Description

These switches are used on machines where the hazardous conditions remain for a while, even after the machines have been switched off, for example because of mechanical inertia of pulleys, saw disks, parts under pressure or with high temperatures. Thus, the switches can also be used if individual guards are only to be opened under certain conditions.
The versions with solenoid actuated NC contacts are considered interlocks with locking in accordance with

ISO 14119, and the product's label is marked with the symbol shown.

Heads and devices with variable orientation

The system can be variably configured by loosening the 4 screws on the head.
The key release device and the release button can also be rotated and secured independently of one another in 4 steps of 90°. The device can thus assume 32 different configurations.

Turnable key release with lock

The auxiliary key release device is used to allow the maintenance or the entry into the machinery to authorized personnel only. Turning the key corresponds to actuating the solenoid: the actuator is released. The device can be turned, thereby enabling installation of the safety switch in the machine while the release device remains accessible on the outside of the guard. In this way, the switch is better protected against possible tampering and the external side/surface of the machinery remains smooth.

Key release device and emergency release button

This device performs simultaneously the two functions mentioned above. The lock and button can be rotated in this case as well; the release button can be ordered with various lengths. The release button has priority over the lock, i.e., the emergency escape can be actuated to unlock the switch even if the lock is locked. To reset the switch, the lock and the button must be returned to their initial position.

Wide-ranging actuator travel

The actuation head of this switch features a wide range of travel. In this way the guard can oscillate along the direction of insertion (4.5 mm) without causing unwanted machine shutdowns. This wide range of travel is available in all actuators in order to ensure maximum device reliability.

Contact blocks with 4 contacts

Innovative contact block with 4 contacts, available in various contact configurations for monitoring the actuator or the solenoid (patented). The unit is supplied with captive screws and self-lifting clamping plates. Removable finger protection for eyelet terminal.
High-reliability electrical contacts with 4 contact points and double interruption

Safety screws for actuators

As required by EN ISO 14119, the actuator must be fixed immovably to the door frame. Pan head safety screws with one-way fitting are available for this purpose. With this screw type, the actuators cannot be removed or tampered by using common tools. See accessories on page 295.

Emergency release button

This device is used to safeguard a hazardous area that an operator may enter with his entire body. The release button, which is oriented towards the inside of the danger zone, allows the operator to escape even in the event of a power failure. Pushing the button results in the same function as the auxiliary release device. To reset the switch, simply return the button to its initial position. The emergency button can be rotated and is available with different lengths. It is fixed to the switch by means of a screw allowing the installation of the switch both inside and outside the guards.

Non-detachable heads and release devices

The head and the release device can be rotated but cannot be detached from each other. This makes the switch more secure since the problem of incorrect assembly by the installer cannot occur; in addition, the risk of damage is lower (loss of small parts, penetration of dirt, etc.).

LED display unit, type A

In the version with LED display unit of type A, two
 green LEDs are switched-on directly by the power supply of the solenoid. Wiring is not necessary.

Protection degree IP67

These devices are designed to be used in the toughest environmental conditions and they pass the IP67 immersion test acc. to EN 60529. They can therefore be used in all environments where maximum protection degree of the housing is required.

Extended temperature range

These devices are also available in a special version suitable for an ambient operating temperature range from $-40^{\circ} \mathrm{C}$ up to $+80^{\circ} \mathrm{C}$.
They can therefore be used for applications in cold stores, sterilisers and other equipment with low temperature environments. The special materials used to produce these versions retain their characteristics even under these conditions, thereby expanding the installation possibilities.

Laser engraving

All FG series switches are permanently marked with a special laser system. As a result, the marking remains legible even under extreme operating conditions. Thanks to this system that does not use labels, the loss of plate data is prevented and a greater resistance of the marking is achieved over time.

LED display unit, types B and C

In the version with LED display unit of type B, connection wires from two LEDs are available, one green and one red. By means of suitable connections on the contact block, various operating states of the switch can be displayed externally.

Three conduit entries

The switch is provided with three conduit entries in different directions. This allows its application in series connections or in narrow places.

