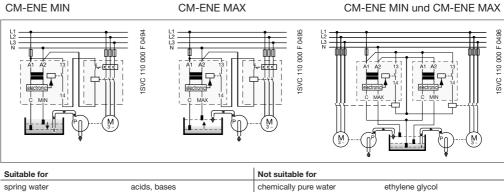
A1-A2


13-14

C


Connection diagram CM-ENE MIN

Function diagram CM-ENE MAX



Connection diagram CM-ENE MAX

If a metal tank is used, the ground reference electrode C is not required. In this case the cable can be connected directly to the metal surface of the tank.

Application examples

Suitable for		Not suitable for	
spring water	acids, bases	chemically pure water	ethylene glycol
drinking water	liquid fertilizers	fuel	concentrated alcohol
sea water	milk, beer, coffee	oils	paraffin
sewage	non-concentrated alcohol	explosive areas (liquid gas)	lacquers

Туре	Rated control supply voltage	Order code	Pack. unit pieces	Price 1 piece	Weight 1 piece kg / Ib
CM-ENE MIN	24 V AC 110-130 V AC 220-240 V AC	1SVR 550 855 R9500 1SVR 550 850 R9500 1SVR 550 851 R9500	1 1 1		0.15 / 0.33 0.15 / 0.33 0.15 / 0.33
CM-ENE MAX	24 V AC 110-130 V AC 220-240 V AC	1SVR 550 855 R9400 1SVR 550 850 R9400 1SVR 550 851 R9400	1 1 1		0.15 / 0.33 0.15 / 0.33 0.15 / 0.33

CM-ENE MIN

1

CM-ENE MAX

(1) R: yellow LED relay status

- Monitoring of pump systems for dry running (ENE MIN) and overflow (ENE MAX)
- Connection of 2 electrodes possible at C and MIN/MAX
- 3 supply voltage versions Optimal price/performance ratio
- 1 n/o contact: Open-circuit principle for CM-ENE MIN
- Closed-circuit principle for CM-ENE MAX
- LED for status indication

2/87 and 2/104 Accessories.... Technical data ..2/88 • Dimensional drawings

2/103

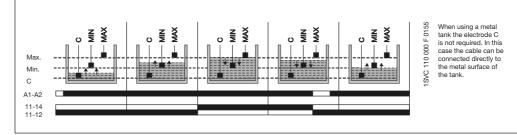
F9500

550 851

SVB

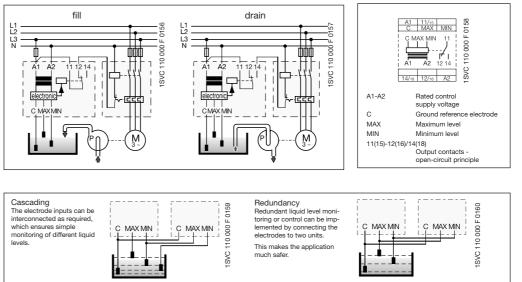
2/82

Liquid level relays CM-ENS Ordering details

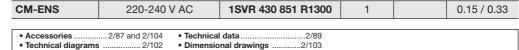

The CM-ENS monitors levels of conductive liquids and is used for example for liquid level control in pump systems. It can be used for filling or draining tanks for example.

It is also suitable for monitoring the conductivity of liquids. The measuring principle is based on the resistance change sensed by single-pole electrodes. After the supply voltage is applied to the terminals A1 and A2, the output relay is de-energized. The probes must be connected to C, MAX, MIN.

The output relay energizes if the liquid exceeds the maximum level (C and MAX wet) and de-energizes if the liquid level is below the minimum level (MAX and MIN dry).


Based on the measuring circuit there will be a response delay of approx. 250 ms at maximum sensitivity. Different levels in one tank can be controlled by up to 5 CM-ENS without interfering with each other.

Function diagram CM-ENS



Connection diagram CM-ENS

- Monitoring and control of liquid levels (when draining or filling liquids in tanks)
- Monitoring and control of mixture ratios (conductivity of liquids)
- Adjustable response sensitivity 5-100 kΩ
- 4 supply voltage versions 24 - 415 V AC
- Version with
- protective separation acc. to VDE 0160
- Cascadable
- 1 c/o contact or
 1 n/o and 1 n/c contact
- 2 LEDs for status indication

Suitable for			Not suitable for			
spring water drinking water sea water sewage	acids, bases liquid fertilizers milk, beer, coffee non-concentrated alc	cohol	chemically pure wat fuel oils explosive areas (liqu		ethylene glyco concentrated a paraffin lacquers	
Туре	Rated control supply voltage	Or	der code	Pack. unit pieces	Price 1 piece	Weight 1 piece kg / Ib
CM-ENS	24 V AC 110-130 V AC 220-240 V AC 380-415 V AC	1SVR 4 1SVR 4	30 851 R9100 30 851 R0100 30 851 R1100 30 851 R2100	1 1 1 1		0.15 / 0.33 0.15 / 0.33 0.15 / 0.33 0.15 / 0.33
Version with pro	tective separation acc. t	o VDE 0 1	160, 1 n/o, 1 n/c			

Liquid level relays CM-ENS UP/DOWN Ordering details

The CM-ENS UP/DOWN monitors levels of conductive liquids and other media, and is used e.g. for liquid level control in pump systems.

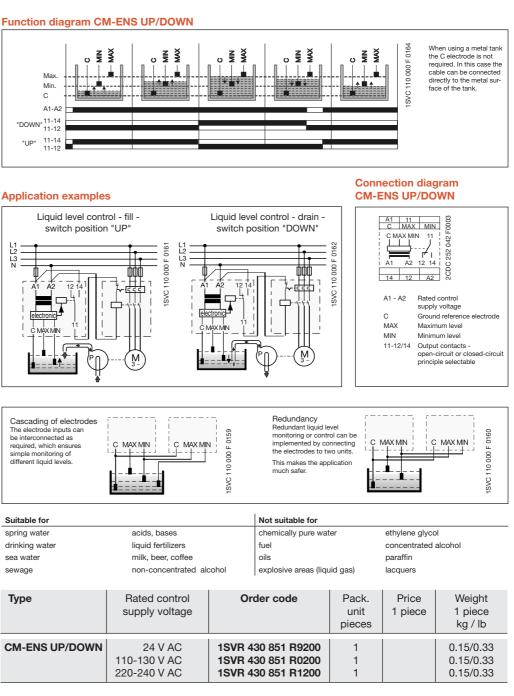
The measuring principle is based on the resistance change sensed by single-pole electrodes.

The output relay functions fill (UP) or drain (DOWN) can be selected on a front-face selector switch. If the "UP" function is selected, the output relay is energized until the MAX electrode becomes wet. Then it is de-energized and not re-energized until the MIN electrode becomes dry.

If the "DOWN" function is selected, the output relay is energized as soon as the MAX electrode becomes wet. It remains energized until the liquid level has dropped below the MIN electrode.

The electrodes can be connected to more than one CM-ENS unit without interference.

CM-ENS UP/DOWN

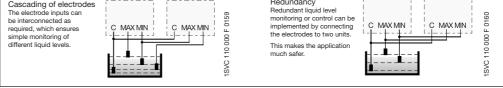

(1) "Func." - function selector switch. "UP"- fill "DOWN" - drain

2

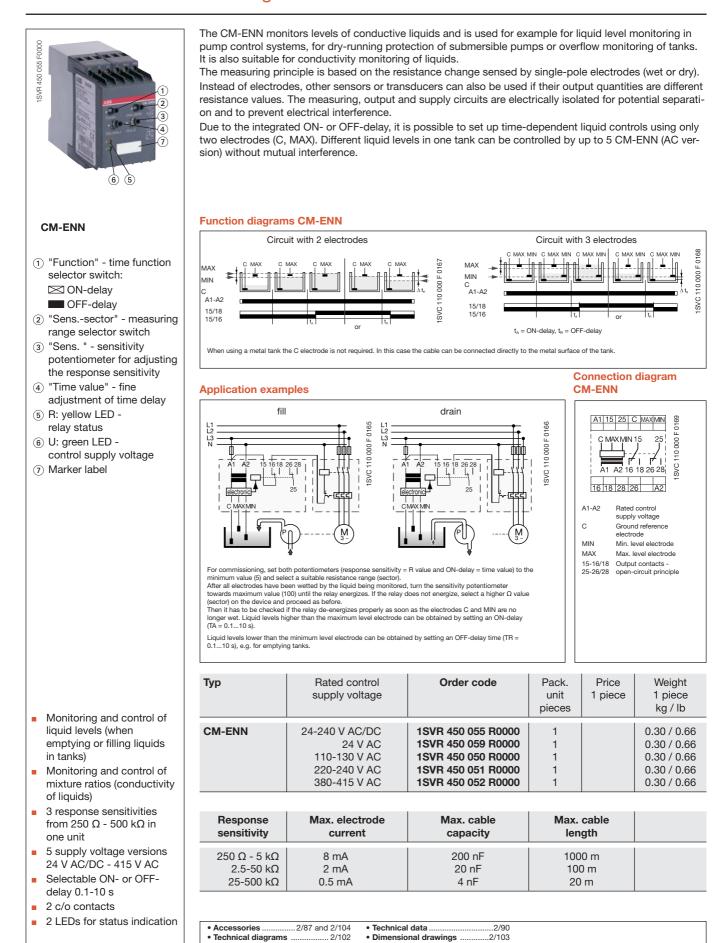
3

4 5

- (2) "Sens." sensitivity potentiometer for adjusting the response sensitivity
- (3) R: yellow LED relay status
- ④ U: green LED -
- control supply voltage (5) Marker label

