Level Switches

The multi Level Switch Series UNS2000 can be supplied with up to 6 switchpoints (see max. switchpoints) and with a length of max 3000 mm .
Besides the float operated reed contacts to detect liquid levels, the UNS 2000 can be supplied also with a temperature sensor and/ or temperature contact(s), which are to handle as switchpoint(s) please note max. switchpoints! A wide selection of mounting elements, electrical connections, various materials and options allow you to "design" your own switch, within the given dimension limits, for your particular application. Very long units or large flanges can cause high shipping and installation costs and "split" versions might be the answer. Consult us for the best combination. The min. dimensions are based upon the medium water.
Depending on the density of other fluids this dimension can vary several millimetres. The contact modes (NO or NC) are defined on the basis of an empty tank and for installation through the top or through the bottom (when specified as "-U"). When not specified otherwise we will set the switch position for density 1 (water) and the switch action to be on moving upward. Temperature sensor (PT100) and/ or the temperature switch, a Bi-metall hermetically sealed element, are installed only in the bottom of the stem.
That means:
Dimensions $B+10 \mathrm{~mm}$ with temperature sensor PT100) $=B_{P T}$
Dimensions B + 40 mm temperature switch (TP) $=B_{T P}$

Technical Data

Max. Operating Pressure:	40 bar, depends on mounting element and float
Max. Temperature Range:	$-10^{\circ} \mathrm{C}$... $+105^{\circ} \mathrm{C}$, PVC-cable $-40^{\circ} \mathrm{C} . .+150^{\circ} \mathrm{C}$, Silicone cab.(-HT) and KL6 / KL12
Min. Fluid Specific Gravity:	See specifications below
Mounting Position:	Vertical, $\pm 30^{\circ}$, through top or bottom
Protection Class:	IP65 for ST-, KL- and PG-design, IP67, IP68 on request IP54 for K-design
Weight:	Depends on length and design
Options:	See order code

Max. Switchpoints

	KL6	KL12	ST1	ST1	Pg Cable connect.
Connect. group 1	5	6	2	5	6
Connect. group 2	2	4	1	2	4
Connect. group 3	3	4	1	3	4
Connect. group 4	2	3	1	2	3

*not valid for "HT" option

Switch Point Dimensions

Dimensions	Min. distances in $\mathbf{m m}$										
Float type	A F	AT	A D	B	BPT	BTP	BDR	C	D		
VA52, VA44	32	52	44	55	65	95	75	85	55		
BN30	30	60	52	39	49	79	59	77	55		
VA80	63	83	75	60	70	100	80	115	55		

BPT = first switch point with option PT100 (mounting on bottom)
BTP = first switch point with option TPxx/2 (mounting on bottom)

Level Switches

Dimensions (mm / inch)

1. Length tolerance $\pm 3 \mathrm{~mm}$ 2. $\mathrm{LO}=\mathrm{max} .3000 \mathrm{~mm}$

For NPT thread tank fittings all lengths from bottom edge.

* Immersion depth at densityc 1: VA52 $=36 \pm 2 \mathrm{~mm}$
BN30 $=20 \pm 2 \mathrm{~mm}$
VA44 $=36 \pm 2 \mathrm{~mm}$ (52 mm high) VA80 $=36 \pm 2 \mathrm{~mm}$ (80 mm high)

\# Float position
VA52 $=\mathrm{NO} / \mathrm{NO} \Rightarrow$ see float marking
\Rightarrow NO-function
$\mathrm{BN} 30=\mathrm{NO} \quad \Rightarrow$ compound points at bottom
NC $\quad \Rightarrow$ compound points at top
WE $\quad \Rightarrow$ compound points at bottom

Contact Wiring and Colour Code

Level Switches

Brass Version

Order Code

Type:

UNS2000

VA Version
 Order Code

Type:

UNS2000

Material of Stem and Mounting Element:

VA = stainless steel 1.4571 (316 Ti)
Mounting Element (other on request)
3/8 - G3/8" mounting thread for inside mounting: only with PG
T1 - G1" Tank screw (only with BN30 float)
T2 - G2" Tank screw (not with VA80 float)
FL4 - Flange DIN 2527, DN 65/PN16 (not with VA80 float)

- Flange DIN 2527, DN 80/PN16

FL5

- Flange DIN 2527, DN 100/PN16

FL6
FLA3 - Flange ASME B16.5, $\mathbf{2}^{\prime \prime}$ 150lbs, RF (not with VA80)
FLA5 - Flange ASME B16.5, $\mathbf{3}^{\prime \prime}$ 150lbs, RF (not with VA80)
FLA6 - Flange ASME B16.5, 4" 150lbs, RF
T2NPT -2"NPT-Tank screw (not with VA80 float)
Electrical Connection (see table max. Switchpoints)

ST1	- Cube Plug DIN EN 175301-803-A (former DIN 43650), 3-pin + ground, IP65 with mating plug						
ST2	- Angle Plug DIN 43651, 6-pin + ground, IP54 with mating plug						
M12x1	- M12x1 mm plug, 4-pin, IP65 without mating plug						
KL6	- Aluminum Terminal Box, 6 Terminals, IP65						
KL12	- Aluminum Terminal Box, 9 Terminals, IP65						
PG	- Cable Gland with 1 m PVC-cable, -HT with silicon cable, other length on request, IP65						
K	- PVC-Cable sealed, specify length at order, IP65						
	(Others on request)						
	Float type	min.Density Medium	Material	Form	Diameter	max. Temp.	max. Pressure $\left(+20^{\circ} \mathrm{C}\right)$
	VA44	0,84 g/cm ${ }^{3}$	SS 1.4571 (316 Ti)	Cylinder	44 mm	$150{ }^{\circ} \mathrm{C}$	15 bar
	VA52	0,78 g/cm ${ }^{3}$	SS 1.4571 (316 Ti)	Ball	52 mm	$150{ }^{\circ} \mathrm{C}$	40 bar
	VA80	0,54 g/ cm^{3}	SS 1.4571 (316 Ti)	Ball	80 mm	$150{ }^{\circ} \mathrm{C}$	17 bar

UNS2000

Options:

$\mathrm{U}=\quad$ Mounting through bottom
$\mathrm{HT}=\quad$ High Temperature Application $\left(-40^{\circ} \mathrm{C} \ldots+150^{\circ} \mathrm{C}\right)$, cable and wires in silicone
DR = Damping Tube
$\mathrm{VV}=\quad$ Vertical Adjustment (max. 5bar)
PT100 = Pt100-Sensor
TPxx/2 = Temperature Switch TP, Contact Rating: 3A, 12 or 24 V DC
$\mathrm{xx}=$ Standard: $+50^{\circ} \mathrm{C},+60^{\circ} \mathrm{C},+70^{\circ} \mathrm{C},+80^{\circ} \mathrm{C},+90^{\circ} \mathrm{C}$
/2 = NC
Exi $=\quad$ ATEX Ex ia (intrinsically safe) Approval, see www.barksdale.de