Sealable auxiliary release device

Switches with locked actuator with deactivated solenoid (function principle D) are equipped with an auxiliary release device for the solenoid to simplify installation of the switch and to facilitate entry into the danger zone in the event of a power failure. The auxiliary release device acts on the switch exactly as if the solenoid was energised. As a result, it also actuates the electrical contacts. Can only be actuated with the use of two tools; this ensures adequate protection against tampering. If necessary, it can be sealed using the appropriate hole.

Access monitoring

These safety switches alone do not provide sufficient personal protection to the operators or maintenance personnel in situations where they completely enter the danger zone, since unintentional closing of a door after entry could cause the machine to re-start. If the restart release is completely dependent on these switches, a system for preventing this danger must be provided, e.g. a padlockable device for actuator entry VF KB2 (page 100) or a lockable safety handle, such as a VF AP-P11B-200P (page 153).

Holding force of the unlocked actuator

The inside of each switch features a device which holds the actuator in its closed position. Ideal for all those applications where several doors are unlocked simultaneously, but only one is actually opened. The device keeps all the unlocked doors in their position with a retaining force of 30 N ~, stopping any vibrations or gusts of wind from opening them.

Selection diagram

\longrightarrow product option

accessory sold separately

Code structure

FG 60AD1D0A-LP30F20GK900T6

Contact block		
	Contacts activated by the solenoid $-\triangle$	Contacts activated by the actuator © \odot
60A	$1 \mathrm{NO}+1 \mathrm{NC}$	$1 \mathrm{NO}+1 \mathrm{NC}$
60B	2NC	$1 \mathrm{NO}+1 \mathrm{NC}$
60C	3NC	1 NC
60D	$1 \mathrm{NO}+1 \mathrm{NC}$	2NC
60E	$1 \mathrm{NO}+2 \mathrm{NC}$	1NC
60F	$1 \mathrm{NO}+2 \mathrm{NC}$	1NO
60G	2NC	2NC
60H	4NC	1
601	3NC	1NO
60L	$2 \mathrm{NO}+1 \mathrm{NC}$	1NC
60M	$2 \mathrm{NO}+1 \mathrm{NC}$	1 NO
60N	$1 \mathrm{NO}+1 \mathrm{NC}$	2NO
60P	1 NC	3NC
60R	$2 \mathrm{NO}+2 \mathrm{NC}$	/
60 S	1 NC	$2 \mathrm{NO}+1 \mathrm{NC}$
60T	1 NC	$1 \mathrm{NO}+2 \mathrm{NC}$
60 U	/	4 NC
60 V	2NC	2NO
60X	1NO	3NC
60Y	1NO	$1 \mathrm{NO}+2 \mathrm{NC}$
61A	/	$3 \mathrm{NC}+1 \mathrm{NO}$
61B	1	$2 \mathrm{NC}+2 \mathrm{NO}$
61C	/	$1 \mathrm{NC}+3 \mathrm{NO}$
61D	1NC	3NO
61E	1NO	$1 \mathrm{NC}+2 \mathrm{NO}$
61G	2NO	$1 \mathrm{NC}+1 \mathrm{NO}$
61H	2NO	2NC
61M	3 NO	1 NC
61R	3NC+1NO	1
61S	$1 \mathrm{NC}+3 \mathrm{NO}$	1

Note: contact blocks 60U, 61A, 61B, 61C cannot be combined with operating principles D6D, D7D, D7E

Operating principle

D1D locked actuator with de-energised solenoid
D1E locked actuator with energised solenoid
D5D locked actuator with de-energised solenoid. With key release
locked actuator with de-energised solenoid.
With key release and emergency release button

D7D
locked actuator with de-energised solenoid. With emergency release button

D7E locked actuator with energised solenoid. With emergency release button

Ambient temperature

$-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ (standard)
T6 $-40^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$

Pre-installed connectors

without connector (standard)
K900 M23 metal connector, 12-pole, bottom

K110 M12 metal connector, 12-pole, bottom

For the complete list of possible combinations please contact our technical department.

