- pizzato

General Catalogue Detection

1 Company Profile

1 New products

2 Position switches for heavy duty applications

FD series

- 15

FL series
- 35

FP series
>25

FC series
>45

3 Position switches with and without reset for normal applications

FR series

- 55

FM series
- 67

FX series -79

FZ series
-91

FK series
- 103

4 Modular pre-wired position switches

NF-series

- 125

5 Microswitches

MK-series

- 139

6 Switches for special applications

Switches compliant with ATEX directive ε_{x}
-151

Position switches with open design

- 187

Switches for high temperatures - 179

Position switches for special applications

- 189

Electronic contact block - 185

Switches with external parts in stainless steel - 191

7 Accessories

8 Appendix
Utilization requirements $\quad 211$

Contact block
Assembled connectors

- 231

Introduction to safety engineering
Technical definitions

- 261

Alphanumeric index of product codes

- 265

General terms and conditions of sale

- 271

MORE THAN 200 PROFESSIONALS WITH PASSION

It is people, with their professionalism and dedication that make a great company. This profound conviction has always guided Pizzato Elettrica in its choice of employees and partners. Today, Giuseppe and Marco Pizzato lead a tireless team providing the fastest and most efficient response to the demands of the market. This team has grown since the year 2000 and has achieved a considerable increase in business in all the countries where Pizzato Elettrica is present.

The various strategic sectors of the business are headed by professionals with significant experience and expertise. Many of these people have developed over years with the company. Others are experts in their specific field and have integrated personal experience with the Pizzato Elettrica ethos to extend the company's capability and knowledge.

From the design office to the technical assistance department, from managers to workers, every employee believes in the company and its future. Pizzato Elettrica employees all give the best of themselves secure in the knowledge they are the fundamental elements of a highly valuable enterprise.

100\% MADE IN ITALY

Pizzato Elettrica is one of the leading European manufacturers of position switches, microswitches, safety devices, safety modules, foot switches, control and signalling devices, and devices for elevators.
An entrepreneurial company such as Pizzato Elettrica bases its foundations on a solid and widely shared value system. The pillars that form the basis of the company's work have remained constant, and constitute the fundamental guiding principles for all company activities.

PASSION FOR QUALITY

Passion for product quality, orientation towards excellence, innovation, and continuous development, represent the key principles of Pizzato Elettrica's everyday work.
Anyone using Pizzato Elettrica's products does so in the certainty that these devices are of certified quality, since they are the result of a process that is scrupulously controlled at every stage of the production.
The company's goal is to offer the market safe, reliable, and innovative solutions.

CARE FOR THE CUSTOMER

In order to be successful, a product must respond to the specific needs of those who will use it. Market developments must be carefully monitored in order to understand, in advance, which new applications will prove themselves truly useful. This is why Pizzato Elettrica has always cultivated close synergies with the companies that have chosen them as a supplier, using this continuous dialogue to identify the potential developments of the own product range in order to make it highly flexible, complete and capable to respond to the most diverse needs.

100\% MADE IN ITALY

All Pizzato Elettrica products are designed, developed, and tested entirely at the 7 company plants in Marostica, in the province of Vicenza in Italy. The company is thus able to meet specific customer requirements at all times, by offering a comprehensive range of products and technologically advanced solutions.

1984: AN ENTREPRENEURIAL STORY BEGINS

1984

The company Pizzato di Pizzato B. \& C. snc. manufacturer of position switches is founded.

1988

The company becomes a limited liability partnership, and is renamed Pizzato Elettrica, a brand shortly destined to become renowned and valued nationwide. Also in the year 1988, the first company-owned plant geared towards mechanical processing was built. By the end of the decade, thanks to the development of quality products and the experience built on the Italian market, Pizzato Elettrica turns to the international market.

1995

Building of the second plant geared towards the moulding of plastic materials. Development of the position switch range continues in parallel. Start of significant years in terms of safety devices planning. The safety sector becomes a key sector to the company.
1998
Construction of the third plant, housing the assembly department.

2002

New millennium starts with quality certifications: achievement of the ISO 9001:2000 certification. Launching of the first safety modules. Construction of the new headquarters and logistics site; currently the company head office. Continued expansion of the industrial safety and automation product range.
2007
Pizzato Elettrica faces their first generational change: Giuseppe and Marco Pizzato take over the company directorship.
2010
Extension of Pizzato Elettrica product portfolio, with the launch of the innovative EROUND line consisting of control and signalling devices. This product range accompanies position switches and safety devices, thus offering complete solutions to customers.
2012
Introduction of Gemnis Studio, the first software produced by Pizzato Elettrica. A graphic development environment for the creation, simulation, and debugging of programs that can be integrated in the Gemnis line modules.

2013

Foundation of first subsidiary of Pizzato Elettrica, Pizzato Deutschland GmbH, in Germany.
2014
A new production facility dedicated to switches and automatic machines is opened, spanning a surface area of $6000 \mathrm{~m}^{2}$.

2016

Foundation of second subsidiary of Pizzato Elettrica, Pizzato France SARL, in France.
The new NS series of safety switches with electromagnets and RFID technology is introduced, fruit of the company's experience, spanning more than thirty years in the field of industrial safety. To date it is the state of the art in its industry.

2017

The company continues to expand and now includes an additional production facility, the new location of the offices in the sales network.

Today

Giuseppe and Marco Pizzato lead a company in constant growth in terms of new product launches, number of employees (more than 200 employees at present), turnover, and new markets. Pizzato Elettrica is continuing their new product internationalisation and development process.

70,000,000 PARTS SOLD WORLDWIDE

Pizzato Elettrica's product catalogue contains more than 7,000 articles, with more than 1,300 special codes developed for devices personalised according to clients' specific needs.
Pizzato Elettrica devices can be grouped, according to typology, into three main macro-categories:

- POSITION SWITCHES. Pizzato Elettrica position switches are daily installed in every type of industrial machinery all over the world for applications in the sector of wood, metal, plastic, automotive, packaging, lifting, medicinal, naval, etc.
In order to be used in a such wide variety of sectors and countries, Pizzato Elettrica position switches are made to be assembled in a lot of configurations thanks to the various body shapes, dozens of contact blocks, hundreds of actuators and materials, forces, assembling versions.
Pizzato Elettrica can offer one of the widest product range of position switches in the world. Moreover, the use of high quality materials, high reliability technologies (e.g. twin bridge contact blocks) as well as the IP67 protection degree make this range of position switches one of the most technologically evolved.
- SAFETY DEVICES. The company Pizzato Elettrica has been one of the first Italian companies developing dedicated items for this sector, creating and patenting dozens of innovative products, thus becoming one of the main European manufacturers of safety devices. The wide range of specific products for machine safety completely designed and assembled in our company premises in Marostica (VI) - Italy, has been extended by the introduction of coded magnetic sensors, solenoid switches provided with emergency release devices, safety hinge switches and safety handles. Recent products include the safety sensors with RFID technology of the ST series, the stainless steel hinge safety switches of the HX series, the RFID safety switches with block of the NG series, the safety handle of the P-KUBE 2 line and the safety switches with electromagnets and RFID technology of the NS series.
- MAN-MACHINE INTERFACE. Thanks to the introduction of the EROUND control and signalling devices, Pizzato Elettrica has remarkably widened their offer within the man-machine interface sector.

Thanks to the new design, the care for details and the elegance of the product combined with its maximum safety and reliability, this series is one of the most complete and cutting-edge on the market.
Our company offers a wide range of products that includes single and modular foot switches with many patented joining kits.

In order to satisfy its customers' needs and requests, Pizzato Elettrica offers a lot of accessories purposely designed not only to complete their wide range of products, but also to help device installation on machineries.

12 MILLION CERTIFIED PRODUCT CODES

A simple brand isn't enough: the company is aiming for the Pizzato Elettrica brand to be widely recognised as a synonym for absolute quality and certainty.

A result that has been reached and consolidated over the years, updating and expanding the series of certifications obtained from the most important Italian and international control organisations. Product quality is assessed by five accredited external bodies: IMQ, UL, CCC, TÜV SÜD, EAC. These bodies lay out high technical and qualitative standards for the company to achieve and maintain, verified yearly with seven different inspections: these are performed, without prior notice, by qualified inspectors, who extract samples of products and materials destined for sale from plants, or from the market directly, to subject them to apposite tests.

- CE MARK. All Pizzato Elettrica products bear the CE marking in conformity with the European Directives in force.
- ISO 9001 CERTIFICATION. The company's production system complies with national UNI EN ISO 9001 and international ISO 9001 standards. The certification covers all of the company's plants and their production and managerial activities: entry checks, technical, purchasing and commercial department activities, manufacturing operations assessments, final pre-shipping product tests and checks, equipment reviews and the management of the metrological lab.
- CERTIFICATION OF COMPANY QUALITY SYSTEMS. Pizzato Elettrica has obtained the certificate of compliance with the UNI EN ISO 9000 regulations in force in Italy and abroad. It is issued by a recognised independent body that guarantees the quality and reliability of the service offered to clients worldwide.
- CSQ, CISQ AND IQNET. The CSQ system is part of the CISQ (Italian Certification of Quality Systems) federation, which consists of the primary certification bodies operating in Italy in the various product sectors. CISO is the Italian representative body within IQNet, the biggest international Quality Systems and Company Management certification network, which is adhered to by 25 certification organs in as many countries.

TRADE FAIRS AND EVENTS

TRADE FAIRS

Pizzato Elettrica regularly participates to many trade fairs in Italy and abroad, presenting in this way to the market the products, the latest news, etc.

EVENTS

Besides offering qualified technical assistance, Pizzato Elettrica presents itself as a dynamic partner who is attentive to the needs of its customers. For this reason, the company organises several meetings and training courses with particular attention to the regulatory aspect of machinery safety.

MULTILINGUAL DOCUMENTATION
Pizzato Elettrica provides its customers with a wide range of technical documentation available in several languages: Italian, English, German, French, Spanish, etc.
From the general catalogue to the detailed brochures, from leaflets of new products to price lists and DVDs, Pizzato Elettrica customers can find in a quick and exact way all the information concerning products, the technical characteristics and functionality, the proper installation methods, application examples, etc.

NEW WEBSITE

To remain in line with its objectives and strategies, Pizzato Elettrica has also decided to renew their image online by designing and creating a new website.
The aim was therefore to create a more modern website: one that would be technologically competitive and feature eye-catching graphics but would also offer users detailed, up-to-date contents.
The main characteristics of version 2.0 of the website www.pizzato.com are therefore as follows:

SEARCH USING FILTERS

The product section has been extended and a decision was made to enhance it with several new aspects. Firstly, the use of filters, to aid customers as they search for products, and guide them in creating the item that best suits their requirements by enabling them to choose its characteristics.