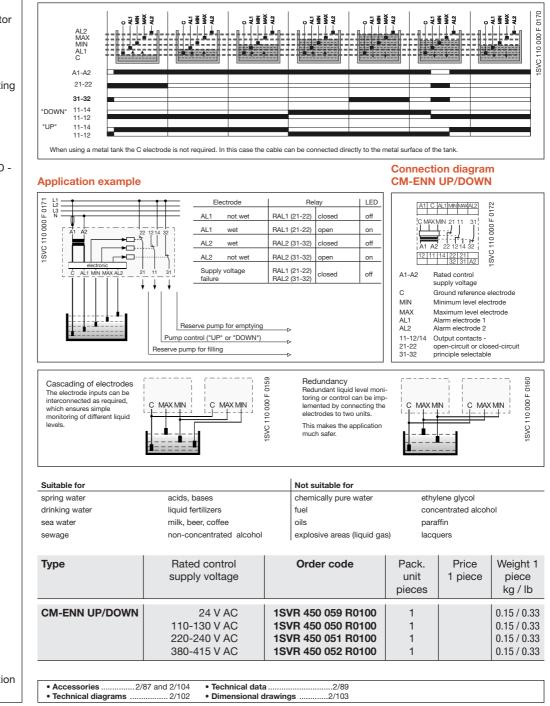


- Monitoring and control of liquid levels
- Selectable function "fill" or "drain'
- Adjustable response sensitivity 5-100 kΩ
- Cascadable 1 c/o contact
- 2 LEDs for status indication
- Accessories2/87 and 2/104 Technical data. .2/89 • Technical diagrams 2/103 ... 2/102 Dimensional drawings


ISVR 430 851 F1200

Liquid level relays CM-ENN Ordering details

Liquid level relays - Liquid level control with two alarm outputs - CM-ENN UP/DOWN Ordering details


The CM-ENN UP/DOWN monitors levels of conductive liquids and media and is used e.g. for liquid level control in pump systems. The measuring principle is based on the resistance change sensed by singlepole electrodes.

The function of the output relay 11-12/14 can be selected by a selector switch on the front of the unit to fill "UP" or drain "DOWN". If the "UP" function is selected, the output relay is energized until the MAX electrode becomes wet. Then it is de-energized and not re-energized until the MIN electrode becomes dry.

If the "DOWN" function is selected, the output relay is energized as soon as the MAX electrode becomes wet. It remains energized until the liquid level has dropped below the MIN electrode.

The electrode inputs AL1 and AL2 energize/de-energize the corresponding output relays RAL1 (21-22) and RAL2 (31-32). AL1 opens if contact RAL1 (21-22) is wet. AL2 closes if contact RAL2 (31-32) is wet. This way, two additional alarm outputs for exceeding or dropping below the normal level can be implemented in addition to the filling levels MAX and MIN.

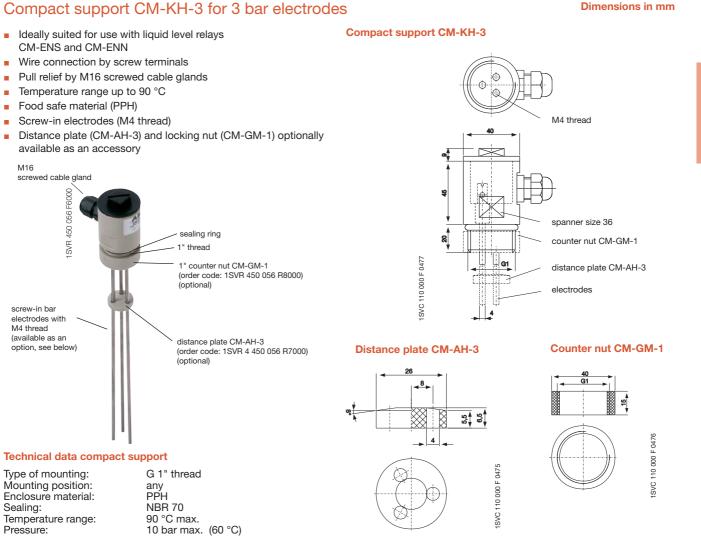
Function diagram CM-ENN UP/DOWN

 Liquid level relay with 5 electrode inputs Level control with

- integrated overflow and dry-running protection Adjustable response
- sensitivity 5-100 kΩ Cascadable
- 1 c/o contact and
- 2 n/c contacts as alarm outputs
- 4 LEDs for status indication

2/86

(1) "Func." - function selector switch: "UP"- fill

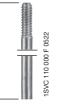

CM-ENN UP/DOWN

- "DOWN" drain 2 "Sens." - sensitivity potentiometer for adjusting
- the response sensitivity (3) R AL1: yellow LED -
- relay status AL1 (4) R AL2: yellow LED -
- relay status AL2
- (5) R: MIN/MAX: yellow LED relav status MIN/MAX
- 6 U: green LED -
- control supply voltage (7) Marker label

Liquid level relays - Accessories **Electrodes** Ordering details, dimensional drawings

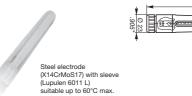
Dimensions in mm

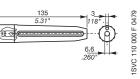
2



Туре	Description	Order code	Pack. unit 1 piece	Price 1 piece	Weight 1 piece kg / Ib
CM-KH-3	Compact support for 3 bar electrodes	1SVR 450 056 R6000	1		0.06 / 0.132
CM-AH-3	Distance plate for 3 bar electrodes	1SVR 450 056 R7000	1		0.06 / 0.132
CM-GM-1	Counter nut for 1" thread	1SVR 450 056 R8000	1		0.06 / 0.132

10 000 F0475


SVC 1



Suspension electrode CM-HE

During project engineering the compatibility of the electrode material with the medium to be supervised is to be examined!

Туре	Length	Order code	Pack. unit 1 piece	Price 1 piece	Weight 1 piece kg / lb
CM-SE-300	300 mm	1SVR 450 056 R0000	1		0.08 /0.176
CM-SE-600	600 mm	1SVR 450 056 R0100	1		0.08 /0.176
CM-SE-1000	1000 mm	1SVR 450 056 R0200	1		0.08 /0.176
CM-HE	-	1SVR 402 902 R0000	1		0.08 /0.176
			•		

Liquid level relays CM-ENE MIN, CM-ENE MAX Technical data

	power consumption
	Rated control supply voltage
	Rated frequency
	Duty time
2	Measuring circuit
_	Monitoring function
	Response sensitivity
	Maximum electrode voltage
	Maximum electrode current

Type Supply circuit	CM-ENE MIN CM-ENE MAX
Supply circuit	
Rated control supply voltage U _s - A1-A2	24 V AC approx. 1.5 VA
power consumption A1-A2	110-130 V AC approx. 1.2 VA
A1-A2	220-240 V AC approx. 1.4 VA
Rated control supply voltage Us tolerance	-15+15 %
Rated frequency	50-60 Hz
Duty time	100 %
Measuring circuit	MIN-C, MAX-C
Monitoring function	dry-running protection overflow protection
Response sensitivity	0-100 kΩ, not adjustable
Maximum electrode voltage	30 V AC
Maximum electrode current	1.5 mA
Electrode supply line max. cable capacity	3 nF
max. cable length	30 m
Timing circuit	
Time delay	-
Tripping delay	fixed approx. 200 ms
Indication of operational states	
Output relay energized	R: yellow LED
Output circuits	13-14
Kind of output	1 n/o contact
Operational principle 1)	open-circuit principle closed-circuit principle
Contact material	AgCdo
Rated operational voltage U _e (IEC/EN 60947-1)	250 V
Mininimum switching voltage / minimum switching current	- / -
Maximum switching voltage	250 V
Rated operational current I _e AC12 (resistive) 230 V	4 A
(IEC/EN 60947-5-1) AC15 (inductive) 230 V	3 A
DC12 (resistive) 24 V	4 A
DC13 (inductive) 24 V	2 A
AC rating Utilization category (Control Circuit Rating Code)	B 300
(UL 508) max. rated operational voltage	300 V AC
max. continuous thermal current at B 300	5 A
max. making/breaking apparent power at B 300	3600/360 VA
Mechanical lifetime	30 x 10 ⁶ switching cycles
Electrical lifetime (AC12, 230 V, 4 A)	0.3 x 10 ⁶ switching cycles
Max. fuse rating to achieve n/c contact	
short circuit protection n/o contact	10 A fast-acting
General data	
Dimensions (W x H x D)	22.5 x 78 x 78.5 mm (0.89 x 3.07 x 3.09 in)
Mounting position	any
Degree of protection enclosure / terminals	IP50 / IP20
Ambient temperature range operation / storage	-20+60 °C / -40+85 °C
Mounting	DIN rail (IEC/EN 60715)
Electrical connection	
Wire size fine-strand with wire-end ferrule	2 x 0.75-1.5 mm² (2 x 18-16 AWG)
fine-strand without wire-end ferrule	2 x 1-1.5 mm ² (2 x 18-16 AWG)
rigid	2 x 0.75-1.5 mm² (2 x 18-16 AWG)
Stripping length	10 mm (0.39 inch)
Tightening torque	0.6-0.8 Nm
Standards	
Product standard	IEC 255-6, EN 60255-6
Low Voltage Directive	2006/95/EC
EMC Directive	2004/108/EC
Electromagnetic compatibility	EN 61000-6-2, EN 61000-6-4
electrostatic discharge IEC/EN 61000-4-2	Level 3 (6 kV / 8 kV)
radiated, radio-frequency, electromagnetic field IEC/EN 61000-4-3	Level 3 (10 V/m)
electrical fast transient / burst IEC/EN 61000-4-4	Level 3 (2 kV / 5 kHz)
surge IEC/EN 61000-4-5	Level 4 (2 kV L-L)
conducted disturbances, induced by radio-frequency fields IEC/EN 61000-4-6	Level 3 (10 V)
	6 g
Resistance to vibration (IEC 68-2-6)	10 g
Mechanical resistance (IEC 68-2-6)	
Mechanical resistance (IEC 68-2-6) Isolation data	250 V
Mechanical resistance (IEC 68-2-6) Isolation data Rat. insulation volt. betw. supply, meas. & output circuit (VDE 0110, IEC 60947)	250 V 4 kV / 1.2-50 µs
Resistance to vibration (IEC 68-2-6) Mechanical resistance (IEC 68-2-6) Isolation data Rat. insulation volt. betw. supply, meas. & output circuit (VDE 0110, IEC 60947) Rated impulse withstand voltage between all isolated circuits (VDE0 110, IEC 664) Test voltage between all isolated circuits	4 kV / 1.2-50 μs
Mechanical resistance (IEC 68-2-6) Isolation data Rat. insulation volt. betw. supply, meas. & output circuit (VDE 0110, IEC 60947) Rated impulse withstand voltage between all isolated circuits (VDE0 110, IEC 664) Test voltage between all isolated circuits	
Mechanical resistance (IEC 68-2-6) Isolation data Rat. insulation volt. betw. supply, meas. & output circuit (VDE 0110, IEC 60947) Rated impulse withstand voltage between all isolated circuits (VDE0 110, IEC 664)	4 kV / 1.2-50 μs 2.5 kV, 50 Hz, 1 min.