Contact type

silver contacts (standard)
G silver contacts with $1 \mu \mathrm{~m}$ gold coating

Actuators	
	without actuator (standard)
F20	straight actuator VF KEYF20
F21	angled actuator VF KEYF21
F22	actuator with rubber pads VF KEYF22
F28	universal actuator VF KEYF28

Release button length

$$
\text { for max. } 15 \text { mm wall thickness (standard) }
$$

LP30 for max. 30 mm wall thickness
LP40 for max. 40 mm wall thickness
LP60 for max. 60 mm wall thickness
LPRG adjustable, for wall thickness from 60 mm to 500 mm

Signalling LED

A two green LEDs switched-on by the solenoid power supply
B red and green LEDs, freely configurable
C orange and green LEDs, freely configurable
Z without LED

Main features

- Actuator holding force $F_{1 \text { max }}: 2800 \mathrm{~N}$
- 30 contact blocks with 4 contacts
- Metal housing, three M20 conduit entries
- Protection degree IP67
- Versions with key release and emergency release button
- 4 stainless steel actuators
- Head and release devices, individually turnable and non-detachable
- Signalling LED
- Operation with energised or de-energised solenoid

Quality marks:

IMQ approval:	
CA02.03848	
CC approval: approval:	
E131787	
EAC approval:	

Technical data

Housing

Metal head and housing, baked powder coating.
Three threaded conduit entries:
Protection degree:
M20×1.5 (standard)
IP67 acc. to EN 60529 with cable gland of equal or higher protection degree

General data

For safety applications up to:
Interlock with mechanical lock, coded:
Coding level:
Safety parameters:
B_{100} :
Service life:
Ambient temperature:
Max. actuation frequency:
Mechanical endurance:
Max. actuation speed:
Min. actuation speed:
Maximum force before breakage $F_{1 \text { max }}$:
Max. holding force F_{Zn} :
Maximum clearance of locked actuator:
Released actuator extraction force:
Tightening torques for installation:
Cable cross section (flexible copper strands)
Contact block:
min. $1 \times 0.34 \mathrm{~mm}^{2}(1 \times$ AWG 22)
max. $2 \times 1.5 \mathrm{~mm}^{2}(2 \times$ AWG 16)

In compliance with standards:

IEC 60947-5-1, EN 60947-5-1, EN 60947-1, IEC 60204-1, EN 60204-1, EN ISO 14119,
EN ISO 12100, IEC 60529, EN 60529, EN 61000-6-2, EN 61000-6-3, BG-GS-ET-15,
UL 508, CSA 22.2 N. 14.

Approvals:

IEC 60947-5-1, UL 508, CSA 22.2 N. 14.

Compliance with the requirements of:

Machinery Directive 2006/42/EC and EMC Directive 2014/30/EU.

Positive contact opening in conformity with standards:

IEC 60947-5-1, EN 60947-5-1.

Solenoid

Duty cycle:
Solenoid protection 12 V :
Solenoid protection 24 V :
Solenoid protection 120 V :
Solenoid protection 230 V :
Solenoid consumption:

SIL 3 acc. to EN 62061
PL e acc. to EN ISO 13849-1
type 2 acc. to EN ISO 14119
low acc. to EN ISO 14119
5,000,000 for NC contacts
20 years
$-25^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$
600 operating cycles/hour
1 million operating cycles
$0.5 \mathrm{~m} / \mathrm{s}$
$1 \mathrm{~mm} / \mathrm{s}$
2800 N acc. to EN ISO 14119
2150 N acc. to EN ISO 14119
4.5 mm

30 N
see page 313-324
max. $2 \times 1.5 \mathrm{~mm}^{2}(2 \times$ AWG 16)
§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see chapter utilization requirements from page 313 to page 324.

Features approved by IMO

Rated insulation voltage (U_{i}):
Conventional free air thermal current (I): 10 A
Conventional free air thermal current $\left(l_{\mathrm{th}}\right): 10 \mathrm{~A}$
Protection against short circuits: type gG fuse 10 A 500 V
Rated impulse withstand voltage ($U_{\text {imp }}$): 6 kV
Protection degree of the housing: IP67
MV terminals (screw terminals)
Pollution degree:
Utilization category:
Operating voltage (U_{e}):
Operating current (I_{e}):

Features approved by UL
Utilization categories:A300 (720 VA, 120-300 Vac)
Q300 (69 VA, 125-250 Vdc)
Housing features type 1, 4X "indoor use only", 12, 13
In compliance with standard: UL508, CSA 22.2 N. 14

Please contact our technical department for the list of approved products.