RESPONSIVE DESIGN

Another significant characteristic is the compatibility of this new website with all kinds of devices. Indeed, it is a responsive site, capable of automatically adapting its graphic layout to suit the device with which it is viewed and so minimising the need for the user to resize and scroll the contents.

BROWSABLE, DOWNLOADABLE CATALOGUE

Users can also download our full catalogue or alternatively browse it directly online, an extremely handy solution for those wishing to consult our range of products simply and rapidly.

HIGH RESOLUTION IMAGES

The information provided for each one of our products is complete with high resolution images to offer visitors to the website a clear, accurate view of our items in close detail, also offering them the possibility to zoom in and out on the image.

LARGE VIDEO SECTION

The large video section of the website is capable of showcasing the main characteristics, functions and use of the various products.

TECHNICAL AND SALES ASSISTANCE

TECHNICAL DEPARTMENT

The Pizzato Elettrica technical department provides direct technical and qualified assistance in Italian and English, helping in this way the customers to choose the suitable product for their own application explaining the characteristics and the correct installation.

Office hours:
Monday to Friday
08 am - 12 pm / 02 pm - 06 pm CET
Phone:
fax:
+39.0424.470.930
e-mail:
+39.0424.470.955
tech@pizzato.com
Spoken languages: ■\| \|

SALES DEPARTMENT

Among the strengths in the company relationship with the commercial network, the direct assistance guaranteed in five languages: Italian, English, French, German and Spanish. A service that confirms Pizzato Elettrica quality and attention to the needs of customers from around the world.

Office hours:	Monday to Friday $08 \mathrm{am}-12 \mathrm{pm} / 02 \mathrm{pm}-06 \mathrm{pm}$ CET
Phone:	+39.0424 .470 .930
fax:	+39.0424 .470 .955
e-mail:	info@pizzato.com
Spoken languages:	

Restyling position switches FD series

- New colour anthracite grey
- Indelible laser engraving
- Cover-integrated gasket
- Protection degree IP67
- Captive cover screws

Restyling position switches FP series

- Stainless steel plates for fixing screws
- New colour anthracite grey
- Cover with captive screw
- Indelible laser engraving
- Protection degree IP67

Restyling position switches FL series

- New colour anthracite grey
- Indelible laser engraving
- Cover-integrated gasket
- Protection degree IP67
- Captive cover screws

Restyling position switches FC series

- New colour anthracite grey
- Indelible laser engraving
- Cover-integrated gasket
- Protection degree IP67
- Captive cover screw

Restyling FD series switches for high temperature

- New black colour, bright and scratch resistant
- Indelible laser engraving
- Cover-integrated gasket
- Protection degree IP67

New M12 connector with cable - NA-NB-NF series

- Simplifies wiring in tight spaces
- Cable length 0,2 m, other lengths available on request
- M12 connector, 5 -pole for versions with 2 contacts
- M12 connector, 8-pole for versions with 3 or 4 contacts
- M12 connector with anti-vibration fast locking ring

VF SL series signalling lights

- High luminosity LED indicator lights
- Protection degrees IP67 and IP69K
- Can be installed on switches of the FL, FX, FZ, FW, FG, FS and NG series
- Available with $24 \mathrm{~V}, 120 \mathrm{~V}, 230 \mathrm{~V}$ supply voltage

New contact blocks for ATEX series

- New contact blocks available for FD and FL series, with product code extension -EX7, -EX8 and -EX4.
- New contact blocks with 2 NC, 2 NO, 1NC+1NO contacts, slow action make before break or shifted, or snap action
- Available upon request, please contact our technical department

Description

 Pizzato Elettrica position switches are daily installed in every type of industrial machinery all over the world for applications in the sector of wood, metal, plastic, automotive, packaging, lifting, medicinal, naval, etc.
In order to be used in a wide variety of sectors and countries, Pizzato Elettrica position switches are designed to be assembled in a lot of configurations, thanks to a wide range of body shapes, dozens of contact blocks, hundreds of actuators and materials, different actuating forces and several fixing methods.
Pizzato Elettrica can offer one of the widest product range of position switches in the world. Moreover, the use of high quality materials, high reliability technologies (e.g. twin bridge contact blocks) as well as the IP67 protection degree make this range of position switches one of the most technologically evolved.

Protection degree IP67

These devices are designed to be used in the toughest environmental conditions and they pass the IP67 immersion test acc. to EN 60529.
They can therefore be used in all environments where maximum protection degree of the housing is required.

Laser engraving

All devices are marked using a dedicated indelible laser system. These engravings are therefore suitable for extreme environments too. Thanks to this system that does not use labels, the loss of plate data is prevented and a greater resistance of the marking is achieved over time.

Extended temperature range

$-40^{\circ} \mathrm{C}$
These devices are also available in a special version suitable for an ambient operating temperature range from $-40^{\circ} \mathrm{C}$ up to $+80^{\circ} \mathrm{C}$. They can therefore be used for applications in cold stores, sterilisers and other equipment with low temperature environments. The special materials used to produce these versions retain their characteristics even under these conditions, thereby expanding the installation possibilities.

Reversible levers

For switches with swivelling lever, the lever can be fastened on straight or reverse side maintaining the positive coupling.
In this way two different working planes of the lever are possible.

Adjustable safety lever

The adjustable lever code 56 (and variants) is provided with a notching that prevents the sliding also in case the fastening screw becomes loose.
Thanks to the special geometrical coupling it is suitable for safety applications.

Increased or reduced actuating force

For actuators with swivelling lever, versions with increased or reduced actuating force are available upon request, in order to have a switch perfectly tailored for the application. For further information contact our technical department.

Independent contacts

The contact block 16 is provided with two NC contacts, both with positive opening, that can be independently switched depending on the lever turning direction.

Unidirectional heads

For switches with swivelling lever, the unidirectional operation can be set by removing the four head screws and rotating the internal plunger (except contact block 16).

Gold-plated contacts

The contact blocks of these devices can be supplied gold-plated upon request. Ideal for applications with low voltages or currents; it ensures increased contact reliability. Available in two thicknesses (1 or 2.5 microns), it adapts perfectly to the various fields of application, ensuring a long endurance over time.

Stainless steel fixing plates

The technopolymer switches of the FP series are provided with two robust stainless steel fixing plates. In this way no washer is needed under the head and still the fixing of the switch is more stable over time.

Contact block

Contact blocks with captive screws, finger protection, twin bridge contacts and double interruption for higher contact reliability. They are available in multiple variants with shifted activation travels, simultaneous or overlapping. They are suitable for many different applications.

Stainless steel external metallic parts

AISI 304
Upon request, some of these devices can be supplied with stainless steel external metallic parts instead of the usual zinc-plated steel. This solution is particularly suited for environments where aggressive chemical agents or saline mist are present. See page 191.

Selection diagram

With cable gland	
K23	
	for cables
	$\varnothing 6 \ldots 12 \mathrm{~mm}$
$\mathbf{K 2 7}$	for cables
	$\varnothing 3 \ldots 7 \mathrm{~mm}$

With M12 metal connector
K40 \quad 8-pole \qquad
product options
Sold separately as accessory

Code structure Attention! The feasibility of a code number does not mean the effective availability of a product. Please contact our sales office.

Main features

- Metal housing, one conduit entry
- Protection degree IP67
- 17 contact blocks available
- 28 actuators available
- Versions with M12 connector
- Versions with gold-plated silver contacts

Quality marks:

IMQ approval:	EG605
UL approval:	E131787
CCC approval:	2007010305230000
EAC approval:	RU C-IT.AД35.B.00454

Technical data

Housing

Metal housing, powder-coated
One threaded conduit entry:
Protection degree:
M20x1.5 (standard)
IP67 acc. to EN 60529 with cable gland presenting same or higher protection degree

General data

Ambient temperature:
Max. actuation frequency:
$-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$
Mechanical endurance:
Mounting position:
Safety parameter B_{100} :
Mechanical interlock, not coded:
Tightening torques for installation:
3600 operating cycles/hour
20 million operating cycles any
40,000,000 for NC contacts type 1 acc. to EN ISO 14119 see page 211-222

Cable cross section (flexible copper strands)
Contact blocks 20, 21, 22, 33, 34:

Contact blocks $5,6,7,9,10,11,12,13,14,15,16,18:$
Contact block 2 :

In compliance with standards:

IEC 60947-5-1, EN 60947-5-1, EN 60947-1, EN 50041, IEC 60204-1, EN 60204-1,
EN ISO 14119, EN ISO 12100, IEC 529, EN 60529, UL 508, CSA 22.2 No. 14.
Approvals:
IEC 60947-5-1, UL 508, CSA 22.2 No.14, GB14048.5-2001.

Compliance with the requirements of:

Low Voltage Directive 2014/35/EU, EMC Directive 2014/30/EU.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.

Installation for safety applications:

Use only switches marked with the symbol Θ next to the product code. Always connect the safety circuit to the NC contacts (normally closed contacts: 11-12, 21-22 or 31-32) as required by EN ISO 14119, paragraph 5.4 for specific interlock applications and EN ISO 13849-2 tables D3 (well-tried components) and D. 8 (fault exclusions) for safety applications in general. Actuate the switch at least up to the positive opening travel shown in the travel diagrams on page 214. Actuate the switch at least with the positive opening force, reported in brackets below each article, next to the actuating force value.
§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see the instructions given on pages 211 to 222.

Features approved by IMO

Rated insulation voltage (Ui):	500 Vac 400 Vac (for contact blocks 2, 11, 12, 20, 21,22, 33, 34)
Conventional free air thermal current (lth):	10 A
Protection against short circuits:	type aM fuse 10 A 500 V
Rated impulse withstand voltage ($\mathrm{U}_{\text {imp }}$) :	6 kV 4 kV (for contact blocks 20, 21, $22,33,34)$
Protection degree of the housing: MV terminals (screw terminals)	IP67
Pollution degree:	3
Utilization category:	AC15
Operating voltage (Ue):	$400 \mathrm{Vac}(50 \mathrm{~Hz})$
Operating current (le):	3 A

Forms of the contact element: $Z a, Z b, Z a+Z a, Y+Y, X+X, Y+Y+X, Y+Y+Y, Y+X+X$ Positive opening of contacts on contact block $5,6,7,9,11,13,14,16,18,20,21$, 22, 33, 34, 66
In compliance with standards: EN 60947-1, EN 60947-5-1 + A1:2009, fundamental requirements of the Low Voltage Directive 2014/35/EU.

Features approved by UL

Utilization category Q300 (69 VA, 125-250 Vdc)

$$
\text { A600 (720 VA, } 120-600 \mathrm{Vac})
$$

Housing features type 1, 4X, 12, 13
For all contact blocks except 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductors, rigid or flexible, wire size 12, 14 AWG. Tightening torque for terminal screws of 7.1 lb in (0.8 Nm).
For contact blocks 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductors, rigid or flexible, wire size 14 AWG. Tightening torque for terminal screws of 12 lb in (1.4 Nm).