Closed-circuit principle: Output relay de-energizes if the measured value exceeds/drops below the adjusted threshold.

• Approvals 2/6

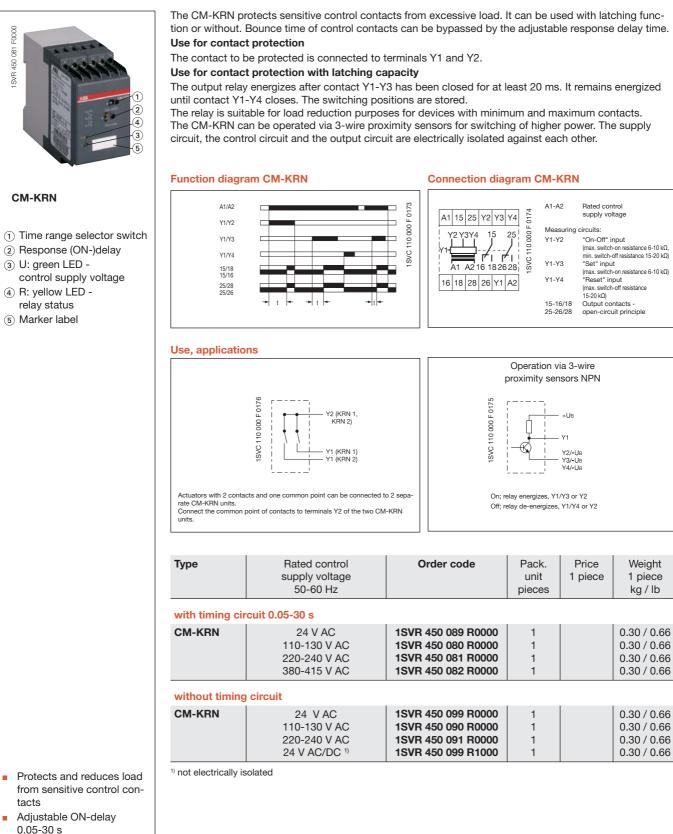
Liquid level relays CM-ENS, CM-ENS UP/DOWN Technical data