Forms of the contact element: $X+X+X+X, Y+Y+Y+Y, X+Y+Y+Y, X+X+Y+Y, X+X+X+Y$ Positive opening of contacts on all contact blocks: 60A, 60B, 60C, 60D, 60E, 60F, 60G, 60H, 60I, 60L, 60M, 60N, 60P, 60R, 60S, 60T, 60U, 60V, 60X, 60Y, 61A, 61B, 61C, 61D, 61E, 61G, 61H, 61M, 61R, 61S
In compliance with standards: EN 60947-1, EN 60947-5-1+ A1:2009, fundamental requirements of the Low Voltage Directive 2014/35/EU.

Please contact our technical department for the list of approved products.

Operating principle

The operating principle of these safety switches allows three different operating states:
state A: with inserted and locked actuator
state B: with inserted but not locked actuator
state C: with extracted actuator
All or some of these states can be monitored by means of electrical NO contacts or NC contacts with positive opening by selecting the appropriate contact
blocks. Contact blocks whose electrical contacts are marked with the solenoid symbol ($\triangle \nabla$) are actuated upon changing from state A to B, while contacts marked with the actuator symbol (\& F) are actuated upon changing
from state B to C.

Operating principle

Select from two operating principles for actuator locking:

- Operating principle \mathbf{D} : locked actuator with de-energised solenoid. The actuator is released by applying the power supply to the solenoid (see example of the operating phases).
- Operating principle E: locked actuator with energised solenoid. The actuator is released by switching off the power supply to the solenoid. This version should only be used under certain conditions, since a power failure at the system will result in the immediate opening of the guard.

Example: operating phases with FG 60AD1D0A-F21 (switch with operating principle D)
Phase 1