In compliance with standard: UL 508, CSA 22.2 No. 14
Please contact our technical department for the list of approved products.

Please contact our technical department for the list of approved products.

Wiring diagram for M12 connectors

$\begin{gathered} \text { Contact block } 2 \\ \text { 1NO-1NC+1NO- } \\ 1 \mathrm{NC} \end{gathered}$	Contact block 5 $1 \mathrm{NO}+1 \mathrm{NC}$	Contact block 6 $1 \mathrm{NO}+1 \mathrm{NC}$	Contact block 7 $1 \mathrm{NO}+1 \mathrm{NC}$	$\begin{aligned} & \text { Contact block } 9 \\ & \text { 2NC } \end{aligned}$	$\begin{gathered} \text { Contact block10 } \\ 2 N O \end{gathered}$	$\begin{aligned} & \text { Contact block11 } \\ & 2 \mathrm{NC} \end{aligned}$	$\begin{gathered} \text { Contact block12 } \\ 2 \text { NO } \end{gathered}$	$\begin{gathered} \text { Contact block13 } \\ \text { 2NC } \end{gathered}$
M12 connector, 8 -pole	M12 connector, 5-pole							
Contacts Pin no. NO 3-4	Contacts Pin no. NC $\quad 1-2$	Contacts Pin no. NO 1-2	Contacts Pin no. NC $\quad 1-2$	Contacts Pin no. NO 1-2	Contacts Pin no. NC (19) 1-2			
NC 5-6	NO 3-4	NO 3-4	NO 3-4	NC 3-4	NO 3-4	NC 3-4	NO 3-4	NC (20) 3 -4
NC 7-8	ground 5							
NO 1-2								

$\begin{gathered} \text { Contact block14 } \\ 2 N C \end{gathered}$	$\begin{aligned} & \text { Contact block15 } \\ & 2 \text { NO } \end{aligned}$	$\begin{gathered} \text { Contact block16 } \\ \text { 2NC } \end{gathered}$	$\begin{gathered} \text { Contact block18 } \\ 1 \mathrm{NO}+1 \mathrm{NC} \end{gathered}$	$\begin{gathered} \text { Contact block } 20 \\ 2 N C+1 \text { NO } \end{gathered}$	Contact 3 N	$\text { lock } 21$	Contact 1 NC	$\begin{aligned} & \text { ock } 22 \\ & \text { NO } \end{aligned}$	Contact 1 NC	$\begin{aligned} & \text { olock33 } \\ & \text { NO } \end{aligned}$	$\begin{gathered} \text { Contact block34 } \\ 2 N C \end{gathered}$	
M12 connector, 5-pole	M12 connector, 5-pole	M12 connector, 5-pole	M12 connector, 5-pole	M12 connector, 8-pole	2			6 $)_{5}$ 8 ector,	2	y_{4}^{4} ctor,	M12 connector, 5-pole	
Contacts Pin no NC (1) $1-2$	Contacts Pin no. $\mathrm{NO}\left(1^{\circ}\right) \quad 1-2$	Contacts Pin no. NC, lever to the right $1-2$	Contacts Pin no. NC 1-2	Contacts Pin no. NC $\quad 3-4$	Contacts NC	Pin no. 3-4	Contacts NC	Pin no. 3-4	Contacts NC	Pin no. 1-2	Contacts NC	Pin no. 1-2
NC (20) 3-4	NO (29) 3-4	C, lever to the left 3 -	NO 3-4	NC 5-6	NC	5-6	NO	5-6	NO	3-4	NC	3-4
ound	und	und	und	No 7-8	NC	7-8	No	7-8	und	5	ound	5
				ground	ground	1	ground	1				

Contact block E1 PNP

M12 connector, 5 -pole

Contacts	Pin no.
+	1
-	3
NC	2
NO	4
ground	5

Contact type:$\begin{array}{\|l\|l} \hline \mathbf{R} & =\text { snap action } \\ \hline \mathbf{L} & =\text { slow action } \\ \hline \mathbf{L O} & =\text { slow action } \\ \text { make before } \\ \text { break } \end{array}$			With stainless steel roller on request			With stainless steel roller on request
5	R	FD 501-M2 $\odot{ }^{\text {1 }}$ NO+1NC	FD 502-M2 Θ - ${ }^{\text {1NO}+1 N C}$	FD 504-M2	1NO+1NC	FD 505-M2 Θ 1 ${ }^{\text {NO}}+1 \mathrm{NC}$
6	\square	FD 601-M2 Θ 1NO+1NC	FD 602-M2 Θ 1NO+1NC	FD 604-M2	1NO+1NC	FD 605-M2 $\Theta 1$ (NO+1NC
7	L0	FD 701-M2 $\Theta 1$ (NO+1NC	FD 702-M2 Θ 1 ${ }^{\text {NO}+1 \mathrm{NC}}$	FD 704-M2	$1 \mathrm{NO}+1 \mathrm{NC}$	FD 705-M2 Θ 1 ${ }^{\text {NO}+1 \mathrm{NC}}$
9	\square	FD 901-M2 $¢$ 2NC	FD 902-M2 Θ 2NC	FD 904-M2	2NC	FD 905-M2 \oplus 2NC
10	L	FD 1001-M2 2NO	FD 1002-M2 2NO	FD 1004-M2	2NO	FD 1005-M2 2NO
11	R	FD 1101-M2 Θ 2NC	FD 1102-M2 Θ 2NC	FD 1104-M2	2 NC	FD 1105-M2 Θ 2NC
12	R	FD 1201-M2 2 NO	FD 1202-M2 2NO	FD 1204-M2	2NO	FD 1205-M2 2 NO
13	LV	FD 1301-M2 Θ 2NC	FD 1302-M2 Θ 2NC	FD 1304-M2	2NC	FD 1305-M2 Θ 2NC
14	LS	FD 1401-M2 Θ 2NC	FD 1402-M2 Θ 2NC	FD 1404-M2	2 NC	FD 1405-M2 Θ 2NC
15	LS	FD 1501-M2 2NO	FD 1502-M2 2NO	FD 1504-M2	2NO	FD 1505-M2 2NO
18	LA	FD 1801-M2 Θ 1NO+1NC	FD 1802-M2 Θ 1 ${ }^{\text {NO}+1 \mathrm{NC}}$	FD 1804-M2	1NO+1NC	FD 1805-M2 Θ 1 ${ }^{\text {NO}+1 \mathrm{NC}}$
20	\square	FD 2001-M2 \oplus 1NO+2NC	FD 2002-M2 Θ 1 ${ }^{\text {NO}+2 N C}$	FD 2004-M2	1NO+2NC	FD 2005-M2 Θ 1 ${ }^{\text {NO}+2 N C}$
21	\square	FD 2101-M2 Θ 3NC	FD 2102-M2 Θ 3NC	FD 2104-M2	3 NC	FD 2105-M2 Θ 3NC
22	\square	FD 2201-M2 Θ 2NO+1NC	FD 2202-M2 Θ 2NO+1NC	FD 2204-M2	$2 \mathrm{NO}+1 \mathrm{NC}$	FD 2205-M2 Θ 2NO+1NC
2	-	FD 201-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$	FD 202-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$	FD 204-M2	2x(100-1NC)	FD 205-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$
E1	貔	FD E101-M2 1NO-1NC	FD E102-M2 1NO-1NC	FD E104-M2	$1 \mathrm{NO}-1 \mathrm{NC}$	FD E105-M2 1NO-1NC
Max. speed		page 213 - type 4	page 213 - type 3			page 213 - type 3
Actuating force		$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$6 \mathrm{~N}(25 \mathrm{~N}$ - $)$			$6 \mathrm{~N}(25 \mathrm{~N}$ - $)$
Travel diagrams		page 214-group 1	page 214 - group 2	page 2	group 1	page 214-group 2

All values in the drawings are in mm
Items with code on green background are stock items

All values in the drawings are in mm

FD series position switches

${ }^{(1)}$ Positive opening only with actuator set to max. See page 23.
All values in the drawings are in mm
Items with code on green background are stock items

	Other rollers available. See page 24	With stainless steel rollers on request	With stainless steel rollers on request	Rope switch for signalling
Contact type:				
5 R	FD 557-M2 Θ 1NO+1NC	FD 541-M2 Θ 1NO+1NC	FD 542-M2 Θ 1NO+1NC	FD 576-M2 1NO+1NC
6 L	FD 657-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	Bistable switch with lyra lever, single	Bistable switch with lyra lever, dual	FD 676-M2 1NO+1NC
7 L0	FD 757-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	track	track	FD 776-M2 1NO+1NC
9 L	FD 957-M2 Θ 2NC			FD 976-M2 2NO
10 L	FD 1057-M2 2NO			FD 1076-M2 2NC
11 R	FD 1157-M2 Θ 2NC		\mathbb{N}	FD 1176-M2 2NO
12 R	FD 1257-M2 2NO	-		FD 1276-M2 2NC
13 LV	FD 1357-M2 Θ 2NC	(1)	20n	FD 1376-M2 2NO
14 LS	FD 1457-M2 Θ 2NC	-	o 0) 1	FD 1476-M2 2NO
15 LS	FD 1557-M2 2NO			FD 1576-M2 2NC
16 LI	FD 1657-M2 Θ 2NC	$\text { (3) } \mathrm{HO}$		
18 LA	FD 1857-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$			FD 1876-M2 1NO+1NC
20 L	FD 2057-M2 Θ 1NO+2NC	$\Theta^{80} 90^{\circ}$	$45^{\circ} 65^{\circ} \oplus 80^{\circ} 90^{\circ}$	FD 2076-M2 2NO+1NC
21 L	FD 2157-M2 $\Theta 3 \mathrm{NC}$			FD 2176-M2 3NC
22 L	FD 2257-M2 Θ 2NO+1NC			FD 2276-M2 1NO+2NC
2 R	FD 257-M2 2x(1NO-1NC)	$S=$ mechanical switching point positive opening on contacts 21-22 only	$\mathrm{S}=$ mechanical switching point positive opening on contacts 21-22 only	FD 276-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC}$)
E1 交	FD E157-M2 1NO-1NC			
Max. speed	page 213 - type 1	$0.5 \mathrm{~m} / \mathrm{s}$ with cam at 30°	$0.5 \mathrm{~m} / \mathrm{s}$ with cam at 30°	$0.5 \mathrm{~m} / \mathrm{s}$
Actuating force	$0.1 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.21 \mathrm{Nm}(0.36 \mathrm{Nm} \Theta)$	$0.21 \mathrm{Nm}(0.36 \mathrm{Nm} \Theta)$	initial 20 N - final 40 N
Travel diagrams	page 214 - group 4			page 214 - group 6

All values in the drawings are in mm

Position switches with swivelling lever without actuator

All values in the drawings are in mm

IMPORTANT

For safety applications: join only switches and actuators marked with symbol Θ next to the product code. For more information about safety applications see details on page 211.