Туре		CM-ENS	CM ENS UP/DOWN		
Supply circuit					
Rated control supply voltage		24 V AC	24 V AC		
power consumption	A1-A2	110-130 V AC approx. 1.5 VA	110-130 V AC approx. 4 VA		
	A1-A2	220-240 V AC approx. 1.5 VA	220-240 V AC approx. 4 VA		
Rated control supply voltage	A1-A2	380-415 V AC approx. 1.5 VA -15	10 %		
Rated frequency	je o _s tolerance	50-6			
Duty time		100 %			
Measuring circuit		MAX-MIN-C			
Monitoring function		liquid lev			
Response sensitivity		5-100 kΩ, adjustable			
Maximum electrode voltag	e	30 V AC			
Maximum electrode curren		1 mA			
Electrode supply line	max. cable capacity	10	nF		
	max. cable length	100) m		
Timing circuit					
Time delay					
Tripping delay		approx.	250 ms		
Indication of operational	states				
Control supply voltage		U: gree	en LED		
Output relay energized		R MAX/MIN			
Alarm relay AL1		-	R AL1: yellow LED		
Alarm relay AL2		-	R AL2: yellow LED		
Output circuits		11-12/14, 2	1-22, 31-32		
Kind of output		1 c/o contact, 1 n/o	o + 1 n/c contact 2)		
Operational principle 1)		open-circuit principle	open- and closed-circuit principl		
Contact material		AgC			
Rated operational voltage		250			
<u>_</u>	e / minimum switching current	- /			
Maximum switching voltag		250 V			
Rated operational current I		4			
(IEC/EN 60947-5-1)	AC15 (inductive) 230 V	3 A			
	DC12 (resistive) 24 V	4			
10 II	DC13 (inductive) 24 V	2			
AC rating (UL 508)	Utilization category (Control Circuit Rating Code) max. rated operational voltage	B 3 300 V			
(02 000)	max. continuous thermal current at B 300	5			
	max. making/breaking apparent power at B 300	3600/3			
Mechanical lifetime	max. making broaking apparent power at b ooo	30 x 10 ⁶ swit			
Electrical lifetime (AC12, 23	30 V. 4 A)	0.3 x 10 ⁶ swi			
Max. fuse rating to achieve		10 A (4 A 2) fast-act. / 10 A (6 A 2) fast-act.	10 A fast-acting / 10 A fast-actin		
General data			Ŭ		
Dimensions (W X H X D)		22.5 x 70 x 100 mm (0.89 x 3.07 x 3.94 in)		
Mounting position		ar	/		
Degree of protection	enclosure / terminals	IP50 /	/ IP20		
Ambient temperature range	e operation / storage	-20+60 °C /	′ -40+85 °C		
Mounting		DIN rail (IEC	/EN 60715)		
Electrical connection					
Wire size	fine-strand with wire end ferrule	2 x 2.5 mm ²	(2 x 14 AWG)		
Standards					
		IEC 255-6, I	EN 60255-6		
Product standard		2006/	95/EG		
Product standard Low Voltage Directive			08/EG		
Low Voltage Directive		2004/1			
Low Voltage Directive EMC Directive Electromagnetic compatibi		-			
Low Voltage Directive EMC Directive Electromagnetic compatibi electrostatic discharge	IEC/EN 61000-4-2	Level 3 (6	kV / 8kV)		
Low Voltage Directive EMC Directive Electromagnetic compatibi electrostatic discharge radiated, radio-frequency,	IEC/EN 61000-4-2 electromagnetic field IEC/EN 61000-4-3	Level 3 (6 Level 3	kV / 8kV) (10 V/m)		
Low Voltage Directive EMC Directive Electromagnetic compatibi electrostatic discharge radiated, radio-frequency, electrical fast transient / I	IEC/EN 61000-4-2 electromagnetic field IEC/EN 61000-4-3 burst IEC/EN 61000-4-4	Level 3 (6 Level 3 (2 Level 3 (2	kV / 8kV) (10 V/m) kV / 5 kHz)		
Low Voltage Directive EMC Directive Electromagnetic compatibi electrostatic discharge radiated, radio-frequency, electrical fast transient / I surge	IEC/EN 61000-4-2 electromagnetic field IEC/EN 61000-4-3 burst IEC/EN 61000-4-4 IEC/EN 61000-4-5 IEC/EN 61000-4-5	Level 3 (6 Level 3 (2 Level 3 (2 Level 4 (2	kV / 8kV) (10 V/m) (V / 5 kHz) 2 kV L-L)		
Low Voltage Directive EMC Directive Electromagnetic compatibi electrostatic discharge radiated, radio-frequency, electrical fast transient / I surge conducted disturbances, indu	IEC/EN 61000-4-2 electromagnetic field IEC/EN 61000-4-3 burst IEC/EN 61000-4-4 IEC/EN 61000-4-5 IEC/EN 61000-4-5 uced by radio-frequency fields IEC/EN 61000-4-6	Level 3 (6 Level 3 (2 Level 3 (2 Level 4 (2 Level 3	kV / 8kV) (10 V/m) (V / 5 kHz) 2 kV L-L) 5 (10 V)		
Low Voltage Directive EMC Directive Electromagnetic compatibi electrostatic discharge radiated, radio-frequency, electrical fast transient / I surge conducted disturbances, indu Resistance to vibration (IEC	IEC/EN 61000-4-2 electromagnetic field IEC/EN 61000-4-3 burst IEC/EN 61000-4-4 IEC/EN 61000-4-5 IEC/EN 61000-4-5 uced by radio-frequency fields IEC/EN 61000-4-6 C 68-2-6) EC/EN 61000-4-6	Level 3 (6 Level 3 (2 Level 3 (2 Level 4 (2 Level 3 Level 3 4	kV / 8kV) (10 V/m) kV / 5 kHz) 2 kV L-L) 5 (10 V) 9		
Low Voltage Directive EMC Directive Electromagnetic compatibi electrostatic discharge radiated, radio-frequency, electrical fast transient / I surge conducted disturbances, indu Resistance to vibration (IEC Mechanical resistance (IEC	IEC/EN 61000-4-2 electromagnetic field IEC/EN 61000-4-3 burst IEC/EN 61000-4-4 IEC/EN 61000-4-5 IEC/EN 61000-4-5 uced by radio-frequency fields IEC/EN 61000-4-6 C 68-2-6) EC/EN 61000-4-6	Level 3 (6 Level 3 (2 Level 3 (2 Level 4 (2 Level 3	kV / 8kV) (10 V/m) kV / 5 kHz) 2 kV L-L) 5 (10 V) 9		
Low Voltage Directive EMC Directive Electromagnetic compatibi electrostatic discharge radiated, radio-frequency, electrical fast transient / I surge conducted disturbances, indu Resistance to vibration (IEC Mechanical resistance (IEC Isolation data	IEC/EN 61000-4-2 electromagnetic field IEC/EN 61000-4-3 burst IEC/EN 61000-4-4 IEC/EN 61000-4-5 IEC/EN 61000-4-5 uced by radio-frequency fields IEC/EN 61000-4-6 C 68-2-6) 68-2-6)	Level 3 (6 Level 3 (2 Level 3 (2 Level 4 (2 Level 3 Level 3 6	kV / 8kV) (10 V/m) kV / 5 kHz) 2 kV L-L) 5 (10 V) 9 9		
Low Voltage Directive EMC Directive Electromagnetic compatibi electrostatic discharge radiated, radio-frequency, electrical fast transient / I surge conducted disturbances, ind Resistance to vibration (IEC Mechanical resistance (IEC Isolation data Rated insulation voltage be	IEC/EN 61000-4-2 electromagnetic field IEC/EN 61000-4-3 burst IEC/EN 61000-4-4 IEC/EN 61000-4-5 IEC/EN 61000-4-5 uced by radio-frequency fields IEC/EN 61000-4-6 C 68-2-6) E6-2-6 tween supply, measuring and output circuit (VDE 0110, IEC 60947)	Level 3 (6 Level 3 (7 Level 3 (2 Level 3 (2 Level 4 (7 Level 3 4 6 250	kV / 8kV) (10 V/m) kV / 5 kHz) 2 kV L-L) 5 (10 V) 9 9		
Low Voltage Directive EMC Directive Electromagnetic compatibi electrostatic discharge radiated, radio-frequency, electrical fast transient / I surge conducted disturbances, indu Resistance to vibration (IEC Mechanical resistance (IEC Isolation data Rated insulation voltage be Rated impulse withstand v	IEC/EN 61000-4-2 electromagnetic field IEC/EN 61000-4-3 burst IEC/EN 61000-4-4 IEC/EN 61000-4-5 IEC/EN 61000-4-5 uced by radio-frequency fields IEC/EN 61000-4-6 C 68-2-6) E tween supply, measuring and output circuit (VDE 0110, IEC 60947) IEC 664)	Level 3 (6 Level 3 (2 Level 3 (2 Level 3 (2 Level 4 (2 Level 3 4 6 250 4 kV / 1.:	kV / 8kV) (10 V/m) kV / 5 kHz) 2 kV L-L) 5 (10 V) 9 9 9 2 - 50 μs		
Low Voltage Directive EMC Directive Electromagnetic compatibil electrostatic discharge radiated, radio-frequency, electrical fast transient / I surge conducted disturbances, indu Resistance to vibration (IEC Mechanical resistance (IEC Isolation data Rated insulation voltage be Rated impulse withstand v Test voltage between all iso	IEC/EN 61000-4-2 electromagnetic field IEC/EN 61000-4-3 burst IEC/EN 61000-4-4 IEC/EN 61000-4-5 IEC/EN 61000-4-5 uced by radio-frequency fields IEC/EN 61000-4-6 C 68-2-6) 68-2-6) tween supply, measuring and output circuit (VDE 0110, IEC 60947) oltage between all isolated circuits (VDE0 110, IEC 664)	Level 3 (6 Level 3 (7 Level 3 (2 Level 3 (2 Level 4 (7 Level 4 6 25(4 kV / 1.7 2,5 kV, 50	kV / 8kV) (10 V/m) kV / 5 kHz) 2 kV L-L) 6 (10 V) 9 9 9 2 - 50 μs Hz, 1 min.		
Low Voltage Directive EMC Directive Electromagnetic compatibi electrostatic discharge radiated, radio-frequency, electrical fast transient / surge conducted disturbances, indu Resistance to vibration (IEC Mechanical resistance (IEC Isolation data Rated insulation voltage be Rated impulse withstand v Test voltage between all iso Pollution category (VDE 01	IEC/EN 61000-4-2 electromagnetic field IEC/EN 61000-4-3 burst IEC/EN 61000-4-4 IEC/EN 61000-4-5 IEC/EN 61000-4-5 ized by radio-frequency fields IEC/EN 61000-4-6 C 68-2-6) 68-2-6) tween supply, measuring and output circuit (VDE 0110, IEC 60947) Oltage between all isolated circuits (VDE0 110, IEC 664) olated circuits 10, IEC 664, IEC 255-5) IEC 255-5)	Level 3 (6 Level 3 (7 Level 3 (2 Level 3 (2 Level 3 (2 Level 4 (7 Level 3 4 6 25(4 kV / 1.: 2,5 kV, 50 3 /	kV / 8kV) (10 V/m) kV / 5 kHz) 2 kV L-L) 6 (10 V) 9 9 9 2 - 50 μs Hz, 1 min. C		
Low Voltage Directive EMC Directive Electromagnetic compatibil electrostatic discharge radiated, radio-frequency, electrical fast transient / I surge conducted disturbances, indu Resistance to vibration (IEC Mechanical resistance (IEC Isolation data Rated insulation voltage be Rated impulse withstand v Test voltage between all iso	IEC/EN 61000-4-2 electromagnetic field IEC/EN 61000-4-3 burst IEC/EN 61000-4-4 IEC/EN 61000-4-5 IEC/EN 61000-4-5 uced by radio-frequency fields IEC/EN 61000-4-6 C 68-2-6) 68-2-6) tween supply, measuring and output circuit (VDE 0110, IEC 60947) oltage between all isolated circuits (VDE 0110, IEC 664) Jated circuits 10, IEC 664, IEC 255-5)	Level 3 (6 Level 3 (7 Level 3 (2 Level 3 (2 Level 4 (7 Level 3 4 6 255 4 kV / 1. 2,5 kV, 50 3 / III ,	kV / 8kV) (10 V/m) kV / 5 kHz) 2 kV L-L) 9 (10 V) 9 9 9 2 - 50 μs Hz, 1 min. C		