Contact positions related to switch states

Actuator
Solenoid

Operating principle E
locked actuator with energised solenoid

Inserted and locked Inserted and released Extracted Energised

Operating state		Operating principle D locked actuator with de-energised solenoid			Operating principle E locked actuator with energised solenoid					
		state	state B	$\begin{aligned} & \text { state } \\ & \hline \end{aligned}$	state	state	state			
Actuator Solenoid		De-energised	Inserted and released Energised	Extracted	Inserted and locked Energised	Inserted and released De-energised	Extracted			
					同 7 Or 0 N					
		${ }_{11}$ L ${ }_{12}$	${ }^{11}$ - 12	${ }^{11}$ - ${ }^{12}$	${ }_{11}$ L ${ }_{12}$	${ }^{11}$ - ${ }^{12}$	11×12			
		$21-22$	$21-22$	$21-22$	$21-22$	$21-522$	$21-22$			
		$31-53$	$31-53$	$31-32$	$31-53$	$31-52$	31 - 32			
		$43-44$	$43-44$	$43-54$	$43-44$	$43-44$	$43-44$			
FG 60U $\bullet \bullet \bullet \bullet$4NC controlled by the actuator		$11-12$	$11-12$	$11 \sim 12$	$11-{ }_{12}$	$11-12$	11 - 12			
		$21-{ }^{1}$	$21-{ }^{22}$	$21-22$	21 - 22	21 - 22	21×22			
		$31-52$	$31-{ }^{-1}$	$31-32$	$31-52$	$31-52$	$31-32$			
		41 - 42	$41-54$	$41 \sim 42$	41 - 42	41 - 42	41×42			
		11 - 12	${ }^{11} \times{ }^{12}$	11 - 12	${ }_{11}$ L ${ }^{12}$	${ }^{11} \times 12$	$11-12$			
		$21-22$	$21 \sim 22$	21 - 22	$21-22$	$21 \sim 22$	21 - 22			
		$33-34$	$33 \sim 34$	$33-34$	$33-34$	$33-34$	33 - 34			
		$43-44$	$43-44$	$43-54$	$43-44$	$43-44$	$43-54$			
$\begin{aligned} & \text { FG 60X..... } \\ & \text { 1NO contolled by the } \\ & \text { solenoid } \\ & \text { 3NC contrild by the } \\ & \text { actuator } \end{aligned}$		$13-14$	$13-14$	$13-14$	$13-14$	$13-14$	$13-14$			
		$21-22$	$21-22$	$21-22$	$21-22$	21 - 22	$21-22$			
		$31-52$	$31-{ }^{2}$	$31-32$	$31-52$	$31-53$	$31 \sim 32$			
		41 - 42	41 - 42	$41-42$	41 - 42	41 - 42	41×42			
	$\begin{aligned} & \because \\| \Omega \\ & \cdots \cdot \\| \\ & \cdots \\| \Omega \\ & \square \square \end{aligned}$	11 - 12	11 ¢ 12	$11 \sim 12$	11 - 12	11 L 12	11 - 12			
		21 - 22	21 - 22	$21 \sim 22$	21 - 22	21 - 22	$21-22$			
		$33-34$	$33-34$	$33-54$	$33-34$	$33-34$	$33-54$			
		$43-44$	$43-44$	$43-54$	$43-44$	$43-54$	$43-54$			
FG 61A••••• $1 \mathrm{NO}+3 \mathrm{NC}$ controlled by the actuator		11 - 12	11 - 12	11×12	11 - 12	11 ¢ 12	$11-12$			
		$21-{ }^{-1}$	$21-22$	$21-22$	$21-{ }^{-12}$	$21-522$	$21-22$			
		31 - 32	31 - 32	$31-32$	$31-32$	31 - 32	$31-32$			
		$43-44$	$43-44$	$43-54$	$43-44$	$43-44$	$43-54$			
FG 61B••••••2NO +2 NC controlled by the actuator		11 - 12	11 - 12	${ }^{11} \times 12$	${ }_{11}$ L 12	$11-12$	11 - 12			
		21 - 22	21 L 22	$21-22$	21 - 22	21 ¢ 22	$21-22$			
		$33-34$	$33-34$	$33-54$	$33 \sim 34$	$33-34$	33 - 34			
		$43-44$	$43-44$	$43-54$	$43-44$	$43-44$	$43-44$			
$\begin{aligned} & \text { FG 61C•••••• } \\ & \text { 3NO+ } 1 \mathrm{NC} \text { controlled by } \\ & \text { the actuator } \end{aligned}$		$13-14$	$13-14$	$13-14$	$13-14$	$13-14$	13 - 14			
		21 - 22	$21-22$	21 - 22	21 ¢ 22	$21-22$	21 - 22			