[^0]IMPORTANT: These separate actuators can be used only with items of the FD, FP, FL, FC series.
Stainless steel rollers, Ø 20 mm

VF L31-R24 Θ	VF L35-R24 $\Theta{ }^{\text {(1) (3) }}$	VF L51-R24 Θ	VF L52-R24 Θ	VF L56-R24 $\Theta^{(3)}$	VF L57-R24 Θ

Rubber rollers, $\varnothing 40 \mathrm{~mm}$

VF L31-R5 $\Theta{ }^{(4)}$	VF L35-R5 ${ }^{(1)(3)}$	VF L51-R5 $\Theta{ }^{(4)}$	VF L52-R5 Θ	VF L56-R5 $¢{ }^{(3)}$	VF L57-R5 ${ }^{(4)}$

Rubber rollers, $\varnothing 50 \mathrm{~mm}$

Protruding rubber rollers, $\varnothing 50 \mathrm{~mm}$

Selection diagram

product options
Sold separately as accessory

Code structure Attention! The feasibility of a code number does not mean the effective availability of a product. Please contact our sales office.

| | | |
| :--- | :--- | :--- | :--- |

Actuators	
$\mathbf{0 1}$	short plunger
$\mathbf{0 2}$	roller lever
$\mathbf{0 5}$	angled lever with roller
$\mathbf{\ldots}$

Contact type

silver contacts (standard)

G
silver contacts, $1 \mu \mathrm{~m}$ gold coating (not for contact block 2)

G1 silver contacts, $2.5 \mu \mathrm{~m}$ gold coating (not for contact block 2, 20, 21, 22)

> Threaded conduit entry
> M2 M20x1.5 (standard) PG 13.5

Ambient temperature

$-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ (standard)
T6 $-40^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$

FP $502-\mathrm{GM} 2$ <70R24T6

Main features

- Technopolymer housing, one conduit entry
- Protection degree IP67
- Stainless steel fixing plates
- 17 contact blocks available
- 28 actuators available
- Versions with M12 connector
- Versions with gold-plated silver contacts

Technical data

Housing

Housing made of glass fibre reinforced technopolymer, self-extinguishing, shock-proof and with double insulation:
One threaded conduit entry:
Protection degree:
M20x1.5 (standard)
IP67 acc. to EN 60529 with cable gland presenting same or higher protection degree

General data

Ambient temperature:
Max. actuation frequency:
Mechanical endurance:
Mounting position:
Safety parameter B_{100} :
Mechanical interlock, not coded:
Tightening torques for installation:

$$
-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}
$$

3600 operating cycles/hour
20 million operating cycles any
40,000,000 for NC contacts
type 1 acc. to EN ISO 14119 see page 211-222

Cable cross section (flexible copper strands)

Contact blocks 20, 21, 22, 33, 34:
Contact blocks $5,6,7,9,10,11,12,13,14,15,16,18$:
Contact block 2:

\min.	$1 \times 0.34 \mathrm{~mm}^{2}$	$(1 \times$ AWG 22)
\max.	$2 \times 1.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 16)
\min.	$1 \times 0.5 \mathrm{~mm}^{2}$	$(1 \times$ AWG 20)
\max.	$2 \times 2.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 14)
\min.	$1 \times 0.5 \mathrm{~mm}^{2}$	$(1 \times$ AWG 20)
\max.	$2 \times 1.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 16)

In compliance with standards:

IEC 60947-5-1, EN 60947-5-1, EN 60947-1, EN 50041, IEC 60204-1, EN 60204-1, EN ISO 14119, EN ISO 12100, IEC 60529, EN 60529, UL 508, CSA 22.2 No. 14.

Approvals:

IEC 60947-5-1, UL 508, CSA 22.2 No.14, GB14048.5-2001.

Compliance with the requirements of:

Low Voltage Directive 2014/35/EU, EMC Directive 2014/30/EU.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.

IMQ approval:	EG605
UL approval:	E131787
CCC approval:	2007010305230014
EAC approval:	RU C-IT.АД35.В. 00454

Installation for safety applications:

Use only switches marked with the symbol Θ next to the product code. Always connect the safety circuit to the NC contacts (normally closed contacts: 11-12, 21-22 or 31-32) as required by EN ISO 14119, paragraph 5.4 for specific interlock applications and EN ISO $\mathbf{1 3 8 4 9 - 2}$ tables D3 (well-tried components) and D. 8 (fault exclusions) for safety applications in general. Actuate the switch at least up to the positive opening travel shown in the travel diagrams on page 214. Actuate the switch at least with the positive opening force, reported in brackets below each article, next to the actuating force value.
§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see the instructions given on pages 211 to 222.

Features approved by IMO

Rated insulation voltage (U_{i}):
500 Vac
400 Vac (for contact blocks 2, 11, 12, 20, 21,22, 33, 34)
Conventional free air thermal current 10 A
$\left(I_{\text {th }}\right)$:
Protection against short circuits:
type aM fuse 10 A 500 V
Rated impulse withstand voltage ($\mathrm{U}_{\mathrm{imp}}$): 6 kV
4 kV
(for contact blocks 20, 21, 22, 33, 34)
Protection degree of the housing: IP67
MV terminals (screw terminals)
Pollution degree:
Utilization category:
Operating voltage (U_{e}):
3
AC15
$400 \mathrm{Vac}(50 \mathrm{~Hz})$
3 A
Operating current $\left(l_{\mathrm{e}}\right)^{e}$:

Forms of the contact element: $Z a, Z b, Z a+Z a, Y+Y, X+X, Y+Y+X, Y+Y+Y, Y+X+X$
Positive opening of contacts on contact blocks $5,6,7,9,11,13,14,16,18,20$,
21, 22, 33, 34
In compliance with standards: EN 60947-1, EN 60947-5-1 + A1:2009, fundamental
requirements of the Low Voltage Directive 2014/35/EU.

Features approved by UL

Utilization category Q300 (69 VA, 125-250 Vdc)
A600 ($720 \mathrm{VA}, 120-600 \mathrm{Vac}$)
Housing features type 1, 4X "indoor use only", 12, 13
For all contact blocks except 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductors, rigid or flexible, wire size 12, 14 AWG. Tightening torque for terminal screws of 7.1 lb in (0.8 Nm).
For contact blocks 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductors, rigid or flexible, wire size 14 AWG. Tightening torque for terminal screws of 12 lb in (1.4 Nm).

In compliance with standard: UL 508, CSA 22.2 No. 14
Please contact our technical department for the list of approved products.

Please contact our technical department for the list of approved products.

Wiring diagram for M12 connectors

Contact 1NO-1N	$\begin{aligned} & \text { block } 2 \\ & \text { CC+1NO- } \\ & \text { VC } \end{aligned}$	Contact 1NO+	$\begin{aligned} & \text { block } 5 \\ & +1 \text { NC } \end{aligned}$	Contact 1NO	$\begin{aligned} & \text { block } 6 \\ & +1 \mathrm{NC} \end{aligned}$	Contact 1NO	$\begin{aligned} & \text { block } 7 \\ & 1 \mathrm{NC} \end{aligned}$	Contact 2N	$\begin{aligned} & \text { block } 9 \\ & \text { cc } \end{aligned}$	2NO		$\begin{gathered} \text { Contact block11 } \\ 2 N C \end{gathered}$		$\begin{aligned} & \text { Contact block12 } \\ & 2 \text { NO } \end{aligned}$		$\begin{gathered} \text { Contact block13 } \\ \text { 2NC } \end{gathered}$	
2	nector, ole		4 nector, ole		4 nector, ole		nector, le		4 le		4 nector, ole		4 nector, ole		4 nnector, pole		4 nnector, ole
Contacts NO	Pin no. 3-4	Contacts NC	Pin no. 1-2	Contacts NC	Pin no. 1-2	Contacts NC	Pin no. 1-2	Contacts NC	Pin no. 1-2	Contacts NO	Pin no. 1-2	Contacts NC	Pin no. 1-2	Contacts NO	Pin no. 1-2	Contacts NC (19)	Pin no. 1-2
NC	5-6	NO	3-4	NO	3-4	NO	3-4	NC	3-4	NO	3-4	NC	3-4	NO	3-4	NC (2°)	3-4
NC	7-8																
NO	1-2																

$\begin{gathered} \text { Contact block14 } \\ 2 N C \end{gathered}$	$\begin{aligned} & \text { Contact block15 } \\ & 2 \text { NO } \end{aligned}$	$\begin{gathered} \text { Contact block16 } \\ 2 N C \end{gathered}$	$\begin{gathered} \text { Contact block18 } \\ 1 \mathrm{NO}+1 \mathrm{NC} \end{gathered}$	$\begin{gathered} \text { Contact block } 20 \\ 2 N C+1 \text { NO } \end{gathered}$	$\begin{gathered} \text { Contact block } 21 \\ \text { 3NC } \end{gathered}$	$\begin{gathered} \text { Contact block } 22 \\ 1 \mathrm{NC}+2 \mathrm{NO} \end{gathered}$	$\begin{aligned} & \text { Contact block33 } \\ & \text { 1NC+1NO } \end{aligned}$	$\begin{aligned} & \text { Contact block34 } \\ & \text { 2NC } \end{aligned}$
M12 connector, 4-pole	M12 connector, 4-pole	M12 connector, 4-pole	M12 connector, 4-pole	M12 connector, 8-pole	M12 connector, 8-pole	M12 connector, 8-pole	M12 connector, 4-pole	M12 connector, 4-pole
Contacts Pin no. NC (19) 1-2	Contacts Pin no. $\mathrm{NO}\left(1^{\circ}\right) \quad 1-2$	Contacts Pin no. NC, lever to the right 1-2	Contacts Pin no. NC 1-2	Contacts Pin no. $\text { NC } \quad 3-4$	Contacts Pin no. $\text { NC } \quad 3-4$	Contacts Pin no. $\text { NC } \quad 3-4$	Contacts Pin no. NC 1-2	Contacts Pin no. NC $\quad 1-2$
NC (29) 3 -4	NO (29) 3 -4	NC, lever to the left 3-4	NO 3-4	NC 5-6	NC 5-6	NO 5-6	NO 3-4	NC 3-4
				NO 7-8	NC 7-8	NO 7-8		