Liquid level relays CM-ENN UP/DOWN, CM-ENN Technical data

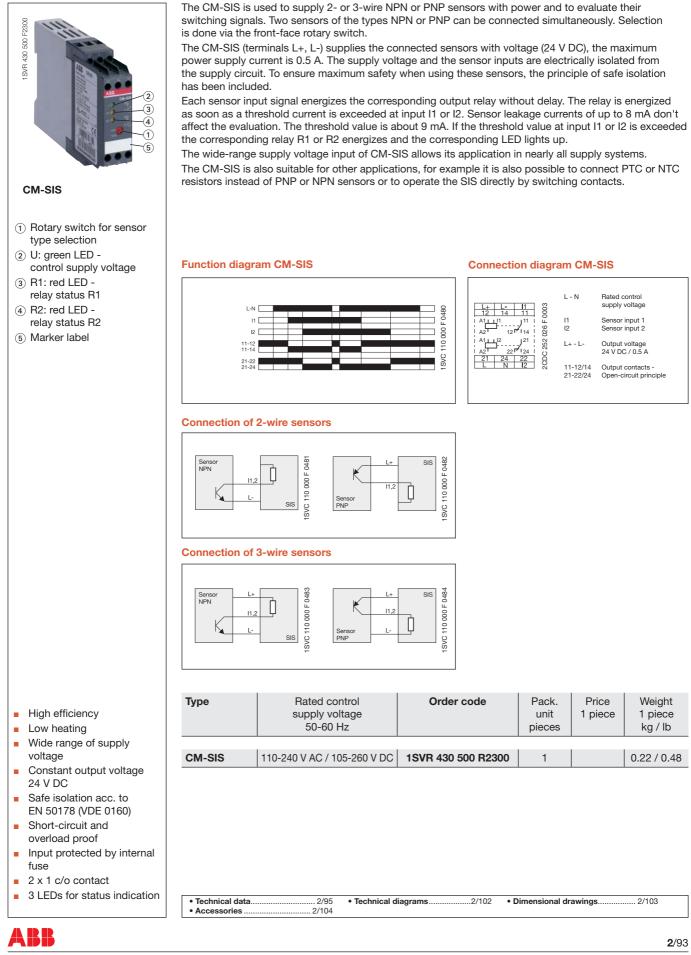
Туре		CM-ENN UP/DOWN	CM-ENN		
Supply circuit					
Rated control supply voltag		24 V AC	24 V AC		
power consumption	A1-A2	110-130 V AC approx. 1.5 VA	110-130 V AC approx. 2.5 VA		
	A1-A2	220-240 V AC approx. 1.5 VA	220-240 V AC approx. 3 VA		
	A1-A2	380-415 V AC approx. 1.5 VA	380-415 V ACapprox. 4 VA		
	A1-A2		24-240 V AC/DC approx. 2 VA/W		
Rated control supply voltag	e U _s tolerance	-15.	+10 %		
Rated frequency		50-60 Hz	50-60 Hz oder DC		
Duty time		1(00 %		
Measuring circuit			(-MIN-C		
Monitoring function		liquid level control			
Response sensitivity		adjustable	adjustable		
hesponse sensitivity		5-100 kΩ			
Maximum electrode voltage		30 V AC	<u>250 Ω - 5 kΩ</u> 2.5-50 kΩ 25-500 k		
			20 V AC		
Maximum electrode current		<u>1 mA</u>	8 mA 2 mA 0.5 mA		
Electrode supply line	max. cable capacity	10 nF	200 nF 20 nF 4 nF		
	max. cable length	100 m	1000 m 100 m 20 m		
Timing circuit					
Time delay		-	0.1-10 s, adjustable, ON- or OFF-dela		
Tripping delay		approx. 250 ms	-		
Indication of operational s	tates		<u>.</u>		
		1.1			
Control supply voltage		· · · · · · · · · · · · · · · · · · ·	Provented		
Output relay energized		R MAX/MIN: yellow LED	R: yellow LED		
Output circuits		11-12/14, 21-22, 31-32	15-16/18, 25-26/28		
Kind of output		1 c/o + 2 n/c contacts	2 c/o contacts		
Operational principle 1)		open-circuit principle	open- and closed-circuit principle		
Contact material			gCdo		
Rated operational voltage L	J. (IEC/EN 60947-1)	250 V	400 V		
1 0	/ minimum switching current		-/-		
Maximum switching voltage	·	250 V			
<u> </u>			400 V		
Rated operational current I _e (IEC/EN 60947-5-1)		4 A	5 A		
(IEC/EN 60947-5-1)	AC15 (inductive) 230 V		3 A		
	DC12 (resistive) 24 V	4 A	5 A		
	DC13 (inductive) 24 V	2 A	2.5 A		
AC rating	Utilization category (Control Circuit Rating Code)	B	3 300		
(UL 508) —	max. rated operational voltage	300 V AC			
-	max. continuous thermal current at B 300	5 A			
-	max. making/breaking apparent power at B 300	3600	0/360 VA		
Mechanical lifetime	John John John John John John John John	30 x 10 ⁶ sv	vitching cycles		
Electrical lifetime (AC12, 23	0 V 4 A)	0.3 x 10 ⁶ switching cycles	0.1 x 10 ⁶ switching cycles		
Max. fuse rating to achieve			g / 6 A fast-acting		
General data			g / O A last-acting		
Diemensions (W X H X D)		45 x 78 x 100 mm	(1.77 x 3.07 x 3.94 in)		
Mounting position			any		
Degree of protection	enclosure / terminals	IP50	0 / IP20		
Ambient temperature range	operation / storage	-25+65 °C	C / -40+85 °C		
Mounting			EC/EN 60715)		
Electrical connection					
	fine strend with wire and formula	0 × 0 E	$^{2}(2 \times 14 \text{ AWG})$		
Wire size	fine-strand with wire end ferrule	2 x 2.5 mm	² (2 x 14 AWG)		
Standards					
Product standard		IEC 255-6	6, EN 60255-6		
Low Voltage Directive		2006	6/95/EG		
EMC Directive		2004	/108/EG		
Electromagnetic compatibil	ty		-		
electrostatic discharge	IEC/EN 61000-4-2	l evel 3	(6 kV / 8kV)		
radiated, radio-frequency,			3 (10 V/m)		
electrical fast transient / b	0		2 kV / 5 kHz)		
		1	,		
surge	IEC/EN 61000-4-5		(2 kV L-L)		
conducted disturbances, indu			I 3 (10 V)		
Resistance to vibration (IEC	,		5 g		
Mechanical resistance (IEC	68-2-6)		10 g		
Isolation data	ween supply, measuring and output circuit (VDE 0110, IEC 60947)	250 V	500 V		
	Itage between all isolated circuits (VDE0 110, IEC 664)		1.2 - 50 μs		
Rated insulation voltage bet	isage sourcourt an iooratou onourto (VDEO 110, IEO 004)		0 Hz, 1 min.		
Rated insulation voltage bet Rated impulse withstand vo		2.3 KV. 3	V 114, 1 11111.		
Rated insulation voltage bet Rated impulse withstand vo Test voltage between all isc	lated circuits		2/0		
Rated insulation voltage bet Rated impulse withstand vo lest voltage between all isc Pollution category (VDE 01	lated circuits 0, IEC 664, IEC 255-5)	3	3/C		
Rated insulation voltage bet Rated impulse withstand vo	lated circuits 0, IEC 664, IEC 255-5) 110, IEC 664, IEC 255-5)		3 / C II / C 55 °C, 93 % rel., 96 h		

Contact protection relays Sensor interface relay


Content

Ordering details CM-KRN CM-SIS	
Technical data CM-KRN CM-SIS	
Approvals and marks Technical diagrams Dimensional drawings Accessories	2 /102 2 /103

Contact protection relay CM-KRN Ordering details


- Acts as two-position switch
- Stores switch positions
- Electrically isolated circuits
- 2 c/o contacts
- 2 LEDs for status indication

2/92

Sensor interface relay CM-SIS Ordering details

Contact protection relay CM-KRN Technical data

Туре	CN	1-KRN
Supply circuit	А	1-A2
Rated control supply voltage U _s - A1-A2	24 V AC	- approx. 3.5 VA
power consumption A1-A2	24 V AC/DC	- approx. 3.5 VA
A1-A2	110-130 V AC	- approx. 3,5 VA
A1-A2	220-240 V AC	- approx. 3.5 VA
A1-A2	380-415 V AC	- approx. 3.5 VA
Rated control supply voltage Us tolerance	-15.	+10 %
Rated frequency		-60 Hz
Duty time		00 %
		00 78
Timing circuit		
ON-delay time		s, 1.5-30 s
OFF-delay time	max	a. 50 ms
Measuring circuit / contact circuit	Y1-Y	2/Y3/Y4
Measuring input contact protection without latching	Y	1-Y2
contact protection with latching	Y1-	-Y3/Y4
Threshold Y1-Y2/Y3	6-	10 kΩ
Threshold-Hysteresis Y1-Y2/Y4		-20 kΩ
No-load voltage at the measuring input		0 V DC
Contact time for latching (CM-KRN without timing circuit)		. 20 ms
Switching current at the measuring input		3 mA
Maximum applied voltage at the measuring input	$\leq \pm 30$ V (co	ontact voltage)
Indication of operational states		
Control supply voltage U: green LED	: control s	supply voltage applied
Relay status R: yellow LED		
		ut relay energized
Output circuit		8, 25-26/28
Kind of output	relay, 2 c	c/o contacts
Operating principle ¹⁾	open-circ	cuit principle
Rated operational voltage (VDE 0110, IEC 60947-5-1)	4	00 V
Rated switching voltage	400 V AC	
Rated operational current I AC12 (resistive) 230 V		5 A
(IEC/EN 60947-5-1) AC15 (inductive) 230 V		3 A
DC12 (resistive) 24 V		5 A
DC13 (inductive) 24 V		2.5 A
AC rating Utilization category (Control Circuit Rating Code)		3 300
(UL 508) max. rated operational voltage	300	O V AC
max. continuous thermal current at B 300		5 A
max. making/breaking apparent power at B 300	3600)/360 VA
Mechanical lifetime	30 x 10 ⁶ sv	vitching cycles
Electrical lifeteime (AC12, 230 V, 5 A)	0.1 x 10 ⁶ sv	witching cycles
Max. fuse rating to achieve short circuit protection n/c / n/o contact		g / 10 A fast-acting
General data		<u> </u>
	45 70 100	(1.770.070.04)
Dimensions (W x H x D)		(1.77 x 3.07 x 3.94 in)
Mounting position		any
Degree of protection enclosure / terminals		0 / IP50
Ambient temperature range operation / storage		C / -40+85 °C
Mounting	DIN rail (IE	EC/EN 60715)
Electrical connection		
Wire size fine-strand with wire end ferrule	2 x 2.5 mm	² (2 x 14 AWG)
Standards		- /
		EN 60255 6
Product standard		6, EN 60255-6
Low Voltage Directive		6/95/EC
EMC Directive	2004	/108/EC
Electromagnetic compatibility		
Interference immunity		
electrostatic discharge IEC/EN 61000-4-2	6 k)	/ / 8 kV
radiated, radio-frequency, electromagnetic field IEC/EN 61000-4-3) V/m
		/ / 5 kHz
electrical fast transient / burst IEC/EN 61000.4.4		
electrical fast transient / burst IEC/EN 61000-4-4	2 KV SV	/mmetrical
surge IEC/EN 61000-4-5	,	
surge IEC/EN 61000-4-5 conducted disturbances, induced by radio-frequency fields IEC/EN 61000-4-6	,	10 V
surge IEC/EN 61000-4-5	,	10 V
surge IEC/EN 61000-4-5 conducted disturbances, induced by radio-frequency fields IEC/EN 61000-4-6	1	10 V 00 V
surge IEC/EN 61000-4-5 conducted disturbances, induced by radio-frequency fields IEC/EN 61000-4-6 Isolation data Rated insulation voltage (IEC 60947-1)	4	
surge IEC/EN 61000-4-5 conducted disturbances, induced by radio-frequency fields IEC/EN 61000-4-6 Isolation data IEC/EN 61000-4-6	4	00 V

