Magnetic proximity switches
 Series CST - CSV and CSH

Reed, Hall effect and magnet-resistive

The magnetic proximity switches CST-CSV-CSH detect the position of the cylinder piston. When the internal contact is actuated by a magnetic field, the sensors complete an electrical circuit and provide an output signal to directly actuate a solenoid valve or a PLC. A yellow LED diode shows when the internal magnetic contact is closed.
»Designed to fit into the cylinder profile barrel
» 3 models (CST - CSV CSH) are suitable for all Camozzi's cylinder range
» With or without M8 connector

Switches are available in three different versions: Reed with mechanical switching, Hall effect and magnet-resistive with electronic switching.
Hall effect and magnet-resistive versions are suggested for heavy duty with frequent operations and strong vibrations.

GENERAL DATA

Models	CST- CSV- CSH-
Operation	Reed contact Hall effect (CST and CSV) Magnet-resistive (CSH)
Output	Static or electronic PNP
Type of contact	All switches have Normally Open contact
Voltage	See model characteristics
Max current	See model characteristics
Max load	Reed contact 8 W DC and 10 VA AC Hall effect and magnet-resistive 6 W DC
Protection level	IP 67
Materials	Plastic body encapsulating epoxy resin cable PVC, connector PVC connector body PUR
Mounting	Directly into the groove, or by means of adapters.
Signalling	By means of yellow diode Led
Protections	See model characteristics
Switching time	Reed contact $<1,8 \mathrm{~ms}$ Hall effect and Magnet-resistive $<1 \mathrm{~ms}$
Operating temperature	$-10^{\circ} \mathrm{C} \div 80^{\circ} \mathrm{C}$
Electrical duration	Reed contact 10.000.000 cycles Hall effect and Magnet-resistive 10.000.000.000 cycles
Electrical connection	cable $2 \times 0,14(2 \mathrm{~m})$ high flexibility cable $3 \times 0,14(2 \mathrm{~m})$ high flexibility connector M8 and cable $0,3 \mathrm{~m}$

CODING EXAMPLE

1/9.05

Connecting schemes in series

The Reed version with 3 wires allows the connection of several sensors in series, as there is no voltage drop between the supply and the load (see connecting scheme).
The voltage drop is $2,8 \mathrm{~V}$ for the Reed sensors with 2 wires and 1V for Hall effect sensors with 3 wires.
$\mathrm{BN}=$ brown
BU = blue
BK = black
L = load

Useful information for correct use of the magnetic sensors

The magnetic sensors consist of a reed switch which is enclosed in a glass bulb containing a rarified gas. The contacts, which are made of magnetic material (nickel-iron), are flexible and are coated, at the contact points with a high quality non-arcing material.
Switching is effected by means of a suitable magnetic field and actuation is achieved by means of the permanent magnet inside the piston. The two sensors are of the normally open type and, therefore, when they are subject to the effect of the magnetic field, they close the circuit.
The operating field of the sensors with respect to the magnetic piston is shown in this picture. The dimension b indicates the amplitude of the magnetic field or switching field during which the circuit is closed. The value H represents the operational hysteresis of the sensor with respect to the form and amplitude of the magnetic field. The operating field, as a result of hysteresis, is displaced by the dimension H in the opposite direction to movement of the piston.
The values b and H are shown in the table and are classified according to bore.
The maximum speed permitted for each cylinder is a function of the value b and the response time of the various components connected after the sensor.
The maximum speed for a cylinder guided by magnetic sensors is calculated as follows: $b / t=$ Speed
where: $\mathrm{b}=$ contact stroke in mm (see table)
$t=$ total reaction time in milli seconds of electric control
components connected after the sensor

Speed $=$ maximum speed in $\mathrm{m} /$ second

CONTACT STROKE AND HYSTERESIS

Useful information for correct use of the magnetic sensors:
$\mathrm{H}=$ operational hysteresis of the sensor with respect to the form and amplitude of the magnetic field b = contact stroke in mm