M12 connector, 4-pole

Contacts	Pin no.
+	1
-	3
NC	2
NO	4

Contact type:			With stainless steel rolere on request			With stainess steel Iolere on request
5	R	FP 501-M2 Θ 1NO+1NC	FP 502-M2 Θ 1 ${ }^{\text {NO}+1 N C}$	FP 504-M2	1NO+1NC	FP 505-M2 Θ 1 ${ }^{\text {NO}+1 \mathrm{NC}}$
6	\square	FP 601-M2 Θ 1 ${ }^{\text {NO}}+1$ NC	FP 602-M2 Θ 1 ${ }^{\text {NO}+1 \mathrm{NC}}$	FP 604-M2	$1 \mathrm{NO}+1 \mathrm{NC}$	FP 605-M2 Θ 1 ${ }^{\text {NO}+1 \mathrm{NC}}$
7	L0	FP 701-M2 $\odot 1$ NO+1NC		FP 704-M2	$1 \mathrm{NO}+1 \mathrm{NC}$	FP 705-M2 Θ 1 ${ }^{\text {NO}+1 \mathrm{NC}}$
9	\square	FP 901-M2 Θ 2NC	FP 902-M2 Θ 2NC	FP 904-M2	2 NC	FP 905-M2 Θ 2NC
10	L	FP 1001-M2 2NO	FP 1002-M2 2NO	FP 1004-M2	2 NO	FP 1005-M2 2NO
11	R	FP 1101-M2 Θ 2NC	FP 1102-M2 Θ 2NC	FP 1104-M2	2NC	FP 1105-M2 Θ 2NC
12	R	FP 1201-M2 2NO	FP 1202-M2 2NO	FP 1204-M2	2 NO	FP 1205-M2 2NO
13	LV	FP 1301-M2 Θ 2NC	FP 1302-M2 Θ 2NC	FP 1304-M2	2NC	FP 1305-M2 Θ 2NC
14	LS	FP 1401-M2 Θ 2NC	FP 1402-M2 Θ 2NC	FP 1404-M2	2 N	FP 1405-M2 Θ 2NC
15	LS	FP 1501-M2 2NO	FP 1502-M2 2NO	FP 1504-M2	2 NO	FP 1505-M2 2NO
18	[L	FP 1801-M2 \odot 1 ${ }^{\text {NO }+1 \mathrm{NC}}$	FP 1802-M2 \odot 1 ${ }^{\text {NO}+1 \mathrm{NC}}$	FP 1804-M2	1NO+1NC	FP 1805-M2 \odot 1 ${ }^{\text {NO }+1 \mathrm{NC}}$
20	\square	FP 2001-M2 Θ 1NO+2NC	FP 2002-M2 Θ 1 ${ }^{\text {NO}+2 N C}$	FP 2004-M2	$1 \mathrm{NO}+2 \mathrm{NC}$	FP 2005-M2 Θ 1 ${ }^{\text {NO}+2 N C}$
21	\square	FP 2101-M2 Θ 3NC	FP 2102-M2 Θ 3NC	FP 2104-M2	3NC	FP 2105-M2 Θ 3NC
22	\square	FP 2201-M2 Θ 2NO+1NC	FP 2202-M2 Θ 2NO+1NC	FP 2204-M2	$2 \mathrm{NO}+1 \mathrm{NC}$	FP 2205-M2 Θ 2NO+1NC
2	R	FP 201-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$	FP 202-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$	FP 204-M2	2x(1NO-1 NC)	FP 205-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$
E1	貔	FP E101-M2 1NO-1NC	FP E102-M2 1NO-1NC	FP E104-M2	$1 \mathrm{NO}-1 \mathrm{NC}$	FP E105-M2 1NO-1NC
	speed	page 213 - type 4	page 213 - type 3			page 213 - type 3
	ing force	$8 \mathrm{~N}(25 \mathrm{~N}$ ¢)	$6 \mathrm{~N}(25 \mathrm{~N} \oplus)$			$6 \mathrm{~N}(25 \mathrm{~N} \Theta)$
	diagrams	page 214 - group 1	page 214 - group 2	page 2	-group 1	page 214 - group 2

Contact block			With external rubber gasket		With external rubber gasket	
5	R		FP 508-M2 Θ 1NO+1NC	FP 510-M2 Θ 1 ${ }^{\text {NO}+1 N C}$	FP 511-M2 Θ 1NO+1NC	FP 515-M2 Θ 1 ${ }^{\text {NO}+1 N C}$
6	\square	FP 608-M2 Θ 1 ${ }^{\text {NO+1NC }}$	FP 610-M2 Θ 1 ${ }^{\text {NO}+1 N C}$	FP 611-M2 Θ 1NO+1NC	FP 615-M2 Θ 1 ${ }^{\text {NO}+1 N C}$	
7	L0	FP 708-M2 Θ - 1 NO+1NC	FP 710-M2 Θ - ${ }^{\text {NO}}+1 \mathrm{NC}$	FP 711-M2 Θ 1 ${ }^{\text {NO+1NC }}$	FP 715-M2 Θ 1 ${ }^{\text {NO+1NC }}$	
9	\square	FP 908-M2 Θ 2NC	FP 910-M2 Θ 2NC	FP 911-M2 Θ 2NC	FP 915-M2 Θ 2NC	
10	\square	FP 1008-M2 2NO	FP 1010-M2 2NO	FP 1011-M2 2NO	FP 1015-M2 2NO	
11	(R)	FP 1108-M2 $¢$ 2NC	FP 1110-M2 $\underbrace{2 N C}$	FP 1111-M2 \oplus 2NC	FP 1115-M2 Θ 2NC	
12	R	FP 1208-M2 2NO	FP 1210-M2 2NO	FP 1211-M2 2NO	FP 1215-M2 2NO	
13	LV	FP 1308-M2 Θ 2NC	FP 1310-M2 Θ 2NC	FP 1311-M2 Θ 2NC	FP 1315-M2 Θ 2NC	
14	LS	FP 1408-M2 Θ 2NC	FP 1410-M2 Θ 2NC	FP 1411-M2 Θ 2NC	FP 1415-M2 Θ 2NC	
15	LS	FP 1508-M2 2NO	FP 1510-M2 2NO	FP 1511-M2 2NO	FP 1515-M2 2NO	
18	LA	FP 1808-M2 Θ 1 ${ }^{\text {NO}+1 \mathrm{NC}}$	FP 1810-M2 Θ 1 ${ }^{\text {NO}+1 N C}$	FP 1811-M2 Θ 1 ${ }^{\text {NO}+1 \mathrm{NC}}$	FP 1815-M2 Θ 1 ${ }^{\text {NO}+1 \mathrm{NC}}$	
20	\square	FP 2008-M2 Θ 1NO+2NC	FP 2010-M2 Θ 1NO+2NC	FP 2011-M2 Θ 1NO+2NC	FP 2015-M2 Θ 1NO+2NC	
21	\square	FP 2108-M2 Θ 3NC	FP 2110-M2 Θ 3NC	FP 2111-M2 Θ 3NC	FP 2115-M2 \odot 3NC	
22	\square	FP 2208-M2 $\odot 2 \mathrm{NO}+1 \mathrm{NC}$	FP 2210-M2 $\odot 2 \mathrm{NO}+1 \mathrm{NC}$	FP 2211-M2 $\odot 2 \mathrm{NO}+1 \mathrm{NC}$	FP 2215-M2 Θ 2NO+1NC	
2	[FP 208-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$	FP 210-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$	FP 211-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC})$	FP 215-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$	
E1	肉	FP E108-M2 1NO-1NC	FP E110-M2 1NO-1NC	FP E111-M2 1NO-1NC	FP E115-M2 1NO-1NC	
Max. speed		page 213 - type 4	page 213 - type 4	page 213 - type 4	page 213 - type 2	
Actuating force		$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$11 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$11 \mathrm{~N}(25 \mathrm{~N} \Theta)$	
Travel diagrams		page 214 - group 1	page 214-group 1	page 214-group 1	page 214 - group 1	

All values in the drawings are in mm
Items with code on green background are stock items

All values in the drawings are in mm
Items with code on green background are stock items
Accessories See page 197
\rightarrow The 2D and 3D files are available at www.pizzato.com

ont		Other rollers available. See page 34	Other rollers available. See page 34	Porcelain roller	Other rollers available. See page 34
5	R	FP 551-M2 Θ 1NO+1NC	FP 552-M2 Θ 1NO+1NC	FP 553-E11M2V9 Θ 1NO+1NC	FP 556-M2 Θ 1NO+1NC
6	L	FP 651-M2 $\Theta 1$ NO+1NC	FP 652-M2 Θ 1NO+1NC	FP 653-E11M2V9 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FP 656-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$
7	LO	FP 751-M2 $\Theta 1$ NO+1NC	FP 752-M2 Θ 1NO+1NC	FP 753-E11M2V9 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FP 756-M2 Θ 1NO+1NC
9	L	FP 951-M2 Θ 2NC	FP 952-M2 Θ 2NC	FP 953-E11M2V9 Θ 2NC	FP 956-M2 Θ 2NC
10	L	FP 1051-M2 2NO	FP 1052-M2 2NO	FP 1053-E11M2V9 2NO	FP 1056-M2 2NO
11	R	FP 1151-M2 Θ 2NC	FP 1152-M2 Θ 2NC		FP 1156-M2 Θ 2NC
12	R	FP 1251-M2 2NO	FP 1252-M2 2NO	FP 1253-E11M2V9 2NO	FP 1256-M2 2NO
13	LV	FP 1351-M2 Θ 2NC	FP 1352-M2 Θ 2NC	FP 1353-E11M2V9 Θ 2NC	FP 1356-M2 Θ 2NC
14	LS	FP 1451-M2 Θ 2NC	FP 1452-M2 Θ 2NC	FP 1453-E11M2V9 Θ 2NC	FP 1456-M2 Θ 2NC
15	LS	FP 1551-M2 2NO	FP 1552-M2 2NO	FP 1553-E11M2V9 2NO	FP 1556-M2 2NO
16	LI				FP 1656-M2 Θ 2NC
18	LA	FP 1851-M2 Θ 1NO+1NC	FP 1852-M2 Θ 1NO+1NC	FP 1853-E11M2V9 Θ 1NO+1NC	FP 1856-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$
20	L	FP 2051-M2 Θ 1NO+2NC	FP 2052-M2 Θ 1NO+2NC	FP 2053-E11M2V9 $¢ 1$ NO+2NC	FP 2056-M2 Θ 1NO+2NC
21	L	FP 2151-M2 $\Theta 3 N \mathrm{C}$	FP 2152-M2 $\Theta 3 N \mathrm{C}$	FP 2153-E11M2V9 $¢ 3 \mathrm{NC}$	FP 2156-M2 $\Theta 3 N \mathrm{C}$
22	L	FP 2251-M2 Θ 2NO+1NC	FP 2252-M2 Θ 2NO+1NC	FP 2253-E11M2V9 $¢ 2 \mathrm{NO}+1 \mathrm{NC}$	FP 2256-M2 Θ 2NO+1NC
2	R	FP 251-M2 2x(1NO-1NC)	FP 252-M2 2x(1NO-1NC)	FP 253-E11M2 2x(1NO-1NC)	FP 256-M2 2x(1NO-1NC)
E1	同	FP E151-M2 1NO-1NC	FP E152-M2 1NO-1NC	FP E153-E11M2V9 1NO-1NC	FP E156-M2 1NO-1NC
	speed	page 213 - type 1	page 213 - type 1	$0.5 \mathrm{~m} / \mathrm{s}$	page 213 - type 1
	g force	$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.03 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.1 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$
	agrams	page 214 - group 4	page 214 - group 4	page 214 - group 5	page 214 - group 4