¹⁾ Open-circuit principle: Output relay is energized if the measured value exceeds/drops below the adjusted threshold.

Approvals2/6

2/94

Sensor interface relay CM-SIS Technical data

Туре		CM-SIS
Input circuit		
Supply voltage	L-N AC	110-240 V AC (-15+10 %)
	DC	110-240 V (max. 105-260 V DC)
Frequency, AC supply		47-440 Hz
Supply voltage failure bridging ti	ime	10 ms min. at 100 % load
Current consumption	max.	0.35 A
	at 115 V AC	0.27 A
	at 230 V AC	0.14 A
Inrush current at 25°C (\leq 2 ms)		33 A
Internal input fuse		800 mA slow-acting
Measuring circuit		L+, L- / I1, I2
Sensor voltage	L+ L-	24 V DC ± 3%
Sensor current / power		max. 0.5 A / 12 W
Residual ripple		max. 100 mV _{pp}
Deviation with	load change statical	max. ± 0.5 %
	load change dynamical 10-90 %	max. ± 0.3 %
		max. ± 0.5 %
Short circuit protection	change of the input voltage	
Short-circuit protection		overcurrent switch-off with automatic restart
Overload protection	itch off	excess temperature and overcurrent switch-off
Reset after thermal overload swi		automatic reset after cooling down
Sensor type connection possibil	lities I1, I2	2- or 3-wire connection, NPN or PNP selectable by front-face switch
nput resistance	-	approx. 2.5 kΩ
Threshold value for relays R1, R2	2	U _{emitter-collector} < 2,3 V (I1, I2 > 8 mA)
Maximum switching frequency		approx. 20 Hz
Output circuit		11-12/14, 21-22/24
Kind of output		2 relays, 1 c/o contact each
Operating principle 1)		open-circuit principle
Rated operational voltage		250 V
Maximum switching voltage		250 V AC
Rated operational current I _e AC12 (resistive) 230 V		4 A
(IEC/EN 60947-5-1)	AC15 (inductive) 230 V	3 A
	DC12 (resistive) 24 V	4 A
	DC13 (inductive) 24 V	2 A
AC rating	Utilization category (Control Circuit Rating Code)	B 300
(UL 508)	max. rated operational voltage	300 V AC
	max. continuous thermal current at B 300	5 A
	max. making/breaking apparent power at B 300	3600/360 VA
Mechanical lifetime		10 x 10 ⁶ switching cycles
Electrical lifetime		0.1 x 10 ⁶ switching cycles
Max. fuse rating to achieve shor	t circuit protection n/c / n/o contact	6 A fast-acting / 10 A fast-acting
ndication of operational state		5 5
Control supply voltage	U: green LED	: control supply voltage applied
Relay status R1	R1: yellow LED	: threshold value at input I1 exceeded
Relay status R2	R2: yellow LED	: threshold value at input 1 exceeded
	N2. Yellow LLD	
General data		
Efficiency at rated load		approx. 84 % (at 230 V AC)
Ambient temperature range	operation / storage	0+55 °C / -25+75 °C
Dimensions (W x H x D)		22.5 x 78 x 100 mm (0.89 x 3.07 x 3.94 in)
Mounting position		horizontally
Mounting		DIN rail (IEC/EN 60715)
Minimum distance to other units	3	left-hand side 10 mm (0.39 in), vertical distance 50 m (1.97 in)
Electrical connection		
Wire size		2 x 2,5 mm² (2 x 14 AWG)
Standards		
Product standard		IEC 255-6, EN 60255-6
Electrical safety		IEC(EN) 60255-5, EN 50178 (VDE 0160), EN60950, UL 508, CSA 22.2

• Approvals 2/6

Sensor interface module CM-SIS Technical data

2

Туре		CM-SIS		
Electromagnetic compatibility				
Interference immunity		EN 61000-6-2		
electrostatic discharge	IEC/EN 61000-4-2	Level 3 (6 / 8 kV)		
radiated, radio-frequency, electromagnetic field	IEC/EN 61000-4-3	Level 3 (10 V/m)		
electrical fast transient / burst	IEC/EN 61000-4-4	Level 4 (4 kV)		
surge	IEC/EN 61000-4-5	Inst. class 3 (2 kV)		
conducted disturbances, induced by radio-frequency fields	IEC/EN 61000-4-6	Level 3 (10 V)		
Interference emission	EN 50081-2	radiated noise EN 55011, class B		
Input current harmonics		no limitation		
Isolation data				
Insulation testing		2.5 kV AC (routine test), 3 kV AC (type test)		
Degree of pollution		2		
Overvoltage category				

¹⁾ Open-circuit principle: Output relay is energized if the measured value exceeds/drops below the adjusted threshold.

• Approvals 2/6

ABB Cycle monitor with watchdog function

Content

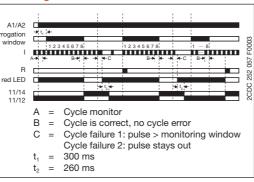
Ordering details	2 / 98
Technical data	2 / 99
Approvals and marks	2 / 6
Technical diagrams	2 /102
Dimensional drawings	
Accessories	2 /104

Cycle monitoring relay with watchdog function CM-WDS Ordering details

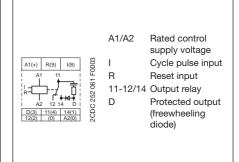
SCDC 281 002 F004

CM-WDS

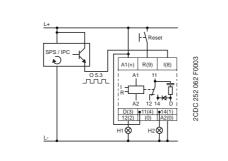
- Setting the lower threshold value of cycle monitoring time
- F: red LED cycle error
- ③ U: green LED control supply voltage
- (4) Wiring diagram
- 5 Marker label


The cycle monitoring relay CM-WDS (watchdog) observes if a regularly intermittent pulse is applied to its pulse input "I". It is, for example, possible to connect the output of a programmable logic controller (plc), which is set and reset regularly (e. g. once each cycle). The connected cycle pulse must be generated by suitable programming of the plc/ipc. Now, the CM-WDS monitors if the cycle time of the plc/ipc program is smaller than the cycle monitoring time setted by means of the front-face selector switch "time value (ms)".

The output relay 11-12/14 of the CM-WDS energizes and the red LED is switched off, if there are minimum 8 successive regular pulses on input "I". When the pulse signal stays out or is not regular, the output relay de-energizes and the red LED is illuminated.


In case the monitoring time is too short or too long, this can be adjusted by a modified programming of the plc/ips or by modified setting of the monitoring time "time value (ms)".

A fault recognized and stored with the CM-WDS can be reset by an H-impulse (0-1-transition) on the reset input "R(9)", so that the cycle monitoring is again released. The reset impulse can be generated by means of a reset button or by suitable programming of the controller (plc/ipc).


Funktion diagram CM-WDS

Connection diagram CM-WDS

Example of application - circuit diagram

Application

The CM-WDS is designed for the external monitoring of the correct function of programmable logic controllers (plc) and industrial pcs (ipc).