		$33-34$	$33-34$	$33-54$	$33-34$	$33-34$	33 - 34			
		$43 \sim 44$	$43-44$	$43-44$	$43-44$	$43 \sim 44$	$43-44$			
FG 61D••••• INC controlled by thesolenoid 3NO controlled by the actuator	$\begin{aligned} & \because \\| \Omega \\ & \because \\| \\ & \because \\|, ~ \end{aligned}$	$13-14$	$13 \sim 14$	$13-14$	$13-14$	$13-14$	13 - 14			
		$21-22$	$21-22$	$21 \sim 22$	$21-22$	$21 \sim 22$	21×22			
		$33-34$	$33-34$	$33-34$	$33-34$	$33 \sim 34$	33 - 34			
		$43 \sim 44$	$43 \sim 44$	$43-54$	$43 \sim 44$	$43 \sim 44$	$43-44$			
		$13-14$	$13-14$	$13-14$	$13-14$	13 - 14	$13-14$			
		21 - 22	21 - 22	$21-22$	21 - 22	$21-22$	$21-22$			
		$33-34$	$33-34$	$33-54$	$33-34$	$33-34$	$33-54$			
		$43 \sim 44$	$43-44$	$43-54$	$43-44$	$43-44$	$43-54$			
$\begin{aligned} & \text { FG } 61 \text { G.e.... } \\ & \text { 2NO controled by the } \\ & \text { 1NO+ solenoid } \\ & \text { the controlled by } \\ & \text { the actuator } \end{aligned}$	$\begin{aligned} & \because \\| \Omega \\ & \because \\| \Omega \\ & \ddagger \square \\ & \square \end{aligned}$	$13 \sim 14$	$13-14$	$13-14$	$13-14$	$13-14$	$13-14$			
		21 - 22	$21-{ }^{\text {L }}$	$21-22$	21 L 22	$21-22$	$21-22$			
		$33-34$	$33-54$	$33-54$	$33-34$	$33-54$	$33-54$			
		$43-44$	$43-{ }_{4}$	$43-44$	$43-44$	$43-{ }_{4}$	$43-44$			
FG 61H......2NO controlled by thesolenoid 2NC controlled by the actuator		11 L 12	11 - 12	${ }^{11}$ - 12	11 - 12	11 - 12	11×12			
		$21-22$	$21-22$	$21-22$	$21-22$	$21-22$	21×22			
		$33-34$	$33-34$	$33-34$	$33-34$	$33-34$	$33-54$			
		$43-44$	$43-54$	$43-54$	$43-44$	$43-54$	$43-54$			
$\begin{aligned} & \text { FG } 61 \mathrm{M} \bullet \bullet \bullet \\ & 3 \mathrm{NO} \text { controlled by the } \\ & \text { solenoid } \\ & 1 \mathrm{NC} \text { controlled by the } \\ & \text { actuator } \end{aligned}$actuator	$\begin{aligned} & \because \square \\ & \because \\| \\ & \# \square \\ & \# \square \end{aligned}$	$13-14$	$13-14$	$13-14$	$13-14$	$13-514$	$13-14$			
		21 -L 22	$21-22$	21×22	$21-22$	21 - 22	21×22			
		$33-34$	$33-54$	$33-54$	$33-34$	$33-54$	33 - 34			
		$43-44$	$43-{ }_{4}$	$43-44$	$43-44$	$43-44$	43 - 44			
$\begin{aligned} & \text { FG } 61 \text { R•••••• } \\ & 1 \mathrm{NO}+3 \mathrm{NC} \text { controlled by } \end{aligned}$ the solenoid	$\begin{aligned} & \ddagger \square \\ & -\searrow \\ & \square \\ & \square \end{aligned}$	$11-{ }^{12}$	11×12	$11-12$	$11-{ }^{12}$	$11-12$	$11-12$			
		$21-2^{2}$	$21-22$	$21-22$	$21-22$	$21-22$	21 - 22			
		$31-52$	$31 \sim 32$	$31 \sim 32$	$31-53$	$31 \sim 32$	$31-32$			
		$43 \sim 44$	$43-54$	$43-54$	$43-44$	$43-54$	$43-54$			
$\begin{aligned} & \text { FG } 61 \mathrm{~S} \bullet \bullet \bullet \bullet \\ & 3 \mathrm{NO}+1 \mathrm{NC} \text { controlled by } \\ & \text { the solenoid } \end{aligned}$	$\begin{aligned} & \square \square \\ & \square \\ & \square \\ & \square \end{aligned}$	$13-14$	$13-14$	$13-514$	$13-14$	$13-14$	$13-14$			
		$21-22$	21 - 22	21 - 22	$21 \bigcirc 22$	21 - 22	21 - 22			
		$33-34$	$33-54$	$33-54$	$33-34$	$33-34$	$33-54$			
		$43-44$	$43-54$	$43-54$	$43-44$	$43-44$	$43-44$			