${ }^{(1)}$ Positive opening only with actuator set to max. See page 33.
All values in the drawings are in mm
Items with code on green background are stock items

	Other rollers available. See page 34	With stainless steel rollers on request	With stainless steel rollers on request	Rope switch for signalling
$\left.\begin{array}{\|l\|l} \hline \mathbf{R} & =\text { snap action } \\ \hline \mathbf{L} & =\text { slow action } \\ \hline \mathbf{L O} & =\text { slow action } \\ \text { make before } \end{array}\right\} \begin{aligned} \text { break } \end{aligned}$ Contact block				
5 R	FP 557-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FP 541-M2 Θ 1NO+1NC	FP 542-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FP 576-M2 1NO+1NC
6 L	FP 657-M2 $\Theta 1$ NO+1NC	Bistable switch with lyra lever, single track	Bistable switch with lyra lever, dual track	FP 676-M2 1NO+1NC
7 L0	FP 757-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$			FP 776-M2 1NO+1NC
9 L	FP 957-M2 Θ 2NC			FP 976-M2 2NO
10 L	FP 1057-M2 2NO			FP 1076-M2 2NC
11 R	FP 1157-M2 Θ 2NC			FP 1176-M2 2 NO
12 R	FP 1257-M2 2NO			FP 1276-M2 2NC
13 LV	FP 1357-M2 Θ 2NC		(0) ${ }^{2}$ -	FP 1376-M2 2NO
14 LS	FP 1457-M2 $\Theta 2 \mathrm{NC}$		N	FP 1476-M2 2NO
15 LS	FP 1557-M2 2NO		(*)	FP 1576-M2 2NC
16 L	FP 1657-M2 Θ 2NC			
18 LA	FP 1857-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$			FP 1876-M2 1NO+1NC
20 L	FP 2057-M2 Θ 1NO+2NC	$45^{\circ} 65^{\circ} \oplus 80^{\circ} 90^{\circ}$	$5^{\circ} \oplus 80^{\circ} 90$	FP 2076-M2 2NO+1NC
21 L	FP 2157-M2 $\Theta 3 N \mathrm{C}$			FP 2176-M2 3NO
22 L	FP 2257-M2 Θ 2NO+1NC	$S=$ mechanical switching point positive opening on contacts 21-22 only	$\mathrm{S}=$ mechanical switching point positive opening on contacts 21-22 only	FP 2276-M2 1NO+2NC
2 R	FP 257-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC})$			FP 276-M2 2x(1NO-1NC)
E1 A	FP E157-M2 1NO-1NC			
Max. speed	page 213 - type 1	$0.5 \mathrm{~m} / \mathrm{s}$ with cam at 30°	$0.5 \mathrm{~m} / \mathrm{s}$ with cam at 30°	$0.5 \mathrm{~m} / \mathrm{s}$
Actuating force	0.1 Nm (0.25 Nm Θ)	$0.21 \mathrm{Nm}(0.36 \mathrm{Nm} \Theta)$	$0.21 \mathrm{Nm}(0.36 \mathrm{Nm} \Theta)$	initial 20 N - final 40 N
Travel diagrams	page 214 - group 4			page 214 - group 6

All values in the drawings are in mm

Position switches with swivelling lever without actuator

Separate actuators
IMPORTANT: These separate actuators can be used only with items of the FD, FP, FL, FC series

[^1]Stainless steel rollers, $\varnothing 20$ mm

VF L31-R24 Θ	VF L35-R24 $\Theta{ }^{(1)(3)}$	VF L51-R24 Θ	VF L52-R24 Θ	VF L56-R24 $\Theta^{(3)}$	VF L57-R24 Θ

Technopolymer rollers, $\varnothing 35$ mm

VF L31-R25 $\Theta{ }^{(4)}$	VF L35-R25 ${ }^{(1)}{ }^{(3)}$	VF L51-R25 $\Theta{ }^{(4)}$	VF L52-R25 Θ	VF L56-R25 $\Theta{ }^{\text {(3) }}$	VF L57-R25 Θ

Rubber rollers, $\varnothing 40 \mathrm{~mm}$

VF L31-R5 Θ (4)	VF L35-R5 ${ }^{(1)}{ }^{(13)}$	VF L51-R5 Θ (4)	VF L52-R5 Θ	VF L56-R5 $\underbrace{(3)}$	VF L57-R5 Θ (4)

Rubber rollers, $\varnothing 50 \mathrm{~mm}$

VF L31-R26 $\Theta{ }^{\text {(4) }}$	VF L35-R26 $\Theta{ }^{(1)}$ (3)	VF L51-R26 $\Theta{ }^{(4)}$	VF L52-R26 $\Theta{ }^{\text {(4) }}$	VF L56-R26 $\Theta{ }^{\text {(3) }}$	VF L57-R26 $\Theta{ }^{\text {(4) }}$

Protruding rubber rollers, $\varnothing 50 \mathrm{~mm}$

VF L35-R27 $\Theta{ }^{(1)(3)}$	VF L56-R27 $\Theta{ }^{(3)}$

Selection diagram

product options
Sold separately as accessory

Code structure Attention! The feasibility of a code number does not mean the effective availability of a product. Please contact our sales office.

Housing			
	metal, three conduit entries		
	Contact block		
	$51 \mathrm{NO}+1 \mathrm{NC}$, snap action		
	$61 \mathrm{NO}+1 \mathrm{NC}$, slow action		
	$71 \mathrm{NO}+1 \mathrm{NC}$, slow action, make before break		
		
	Actuators		
	01 short plunger		
	02 roller lever		
	05 angled lever with roller		
		
Contact type			
silver contacts (standard)			
silver contacts, $1 \mu \mathrm{~m}$ gold coating (except contact block 2)			
G1	silver contacts, $2.5 \mu \mathrm{~m}$ gold coating (not for contact block 2, 20, 21, 22)		

Threaded conduit entries
M2 M20×1.5 (standard) PG 13.5

Ambient temperature

	$-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ (standard)
T6	$-40^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$

$$
\text { T6 }-40^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}
$$

Rollers

standard roller

R24 stainless steel Ø 20 mm (for actuators $02,05,31,35,51,52,56,57$)
R25 technopolymer, $\varnothing 35 \mathrm{~mm}$
(for actuators 31, 35, 51, 52, 56, 57)
R5 rubber, $\varnothing 40 \mathrm{~mm}$
(for actuators $31,35,51,52,56,57$)
R26 rubber, $\varnothing 50 \mathrm{~mm}$
(for actuators 31, 35, 51, 52, 56,57)
R27 rubber, protruding, $\varnothing 50 \mathrm{~mm}$ (for actuators 35 and 36)

Pre-installed cable glands or connectors

> no cable gland or connector (standard)

K23 cable gland for cables $\varnothing 6 \ldots 12 \mathrm{~mm}$
K50 M12 metal connector, 5-pole
For the complete list of possible combinations please contact our technical department.

Main features

- Metal housing, three conduit entries
- Protection degree IP67
- 17 contact blocks available
- 28 actuators available
- Versions with M12 connector
- Versions with gold-plated silver contacts

Quality marks:

IMQ approval:	EG605
UL approval:	E131787
CCC approval:	2007010305230000
EAC approval:	RU C-IT.АД35.В.00454

Technical data

Housing

Metal housing, powder-coated
Three threaded conduit entries:
Protection degree:
M20x1.5 (standard)
IP67 acc. to EN 60529 with cable gland presenting same or higher protection degree

General data

Ambient temperature:
Max. actuation frequency:
Mechanical endurance:
Mounting position:
Safety parameter B_{100} :
Mechanical interlock, not coded:
Tightening torques for installation:
$-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$
3600 operating cycles/hour
20 million operating cycles any
40,000,000 for NC contacts
type 1 acc. to EN ISO 14119
see page 211-222

Cable cross section (flexible copper strands)

Contact blocks 20, 21, 22, 33, 34:

Contact blocks $5,6,7,9,10,11,12,13,14,15,16,18$:

Contact block 2:

In compliance with standards:

IEC 60947-5-1, EN 60947-5-1, EN 60947-1, IEC 60204-1, EN 60204-1, EN ISO 14119, EN ISO 12100, IEC 60529, EN 60529, UL 508, CSA 22.2 No. 14.

Approvals:

IEC 60947-5-1, UL 508, CSA 22.2 No.14, GB14048.5-2001.

Compliance with the requirements of:

Low Voltage Directive 2014/35/EU, EMC Directive 2014/30/EU.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1, VDE 0660-206.

Installation for safety applications:

Use only switches marked with the symbol Θ next to the product code. Always connect the safety circuit to the NC contacts (normally closed contacts: 11-12, 21-22 or 31-32) as required by EN ISO 14119, paragraph 5.4 for specific interlock applications and EN ISO $13849-2$ tables D3 (well-tried components) and D. 8 (fault exclusions) for safety applications in general. Actuate the switch at least up to the positive opening travel shown in the travel diagrams on page 214. Actuate the switch at least with the positive opening force, reported in brackets below each article, next to the actuating force value.
§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see the instructions given on pages 211 to 222.