- Cycle monitor for monitoring the function of programmable logic controllers or industrial pcs
- 4 selectable cycle monitoring time ranges from 0.5 to 1000 ms

24 V DC supply

- 1 c/o contact
- 2 LEDs for status indication

Cycle monitoring relay with watchdog function CM-WDS Technical data

CM-WDS
A1-A2
2 24 V DC - approx. 1 W
-30 % - +30 %
100 %
I
cycle monitoring
24 V DC
approx. 5 mA
selectable: 0.5-150 ms, 0.5-260 ms, 0.5-500 ms, 0.5-1000 ms
approx. 0.5-1000 ms
$\Delta U \leq 0.5 \%$
$\Delta U \le 0.06 \% / °C$
approx. 2.2-10 s
approx. 2.2 To 3
approx. 200 ms
Lis and an LED
U: green LED
F: red LED
11-12/14
1 c/o
Closed-circuit principle
AgCdo
1 250 V
250 V AC, 250 V DC
/ 4 A
/ 3A
/ 4 A
/ 2 A
) B 300
300 V AC
5 A
3600/360 VA
10 x 10 ⁶ switching cycles
0.1 x 10 ⁶ switching cycles
0.1 x 10 ⁶ switching cycles
0.1 x 10 ⁶ switching cycles
0.1 x 10 ⁶ switching cycles s 10 A fast-acting / 10 A fast-acting
0.1 x 10 ⁶ switching cycles 10 A fast-acting / 10 A fast-acting 22.5 x 78 x 100 mm (0.89 x 3.07 x 3.94 in)
0.1 x 10° switching cycles 10 A fast-acting / 10 A fast-acting 22.5 x 78 x 100 mm (0.89 x 3.07 x 3.94 in) any
0.1 x 10° switching cycles s 10 A fast-acting / 10 A fast-acting 22.5 x 78 x 100 mm (0.89 x 3.07 x 3.94 in) any s IP50 / IP20
0.1 x 10° switching cycles s 10 A fast-acting / 10 A fast-acting 22.5 x 78 x 100 mm (0.89 x 3.07 x 3.94 in) any s IP50 / IP20 e -20+60 °C / -40+85 °C
0.1 x 10° switching cycles 10 A fast-acting / 10 A fast-acting 22.5 x 78 x 100 mm (0.89 x 3.07 x 3.94 in) any IP50 / IP20 -20+60 °C / -40+85 °C
0.1 x 10° switching cycles s 10 A fast-acting / 10 A fast-acting 22.5 x 78 x 100 mm (0.89 x 3.07 x 3.94 in) any s IP50 / IP20 a -20+60 °C / -40+85 °C DIN rail (IEC/EN 60715)
0.1 x 10° switching cycles s 10 A fast-acting / 10 A fast-acting 22.5 x 78 x 100 mm (0.89 x 3.07 x 3.94 in) any s IP50 / IP20 e -20+60 °C / -40+85 °C DIN rail (IEC/EN 60715) e 2 x 2.5 mm² (2 x 14 AWG)
0.1 x 10° switching cycles s 10 A fast-acting / 10 A fast-acting 22.5 x 78 x 100 mm (0.89 x 3.07 x 3.94 in) any s IP50 / IP20 a -20+60 °C / -40+85 °C DIN rail (IEC/EN 60715)
0.1 x 10° switching cycles 10 A fast-acting / 10 A fast-acting 22.5 x 78 x 100 mm (0.89 x 3.07 x 3.94 in) any 1P50 / IP20 2-20+60 °C / -40+85 °C DIN rail (IEC/EN 60715) 2 2 1EC 255-6, EN 60255-6
0.1 x 10° switching cycles 10 A fast-acting / 10 A fast-acting 22.5 x 78 x 100 mm (0.89 x 3.07 x 3.94 in) any 10 A fast-acting / 10 A fast-acting 22.5 x 78 x 100 mm (0.89 x 3.07 x 3.94 in) any 10 A fast-acting / 10 A fast-acting 22.5 x 78 x 100 mm (0.89 x 3.07 x 3.94 in) any 10 A fast-acting / 10 A fast-acting 20.1 x 100 mm (0.89 x 3.07 x 3.94 in) 10 A fast-acting / 10 A fast-acting 10 A fast-acting / 10 A fast-acting 200.1 P20 200 D IP20 200 J IP20 200 D IN rail (IEC/EN 60715) 10 D IN rail (IEC/EN 60715) 10 D IN rail (IEC 255-6, EN 60255-6 10 D IN C 2006/95/EC 2006/95/EC 2004/108/EC
0.1 x 10° switching cycles 10 A fast-acting / 10 A fast-acting 22.5 x 78 x 100 mm (0.89 x 3.07 x 3.94 in) any 10 A fast-acting / 10 A fast-acting 22.5 x 78 x 100 mm (0.89 x 3.07 x 3.94 in) any 10 A fast-acting / 10 A fast-acting 22.5 x 78 x 100 mm (0.89 x 3.07 x 3.94 in) any 10 A fast-acting 20.1 P20 20.1 +60 °C / -40+85 °C DIN rail (IEC/EN 60715) 200 I P20 2 x 2.5 mm² (2 x 14 AWG) 10 EC 255-6, EN 60255-6 2006/95/EC 2004/108/EC 4 g
0.1 x 10° switching cycles 10 A fast-acting / 10 A fast-acting 22.5 x 78 x 100 mm (0.89 x 3.07 x 3.94 in) any 10 A fast-acting / 10 A fast-acting 22.5 x 78 x 100 mm (0.89 x 3.07 x 3.94 in) any 10 A fast-acting / 10 A fast-acting 22.5 x 78 x 100 mm (0.89 x 3.07 x 3.94 in) any 10 A fast-acting / 10 A fast-acting 20.1 x 100 mm (0.89 x 3.07 x 3.94 in) 10 A fast-acting / 10 A fast-acting 10 A fast-acting / 10 A fast-acting 200.1 P20 200 D IP20 200 J IP20 200 D IN rail (IEC/EN 60715) 10 D IN rail (IEC/EN 60715) 10 D IN rail (IEC 255-6, EN 60255-6 10 D IN C 2006/95/EC 2006/95/EC 2004/108/EC
0.1 x 10° switching cycles 10 A fast-acting / 10 A fast-acting 22.5 x 78 x 100 mm (0.89 x 3.07 x 3.94 in) any 10 A fast-acting / 10 A fast-acting 22.5 x 78 x 100 mm (0.89 x 3.07 x 3.94 in) any any <tr< td=""></tr<>
0.1 x 10° switching cycles 10 A fast-acting / 10 A fast-acting 22.5 x 78 x 100 mm (0.89 x 3.07 x 3.94 in) any 10 A fast-acting / 10 A fast-acting 22.5 x 78 x 100 mm (0.89 x 3.07 x 3.94 in) any 10 A fast-acting / 10 A fast-acting 22.5 x 78 x 100 mm (0.89 x 3.07 x 3.94 in) any 10 A fast-acting 20+60 °C / -40+85 °C DIN rail (IEC/EN 60715) 2 2 x 2.5 mm² (2 x 14 AWG) 10 EC 255-6, EN 60255-6 2006/95/EC 2004/108/EC 4 g 6 g EN 61000-6-2
0.1 x 10° switching cycles 10 A fast-acting / 10 A fast-acting 22.5 x 78 x 100 mm (0.89 x 3.07 x 3.94 in) any 10 A fast-acting / 10 A fast-acting 22.5 x 78 x 100 mm (0.89 x 3.07 x 3.94 in) any 10 A fast-acting / 10 A fast-acting 22.5 x 78 x 100 mm (0.89 x 3.07 x 3.94 in) any 10 A fast-acting 22.5 x 78 x 100 mm (0.89 x 3.07 x 3.94 in) any 10 A fast-acting 10 A fast-acting 20.1 P20 2 -20+60 °C / -40+85 °C DIN rail (IEC/EN 60715) 2 10 A fast-acting 2 x 2.5 mm² (2 x 14 AWG) 10 A fast-acting 2 A 2.5 mm² (2 x 14 AWG) 10 A 108/EC 4 g 6 g 10 A 1000-6-2 2 A 2 A 1000-6-2 2 A 2 A 1000-6-2
0.1 x 10° switching cycles 10 A fast-acting / 10 A fast-acting 22.5 x 78 x 100 mm (0.89 x 3.07 x 3.94 in) any 10 A fast-acting / 10 A fast-acting 22.5 x 78 x 100 mm (0.89 x 3.07 x 3.94 in) any 10 A fast-acting / 10 A fast-acting 22.5 x 78 x 100 mm (0.89 x 3.07 x 3.94 in) any 10 A fast-acting 22.5 x 78 x 100 mm (0.89 x 3.07 x 3.94 in) any 10 A fast-acting 10 A fast-acting 20.1 x 100 mm (0.89 x 3.07 x 3.94 in) 200.1 P20 1 EC 255-6, EN 60255-6 2006/95/EC 2004/108/EC 4 g 6 g EN 61000-6-2 2 Level 3 (6 kV / 8 kV) 3 Level 3 (10 V/m)
0.1 x 10° switching cycles 10 A fast-acting / 10 A fast-acting 22.5 x 78 x 100 mm (0.89 x 3.07 x 3.94 in) any any 10 A fast-acting 22.5 x 78 x 100 mm (0.89 x 3.07 x 3.94 in) any <
0.1 x 10° switching cycles 10 A fast-acting / 10 A fast-acting 22.5 x 78 x 100 mm (0.89 x 3.07 x 3.94 in) any 2 10 A fast-acting / 10 A fast-acting 22.5 x 78 x 100 mm (0.89 x 3.07 x 3.94 in) any 2 10 A fast-acting 22.5 x 78 x 100 mm (0.89 x 3.07 x 3.94 in) any 3 10 DIN rail (IEC/EN 60715) 2 2 x 2.5 mm² (2 x 14 AWG) 2 10 EC 255-6, EN 60255-6 2006/95/EC 2004/108/EC 4 g 6 g EN 61000-6-2 2 Level 3 (6 kV / 8 kV) 3
0.1 x 10° switching cycles 10 A fast-acting / 10 A fast-acting 22.5 x 78 x 100 mm (0.89 x 3.07 x 3.94 in) any any 10 A fast-acting 22.5 x 78 x 100 mm (0.89 x 3.07 x 3.94 in) any <