[^0]

Travel diagrams table

$\begin{aligned} & 60 \mathrm{~A} \\ & 2 \mathrm{NO}+2 \mathrm{NC} \end{aligned}$	
$\begin{aligned} & \text { 60B } \\ & 1 \mathrm{NO}+3 \mathrm{NC} \end{aligned}$	
$\begin{aligned} & 60 \mathrm{C} \\ & 4 \mathrm{NC} \end{aligned}$	
$\begin{aligned} & \text { 60D } \\ & \text { 1NO+3NC } \end{aligned}$	
$\begin{aligned} & \text { 60E } \\ & \text { 1NO+3NC } \end{aligned}$	
$\begin{aligned} & 60 \mathrm{~F} \\ & 2 \mathrm{NO}+2 \mathrm{NC} \end{aligned}$	
$\begin{aligned} & 60 \mathrm{G} \\ & \text { 4NC } \end{aligned}$	
$\begin{aligned} & 60 \mathrm{H} \\ & 4 \mathrm{NC} \end{aligned}$	$\triangle \square$
$\begin{aligned} & 60 \mathrm{I} \\ & 1 \mathrm{NO}+3 \mathrm{NC} \end{aligned}$	
$\begin{aligned} & 60 \mathrm{~L} \\ & 2 \mathrm{NO}+2 \mathrm{NC} \end{aligned}$	

Legend:
Closed contact
Cle Contacts activated by the actuator

All values in the drawings are in mm

Stainless steel actuators

IMPORTANT: These actuators can be used only with items of the FG series (e.g. FG 60AD1D0A).
Low level of coding acc. to EN ISO 14119.

Universal actuator VF KEYF28
IMPORTANT: These actuators can be used only with items of the FG series (e.g. FG 60AD1D0A).
Low level of coding acc. to EN ISO 14119

Actuator adjustable in two dimensions for small doors; can be mounted in various positions.
The fixing block has two pairs of bore holes; it is provided for rotating the working plane of the actuator by 90°.

Accessories for sealing

Limits of use

Do not use where dust and dirt may penetrate in any way into the head and deposit there. Especially not where powder, shavings, concrete or chemicals are sprayed. Adhere to the EN ISO 14119 requirements regarding low level of coding for interlocks. Do not use in environments with presence of explosive or flammable gas. In these case use ATEX products (see dedicated Pizzato catalogue).

Accessories

Other release button lengths

-LP30
For wall thickness
$15 \ldots 30 \mathrm{~mm}$

-LP40

For wall thickness
$30 \ldots 40 \mathrm{~mm}$

-LP60
For wall thickness
$40 \ldots 60 \mathrm{~mm}$

-LPRG
For wall thickness
60 ... 500 mm

- Avoid bending and twisting the release button.
- To guarantee correct device operation, keep a distance of $10 \ldots 25 \mathrm{~mm}$ between the wall and the release button.
- The actuation path of the release button must always be kept clean. Dirt or chemical products could compromise the device operation.
- Periodically check the device for proper function.
- Avoid bending and twisting the release button.
- On the inside of the wall, use a bushing or a tube with an inner diameter of $18 \pm 0.5 \mathrm{~mm}$ as a guide.
- Guide in the M10 threaded rod in such as way so as to prevent bending. The M10 threaded rod is not supplied with the device.
- Use medium-strength thread locker to secure the threaded rod.
- Do not exceed an overall length of 500 mm between the release button and the switch.
- To guarantee correct device operation, keep a distance of $10 \ldots 25 \mathrm{~mm}$ between the wall and the release button.
- The actuation path of the release button must always be kept clean. Dirt or chemical products could compromise the device operation.
- Periodically check the device for proper function.

Release button

Article	Description
VF FG-LP15	Technopolymer release button for max. 15 mm wall thickness, supplied with screw
VF FG-LP30	Technopolymer release button for max. 30 mm wall thickness, supplied with screw
VF FG-LP40	Technopolymer release button for max. 40 mm wall thickness, supplied with screw
VF FG-LP60	Metal release button for max. 60 mm wall thickness, supplied with screw

Safety modules

Pizzato Elettrica offers its customers a wide range of safety modules. These were developed taking into consideration typical problems encountered during the monitoring of safety switches under actual operating conditions. Safety modules with instantaneous or delayed contacts for emergency circuits of type 0 (immediate stop) or type 1 (controlled stop).

Safety switches with solenoid of the FG series can be connected to safety modules for the realization of safety circuits up to PL e acc. to EN ISO 13849. For technical information or wiring diagrams, please contact our technical office.

Application example with safety timer

Application example with safety module for standstill monitoring

[^0]: Legend: Θ With positive opening according to EN 60947-5-1, $\xrightarrow{ }$ interlock with lock monitoring acc. to EN ISO 14119