Features approved by IMO

Rated insulation voltage (U_{i}):	500 Vac 400 Vac (for contact blocks 2, 11, 12, 20,
	21,22, 33, 34)
Conventional free air thermal current	10 A
Protection against short circuits:	type aM fuse 10 A 500 V
Rated impulse withstand voltage ($\mathrm{U}_{\mathrm{imp}}$) : 6 kV	
Protection degree of the housing:	IP67
MV terminals (screw terminals)	
Pollution degree:	3
Utilization category:	AC15
Operating voltage (U_{e}):	$400 \mathrm{Vac}(50 \mathrm{~Hz})$
Operating current (I_{e}):	3 A
Forms of the contact element: $\mathrm{Za}, \mathrm{Zb}, \mathrm{Za}+\mathrm{Za}, \mathrm{Y}+\mathrm{Y}, \mathrm{X}+\mathrm{X}, \mathrm{Y}+\mathrm{Y}+\mathrm{X}, \mathrm{Y}+\mathrm{Y}+\mathrm{Y}, \mathrm{Y}+\mathrm{X}+\mathrm{X}$	
Positive opening of contacts on contact blocks $5,6,7,9,11,13,14,16,18,20$,	
21, 22, 33, 34	
In compliance with standards: EN 60947-1, EN 60947-5-1+ A1:2009, fundamental	

500 Vac
ntact blocks 2, 11, 12, 20
type aM fuse 10 A 500 V
6 kV
34)

IP67

AC15
400 Vac (50 Hz)
3 A

Operating voltage ($U_{\text {e }}$):
Forms of the contact element: $\mathrm{Za}, \mathrm{Zb}, \mathrm{Za}+\mathrm{Za}, \mathrm{Y}+\mathrm{Y}, \mathrm{X}+\mathrm{X}, \mathrm{Y}+\mathrm{Y}+\mathrm{X}, \mathrm{Y}+\mathrm{Y}+\mathrm{Y}, \mathrm{Y}+\mathrm{X}+\mathrm{X}$ Positive opening of contacts on contact blocks $5,6,7,9,11,13,14,16,18,20$, ,22, 33, 34
requirements of the Low Voltage Directive 2014/35/EU.

Features approved by UL

Utilization category Q 300 ($69 \mathrm{VA}, 125-250 \mathrm{Vdc}$)

$$
\text { A600 (720 VA, } 120-600 \mathrm{Vac})
$$

Housing features type 1, 4X, 12, 13
For all contact blocks except 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductors, rigid or flexible, wire size 12, 14 AWG. Tightening torque for terminal screws of 7.1 lb in (0.8 Nm).
For contact blocks 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductors, rigid or flexible, wire size 14 AWG. Tightening torque for terminal screws of 12 lb in (1.4 Nm).

In compliance with standard: UL 508, CSA 22.2 No. 14
Please contact our technical department for the list of approved products.

Please contact our technical department for the list of approved products.
Wiring diagram for M12 connectors

$\begin{gathered} \text { Contact block } 2 \\ \text { 1NO-1NC+1NO- } \\ 1 \mathrm{NC} \end{gathered}$	Contact block 5 $1 \mathrm{NO}+1 \mathrm{NC}$	Contact block 6 $1 \mathrm{NO}+1 \mathrm{NC}$	Contact block 7 $1 \mathrm{NO}+1 \mathrm{NC}$	$\begin{aligned} & \text { Contact block } 9 \\ & \text { 2NC } \end{aligned}$	$\begin{gathered} \text { Contact block10 } \\ 2 N O \end{gathered}$	$\begin{aligned} & \text { Contact block11 } \\ & 2 \mathrm{NC} \end{aligned}$	$\begin{gathered} \text { Contact block12 } \\ 2 \text { NO } \end{gathered}$	$\begin{gathered} \text { Contact block13 } \\ \text { 2NC } \end{gathered}$
M12 connector, 8 -pole	M12 connector, 5-pole							
Contacts Pin no. NO 3-4	Contacts Pin no. NC $\quad 1-2$	Contacts Pin no. NO 1-2	Contacts Pin no. NC $\quad 1-2$	Contacts Pin no. NO 1-2	Contacts Pin no. NC (19) 1-2			
NC 5-6	NO 3-4	NO 3-4	NO 3-4	NC 3-4	NO 3-4	NC 3-4	NO 3-4	NC (20) 3 -4
NC 7-8	ground 5							
NO 1-2								

Contact block E1

 PNPM12 connector, 5-pole

Contacts	Pin no.
+	1
-	3
NC	2
NO	4
ground	5

Contact type: \mathbf{R} \mathbf{L} = snap action = slow action $\begin{aligned} & \text { LO }=\text { slow action } \\ & \text { LO }\end{aligned}$ make before break \qquad shifted $\mathbf{L V}=$ slow action shifted and LI = slow action LA = slow action $\frac{\lambda}{A}=$ electronic PNP						With stainess steel Ioler on request	
5	[FL 501-M2 Θ 1 ${ }^{\text {NO}+1 \mathrm{NC}}$	FL 502-M2 Θ - ${ }^{\text {NOO+1NC }}$	FL 504-M2	$1 \mathrm{NO}+1 \mathrm{NC}$	FL 505-M2 Θ 1 ${ }^{\text {NO+1NC }}$
6	\square	FL 601-M2 Θ 1 ${ }^{\text {NO}+1 \mathrm{NC}}$	FL 602-M2 Θ 1 ${ }^{\text {NO}+1 \mathrm{NC}}$	FL 604-M2	$1 \mathrm{NO}+1 \mathrm{NC}$	FL 605-M2 Θ 1 ${ }^{10+1 \mathrm{NC}}$	
7	L0	FL 701-M2 Θ 1 ${ }^{\text {NO}+1 \mathrm{Nc}}$	FL 702-M2 Θ - ${ }^{\text {N }}$ + +1 NC	FL 704-M2	$1 \mathrm{NO}+1 \mathrm{NC}$	FL 705-M2 \bigodot 1 ${ }^{\text {NO}+1 \mathrm{NC}}$	
9	L	FL 901-M2 Θ 2NC	FL 902-M2 \bigodot 2NC	FL 904-M2	2NC	FL 905-M2 Θ 2NC	
10	\square	FL 1001-M2 2NO	FL 1002-M2 2NO	FL 1004-M2	2NO	FL 1005-M2 2NO	
11	R	FL 1101-M2 \oplus 2NC	FL 1102-M2 Θ 2NC	FL 1104-M2	2 NC	FL 1105-M2 Θ 2NC	
12	R	FL 1201-M2 2NO	FL 1202-M2 2NO	FL 1204-M2	2NO	FL 1205-M2 2NO	
13	LV	FL 1301-M2 Θ 2NC	FL 1302-M2 Θ 2NC	FL 1304-M2	2 N	FL 1305-M2 Θ 2NC	
14	LS	FL 1401-M2 Θ 2NC	FL 1402-M2 Θ 2NC	FL 1404-M2	2NC	FL 1405-M2 Θ 2NC	
15	LS	FL 1501-M2 2NO	FL 1502-M2 2NO	FL 1504-M2	2NO	FL 1505-M2 2NO	
18	LA	FL 1801-M2 Θ 1 ${ }^{\text {NO+1NC }}$	FL 1802-M2 Θ 1 ${ }^{\text {NO}+1 \mathrm{NC}}$	FL 1804-M2	$1 \mathrm{NO}+1 \mathrm{NC}$	FL 1805-M2 $\odot 1$ 1 ${ }^{\text {+ }}$ +1NC	
20	\square	FL 2001-M2 Θ 1 ${ }^{\text {NO}+2 N C}$	FL 2002-M2 Θ 1NO+2NC	FL 2004-M2	1NO+2NC	FL 2005-M2 Θ 1 ${ }^{\text {NO}+2 N C}$	
21	L	FL 2101-M2 Θ 3NC	FL 2102-M2 Θ 3NC	FL 2104-M2	3NC	FL 2105-M2 Θ 3NC	
22	\square	FL 2201-M2 Θ 2NO+1NC	FL 2202-M2 Θ 2NO+1NC	FL 2204-M2	$2 \mathrm{NO}+1 \mathrm{NC}$	FL 2205-M2 $\Theta 2 \mathrm{NO}+1 \mathrm{NC}$	
2	R	FL 201-M2 2x(1NO-1NC)	FL 202-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$	FL 204-M2	2x(100-1NC)	FL 205-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$	
E1	凩	FL E101-M2 1NO-1NC	FL E102-M2 1NO-1NC	FL E104-M2	$1 \mathrm{NO}-1 \mathrm{NC}$	FL E105-M2 1NO-1NC	
	speed	page 213 - type 4	page 213 - type 3		m / s	page 213 - type 3	
	ng force	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$6 \mathrm{~N}(25 \mathrm{~N} \oplus)$		Nm	$6 \mathrm{~N}(25 \mathrm{~N} \oplus)$	
	digrams	page 214 - group 1	page 214 - group 2	page 21	- group 1	page 214 - group 2	

Contact block			With external rubber gasket		With external rubber gasket	
5	R		FL 508-M2 Θ 1 ${ }^{\text {NO}+1 \mathrm{NC}}$.	FL 510-M2 Θ - ${ }^{1 N O+1 N C}$	FL 511-M2 Θ 1 ${ }^{\text {NO}+1 \mathrm{NC}}$	FL 515-M2 Θ 1 ${ }^{\text {NO}}+1 \mathrm{NC}$
6	\square	FL 608-M2 Θ 1 ${ }^{\text {NO}+1 N C}$	FL 610-M2 Θ 1 ${ }^{\text {NO}+1 \mathrm{NC}}$	FL 611-M2 Θ 1 ${ }^{\text {PO}+1 \mathrm{NC}}$	FL 615-M2 Θ 1 ${ }^{\text {NO}+1 \mathrm{NC}}$	
7	L0	FL 708-M2 Θ - ${ }^{\text {NO+1NC }}$	FL 710-M2 Θ - ${ }^{\text {NO}+1 N C}$	FL 711-M2 \bigodot - ${ }^{1 N O+1 N C}$	FL 715-M2 Θ 1 ${ }^{\text {NO}+1 \mathrm{NC}}$	
9	\square	FL 908-M2 Θ 2NC	FL 910-M2 Θ 2NC	FL 911-M2 Θ 2NC	FL 915-M2 \oplus 2NC	
10	\square	FL 1008-M2 2NO	FL 1010-M2 2NO	FL 1011-M2 2 NO	FL 1015-M2 2NO	
11	R	FL 1108-M2 $\underbrace{2 N C}$	FL 1110-M2 Θ 2NC	FL 1111-M2 \oplus 2NC	FL 1115-M2 Θ 2NC	
12	R	FL 1208-M2 2NO	FL 1210-M2 2NO	FL 1211-M2 2 NO	FL 1215-M2 2NO	
13	LV]	FL 1308-M2 Θ 2NC	FL 1310-M2 Θ 2NC	FL 1311-M2 Θ 2NC	FL 1315-M2 Θ 2NC	
14	LS	FL 1408-M2 Θ 2NC	FL 1410-M2 Θ 2NC	FL 1411-M2 Θ 2NC	FL 1415-M2 Θ 2NC	
15	LS	FL 1508-M2 2NO	FL 1510-M2 2NO	FL 1511-M2 2NO	FL 1515-M2 2NO	
18	LA	FL 1808-M2 $\odot 1$ 1NO+1NC	FL 1810-M2 Θ 1 ${ }^{\text {NO}+1 \mathrm{NC}}$		FL 1815-M2 Θ 1 ${ }^{\text {NO}+1 \mathrm{NC}}$	
20	\square	FL 2008-M2 Θ 1NO+2NC	FL 2010-M2 Θ 1 $\mathrm{NO}+2 \mathrm{NC}$	FL 2011-M2 $\Theta 1$ NO+2NC	FL 2015-M2 Θ 1 $\mathrm{NO}+2 \mathrm{NC}$	
21	\square	FL 2108-M2 Θ 3NC	FL 2110-M2 $\odot 3 \mathrm{NC}$	FL 2111-M2 $\Theta 3 \mathrm{NC}$	FL 2115-M2 \oplus 3NC	
22	\square	FL 2208-M2 $\odot 2 \mathrm{NO}+1 \mathrm{NC}$	FL 2210-M2 Θ 2NO+1NC	FL 2211-M2 $\odot 2 \mathrm{NO}+1 \mathrm{NC}$	FL 2215-M2 Θ 2NO+1NC	
2	R	FL 208-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$	FL 210-M2 2x(1NO-1NC)	FL 211-M2 2x(1NO-1NC)	FL 215-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$	
E1	肉	FL E108-M2 1NO-1NC	FL E110-M2 1NO-1NC	FL E111-M2 1NO-1NC	FL E115-M2 1NO-1NC	
	speed	page 213 - type 4	page 213 - type 4	page 213 - type 4	page 213 - type 2	
	g force	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$11 \mathrm{~N}(25 \mathrm{~N} \oplus)$	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$11 \mathrm{~N}(25 \mathrm{~N} \oplus)$	
	agrams	page 214 - group 1	page 214 - group 1	page 214-group 1	page 214 - group 1	