Series	\varnothing	b (mm)	H (mm)	Series	\varnothing	b (mm)	H (mm)
24-25	16	9,2	1,2	60	32	9,9	1
24-25	20	12	1	60	40	8,9	1,2
24-25	25	11,7	1,1	60	50	10,7	1
27	20	10,5	1,6	60	63	12,9	1,2
27	25	10,9	1,6	60	80	11,5	1,4
27	32	10,7	1,1	60	100	14,9	1,4
27	40	12,1	1,7	60	125	22	1
27	50	12,1	1,2	61	32	9	1
27	63	14,1	1,3	61	40	9,3	1,3
QP	12	10	1,3	61	50	11	1,6
QP	16	11,8	1,5	61	63	13,4	1,3
QP	20	11,1	1,6	61	80	13,2	1,6
QP	25	10,6	1,6	61	100	15,2	1,7
QP	32	12,7	1,2	61	125	22,1	1,3
QP	40	12,5	1,1	42	32	10,8	1,5
QP	50	15,4	1,6	42	40	11,2	1,6
QP	63	16,7	1,5	42	50	12,6	1,7
QP	80	13,2	1,7	42	63	14,1	1,7
QP	100	16,8	1,8	QCT	20	10	1,7
31	12	9,2	1,4	QCT	25	11,4	1,8
31	16	7,9	1,3	QCT	32	12,1	1,8
31	20	9,1	1,5	QCT	40	12,4	1,8
31	25	10,6	1,5	QCT	50	13,7	1,9
31	32	11,9	1,7	QCT	63	13,5	1,8
31	40	12,9	2,2	69	32	34,5	3,8
31	50	14,7	1,2	69	40	29,6	4,1
31	63	15,2	1,4	69	50	31,5	4,6
31	80	16,6	1,8	69	63	32,3	3,1
31	100	16,8	1,7	69	80	24	2,9
40	160	24	2	69	100	25,6	2,9
40	200	26	2	69	125	30,1	1,7

Series	\varnothing	$\mathrm{b}(\mathrm{mm})$	$\mathrm{H}(\mathrm{mm})$
$\mathbf{6 2}$	32	10	1
$\mathbf{6 2}$	40	11	1
$\mathbf{6 2}$	50	12	1,2
$\mathbf{6 2}$	63	13	1
$\mathbf{6 2}$	80	13	1
$\mathbf{6 2}$	100	16	1

Load curve - CST/CSV

Load curve - CSH, CST/CSV

Load curve - CSH, CST/CSV

DC applications: there is no protection on the Reed sensors on the inductive load, therefore it is advisable to use an electric ciruit with protection against the voltage spikes.
See picture above for a typical example.
Legend:
1 = Sensor
2 = Load
3 = Protection diode

Electric circuit with protection against voltage spikes

DC and AC applications: there is no protection on the Reed sensors on the inductive load, therefore it is advisable to use an electric ciruit with protection against the voltage spikes.
See picture above for a typical example.
Legend:
1 = Sensor
2 = Load
3 = Protection varistor

AC applications: there is no protection on the Reed sensors on the inductive load, therefore it is advisable to use an electric circuit with protection against the voltage spikes.
See picture above for a typical example.
Legend:
1 = Sensor
2 = Load
$\mathrm{C}+\mathrm{R}=$ Series of resistor and protection capacitor

Magnetic proximity switches with male connector M8 Series CSH
For max. operating current see load curves diagrams.

NC

BN

In case of polarity reversing the sensor will still be operating, but LED diode won't turn on

BN

Mod.	Operation	Voltage (V)	Output	Max current	Max Load
CSH-253	Reed	$10 \div 30 \mathrm{AC} / \mathrm{DC}$	-	250 mA	Protection
CSH-263	Reed	$10 \div 30 \mathrm{AC} / \mathrm{DC}$	PNP	250 mA	Against polarity reversing
CSH-364	Magnet-resistive	$10 \div 27 \mathrm{AC} / \mathrm{DC}$	PNP	250 mA	Against polarity reversing

Mounting brackets for sensors Series CST

Mod.	Cylinders series	\varnothing
S-CST-01	QP - QPR	$20 \div 100$
S-CST-01	50	$32 \div 80$

Mounting brackets for sensors Series CST and CSH
For cylinders series 60 mounted with guides series 45 NHT or 45NHB.

Mod.	Cylinders series	\varnothing
S-CST-45N1	60	$32 \div 63$
S-CST-45N2	60	$80-100$

CST sensors must be assembled directly into the groove:
for cylinders $\varnothing 16 \div 25$ Series 50 for cylinders $\varnothing 12 \div 16$ Series QPQPR.

CSV

Sensors Series CST - CSH
CST sensors must be assembled
directly into the groove:
for cylinders Series 31-31R
for cylinders Series QC
for cylinders Series 61
and for cylinders Series 69.

CST

CSH

Slot cover profile Mod. S-CST-500
Supplied with 500 mm tube

Slot cover profile for cylinders Series: 31

- 31 tandem and multi-position - QCT - QCB
- QCBT-QCBF - 61-69-32-32 tandem and multi-position.