Cycle monitoring relay with watchdog function CM-WDS Technical data

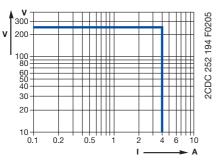
Isolation data	
Rated insulation voltage between supply-, control- and output circuit (VDE 0110, IEC 60947-1)	250 V
Rated impulse withstand between all isolated circuits (VDE 0110, IEC 664)	4 kV / 1.2-50 μs
Test voltage between all isolated circuits	2.5 kV, 50 Hz, 1 min
Pollution degree (VDE 0110, IEC 664, IEC 255-5)	3/C
Overvoltage category (VDE 0110, IEC 664, IEC 255-5)	III
Environmental tests (IEC 68-2-30)	24 h cycle, 55 °C, 93 % rel. 96 h

¹⁾ Closed-circuit principle: Output relay de-energizes if a cycle error occurs

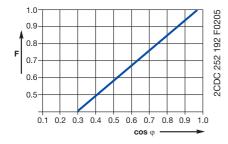
• Approvals 2/6

2/100

Content

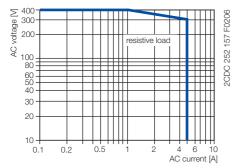

General technical data	
Technical diagrams	2 /102
Dimensional drawings	2 /103
Accessories	
Ordering data	2 /104
Current transformer	
Ordering data	2 /105

Measuring and monitoring relays CM range Technical diagrams

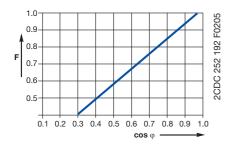

Load limit curves

CM-S (22.5 mm), CM-E (22.5 mm)

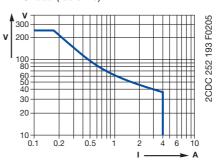
AC load (resistive)

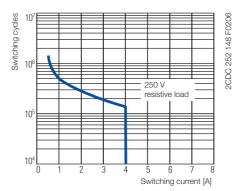


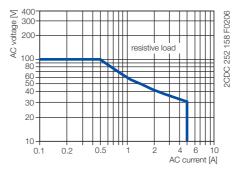
Derating factor F for inductive AC load

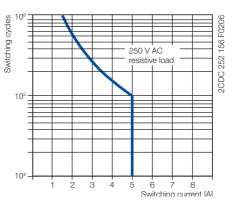


CM-N (45 mm)


AC load (resistive)

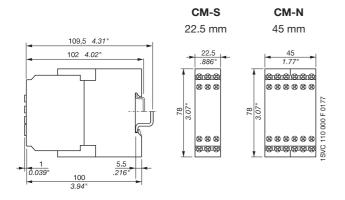

Derating factor F for inductive AC load

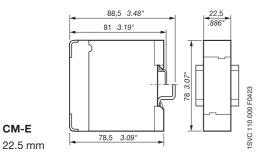

DC load (resistive)


Contact lifetime

DC load (resistive)

Contact lifetime


Measuring and monitoring relays CM and C51x


Dimensional drawings

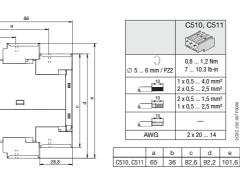
Dimensional drawings

Dimensions in mm

3.5

000

())())()

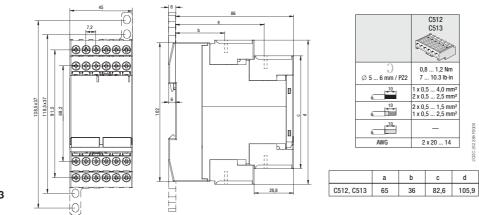

Pi

TTT

Temperature monitoring relays C51x range

2,5

10,5x15 87,2 68,2


C510, C511 -, C 0,8 ... 1,2 Nm 7 ... 10.3 lb∙in

1 x 0,5 ... 4,0 mm 2 x 0,5 ... 2,5 mm

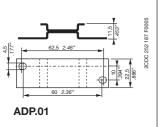
2 x 0,5 ... 1,5 mm³ 1 x 0,5 ... 2,5 mm³

2 x 20 ... 14

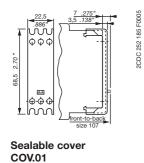
Measuring and monitoring relays Accessories for CM range Ordering details

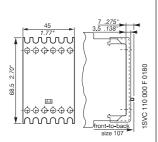
Accessories

Adapter for screw mounting


Туре	for type	Width in mm	Order code	Pack. unit pieces	Price 1 piece	Weight 1 piece g / oz
ADP.01	CM-S	22.5	1SVR 430 029 R0100	1		18.4/0.65
ADP.02	CM-N	45.0	1SVR 440 029 R0100	1		36.7/1.30

Marker label


Туре	for type	for devices	Order code	Pack. unit pieces	Price 1 piece	Weight 1 piece g / oz
MAR.01	CM-S, CM-N	without DIP switches	1SVR 366 017 R0100	10		0.19/0.007
MAR.02	CM-S, CM-N	with DIP switches	1SVR 430 043 R0000	10		0.13/0.005


Sealable transparent cover

Туре	for type	Width in mm	Order code	Pack. unit pieces	Price 1 piece	Weight 1 piece g / oz
COV.01	CM-S	22.5	1SVR 430 005 R0100	1		5.2/0.18
COV.02	CM-N	45.0	1SVR 440 005 R0100	1		7.7/0.27

86 F0005 3A1 2CDC 252 -**MAR.01**

Sealable cover COV.02

Accessories for measuring and monitoring relays Current transformers CM-CT Ordering details

CM-CT

CM-CT with mounted accessories

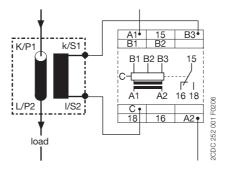
CM-CT-A mounted on DIN rail

- Without primary conductor though with foot angle, insulating protective cap and bar fastening screws
- Primary / rated current from 50 A to 600 A
- Secondary current of 1 A or 5 A

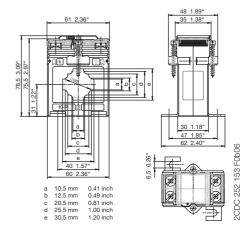
Class 1

Secondary current 1 A

Туре	Rated / primary current	Burden / class	Order code	Pack. unit pieces	Price 1 piece
CM-CT 50/1	50 A	1 VA / 1	1SVR 450 116 R1000	1	
CM-CT 75/1	75 A	1.5 VA / 1	1SVR 450 116 R1100	1	
CM-CT 100/1	100 A	2.5 VA / 1	1SVR 450 116 R1200	1	
CM-CT 150/1	150 A	2.5 VA / 1	1SVR 450 116 R1300	1	
CM-CT 200/1	200 A	2.5 VA / 1	1SVR 450 116 R1400	1	
CM-CT 300/1	300 A	5 VA / 1	1SVR 450 117 R1100	1	
CM-CT 400/1	400 A	5 VA / 1	1SVR 450 117 R1200	1	
CM-CT 500/1	500 A	5 VA / 1	1SVR 450 117 R1300	1	
CM-CT 600/1	600 A	5 VA / 1	1SVR 450 117 R1400	1	


Secondary current 5 A

Туре	Rated / primary current	Burden / class	Order code	Pack. unit pieces	Price 1 piece
CM-CT 50/5	50 A	1 VA / 1	1SVR 450 116 R5000	1	
CM-CT 75/5	75 A	1.5 VA / 1	1SVR 450 116 R5100	1	
CM-CT 100/5	100 A	2.5 VA / 1	1SVR 450 116 R5200	1	
CM-CT 150/5	150 A	2.5 VA / 1	1SVR 450 116 R5300	1	
CM-CT 200/5	200 A	5 VA / 1	1SVR 450 116 R5400	1	
CM-CT 300/5	300 A	5 VA / 1	1SVR 450 117 R5100	1	
CM-CT 400/5	400 A	5 VA / 1	1SVR 450 117 R5200	1	
CM-CT 500/5	500 A	5 VA / 1	1SVR 450 117 R5300	1	
CM-CT 600/5	600 A	5 VA / 1	1SVR 450 117 R5400	1	


Accessories

Туре	Description	Order code	Pack. unit pieces	Price 1 piece
CM-CT-A	Snap-on fastener for DIN rail mounting of CM-CT	1SVR 450 118 R1000	10	

Operating principle / circuit diagram

Dimensional drawing

Notes

2

																								-
																					 			<u> </u>
																								L
	-	<u> </u>			<u> </u>																 			<u> </u>
																								L
	-	-																			 		\vdash	-
	<u> </u>																							
																								_
	-																							
																								L
	-	-											 		 						 	 <u> </u>	\vdash	<u> </u>
		<u> </u>																						L
																								-
	-																							
																								L
		-					-																	-
	-												 		 						 	 		
	-																					 		
	-																							
0/4 0	~																						A !	RI
2/10	/106													~~1										