All values in the drawings are in mm
Items with code on green background are stock items

Contact type:			Ball, Ø 8 mm, stainless steel	Ball, $\varnothing 12.7$ mm, stainless steel	With extemal ubber gasket	
5	R	FL 516-M2 Θ 1 ${ }^{1 \mathrm{NO}+1 \mathrm{NC}}$	FL 518-M2 Θ - ${ }^{\text {NO}+1 N C}$	FL 519-M2 Θ - ${ }^{1 N O+1 N C}$	FL 520-M2	O+1
6	\square	FL 616-M2 Θ - ${ }^{1 N O+1 N C}$	FL 618-M2 Θ - ${ }^{\text {NO}}+1 \mathrm{NC}$	FL 619-M2 Θ 1 ${ }^{1 N+1 N C}$		
7	L0	FL 716-M2 Θ 1 ${ }^{\text {NO}+1 \mathrm{NC}}$	FL 718-M2 Θ 1 ${ }^{\text {NO}+1 N C}$	FL 719-M2 $¢$ ¢ ${ }^{1 N O+1 N C}$		
9	\square	FL 916-M2 Θ 2NC	FL 918-M2 Θ 2NC	FL 919-M2 Θ 2NC		
10	\square	FL 1016-M2 2NO	FL 1018-M2 2NO	FL 1019-M2 2NO	FL 1020-M2	2NO
11	R	FL 1116-M2 Θ 2NC	FL 1118-M2 Θ 2NC	FL 1119-M2 Θ 2NC		
12	R	FL 1216-M2 2NO	FL 1218-M2 2NO	FL 1219-M2 2NO		
13	LV	FL 1316-M2 Θ 2NC	FL 1318-M2 Θ 2NC	FL 1319-M2 Θ 2NC		
14	LS	FL 1416-M2 Θ 2NC	FL 1418-M2 Θ 2NC	FL 1419-M2 Θ 2NC		
15	LS	FL 1516-M2 2NO	FL 1518-M2 2NO	FL 1519-M2 2NO		
18	LA	FL 1816-M2 Θ 1 ${ }^{\text {NO}+1 \mathrm{NC}}$	FL 1818-M2 Θ 1 ${ }^{\text {NO}+1 N C}$	FL 1819-M2 $\odot{ }^{1 N \mathrm{NO}+1 \mathrm{NC}}$	FL 1820-M2	1NO+1NC
20	\square	FL 2016-M2 Θ 1NO+2NC	FL 2018-M2 Θ 1NO+2NC	FL 2019-M2 Θ 1 ${ }^{\text {NO}+2 N C}$	FL 2020-M2	$1 \mathrm{NO}+2 \mathrm{NC}$
21	\square	FL 2116-M2 Θ 3NC	FL 2118-M2 Θ 3NC	FL 2119-M2 Θ 3NC	FL 2120-M2	3NC
22	\square	FL 2216-M2 Θ 2NO+1NC	FL 2218-M2 Θ 2NO+1NC	FL 2219-M2 $\Theta 2 \mathrm{NO}+1 \mathrm{NC}$	FL 2220-M2	2NO+1NC
2	R	FL 216-M2 2x(1NO-1NC)	FL 218-M2 2x(1NO-1NC)	FL 219-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$	FL 220-M2	(1NO-1NC)
E1	因	FL E116-M2 1NO-1NC	FL E118-M2 1NO-1NC	FL E119-M2 1No-1NC	FL E120-M2	$1 \mathrm{NO}-1 \mathrm{NC}$
	speed	page 213 - type 2	page 213 - type 4	page 213 - type 4		
	g force	$8 \mathrm{~N}(25 \mathrm{~N}$ - $)$	$8 \mathrm{~N}(25 \mathrm{~N} \oplus)$	$8 \mathrm{~N}(25 \mathrm{~N} \oplus)$		Nm
	dagrams	page 214 - group 1	page 214 - group 1	page 214 - group 1	page 21	- group 3

All values in the drawings are in mm

Contact block		Other rollers available. See page 44	Other rollers available. See page 44	Porcelain roller	Other rollers available. See page 44
5	R	FL 551-M2 Θ 1NO+1NC	FL 552-M2 Θ 1NO+1NC	FL 553-E11M2V9 Θ 1NO+1NC	FL 556-M2 Θ 1NO+1NC
6	L	FL 651-M2 Θ 1NO+1NC	FL 652-M2 Θ 1NO+1NC	FL 653-E11M2V9 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FL 656-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$
7	LO	FL 751-M2 Θ 1NO+1NC	FL 752-M2 Θ 1NO+1NC	FL 753-E11M2V9 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FL 756-M2 Θ 1NO+1NC
9	L	FL 951-M2 Θ 2NC	FL 952-M2 $\Theta 2 N \mathrm{C}$	FL 953-E11M2V9 $\Theta 2 N C$	FL 956-M2 $\Theta 2 N \mathrm{C}$
10	L	FL 1051-M2 2NO	FL 1052-M2 2NO	FL 1053-E11M2V9 2NO	FL 1056-M2 2NO
11	R	FL 1151-M2 Θ 2NC	FL 1152-M2 Θ 2NC		FL 1156-M2 Θ 2NC
12	R	FL 1251-M2 2NO	FL 1252-M2 2NO	FL 1253-E11M2V9 2NO	FL 1256-M2 2NO
13	LV	FL 1351-M2 Θ 2NC	FL 1352-M2 Θ 2NC	FL 1353-E11M2V9 Θ 2NC	FL 1356-M2 Θ 2NC
14	LS	FL 1451-M2 Θ 2NC	FL 1452-M2 Θ 2NC	FL 1453-E11M2V9 Θ 2NC	FL 1456-M2 Θ 2NC
15	LS	FL 1551-M2 2NO	FL 1552-M2 2NO	FL 1553-E11M2V9 2NO	FL 1556-M2 2NO
16	LI				FL 1656-M2 Θ 2NC
18	LA	FL 1851-M2 Θ 1NO+1NC	FL 1852-M2 Θ 1NO+1NC	FL 1853-E11M2V9 Θ 1NO+1NC	FL 1856-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$
20	L	FL 2051-M2 Θ 1NO+2NC	FL 2052-M2 Θ 1NO+2NC	FL 2053-E11M2V9 $\Theta 1 \mathrm{NO}+2 \mathrm{NC}$	FL 2056-M2 Θ 1NO+2NC
21	L	FL 2151-M2 $\Theta 3 \mathrm{NC}$	FL 2152-M2 $\Theta 3 \mathrm{NC}$	FL 2153-E11M2V9 $\Theta 3 \mathrm{NC}$	FL 2156-M2 $\Theta 3 \mathrm{NC}$
22	L	FL 2251-M2 Θ 2NO+1NC	FL 2252-M2 Θ 2NO+1NC	FL 2253-E11M2V9 Θ 2NO+1NC	FL 2256-M2 Θ 2NO+1NC
2	R	FL 251-M2 2x(1NO-1NC)	FL 252-M2 2x(1NO-1NC)	FL 253-E11M2 2×1 (1NO-1NC	FL 256-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC})$
E1	友	FL E151-M2 1NO-1NC	FL E152-M2 1NO-1NC	FL E153-E11M2V9 1NO-1NC	FL E156-M2 1NO-1NC
Max. speed		page 213 - type 1	page 213 - type 1	$0.5 \mathrm{~m} / \mathrm{s}$	page 213 - type 1
Actuating force		$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.03 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.1 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$
Travel diagrams		page 214 - group 4	page 214 - group 4	page 214 - group 5	page 214 - group 4

${ }^{(1)}$ Positive opening only with actuator set to max. See page 43.

	Other rollers available．See page 44			Rope switch for signalling
5 R	FL 557－M2 Θ 1NO＋1NC	FL 541－M2 Θ 1NO＋1NC	FL 542－M2 Θ 1NO＋1NC	FL 576－M2 1NO＋1NC
6 L	FL 657－M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	able switch with lyra lever，single	Bistable switch with lyra lever，dual track	FL 676－M2 1NO＋1NC
7 L0	FL 757－M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	track		FL 776－M2 1NO＋1NC
$9 \square$	FL 957－M2 Θ 2NC			FL 976－M2 2NO
10 L	FL 1057－M2 2NO	S	$1 \sim$	FL 1076－M2 2NC
11 R	FL 1157－M2 Θ 2NC	）	4）	FL 1176－M2 2 NO
12 R	FL 1257－M2 2NO	2） 1	＜ 0	FL 1276－M2 2NC
13 LV	FL 1357－M2 Θ 2NC	－	（1）	FL 1376－M2 2NO
14 LS	FL 1457－M2 Θ 2NC	（1）	\rightarrow 无	FL 1476－M2 2 NO
15 LS	FL 1557－M2 2NO	等	\cdots	FL 1576－M2 2NC
16 L	FL 1657－M2 Θ 2NC		（2） 1	
18 LA	FL 1857－M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$			FL 1876－M2 1NO＋1NC
20 L	FL 2057－M2 $\Theta 1$ NO＋2NC		$45^{\circ} 65^{\circ} \oplus 80^{\circ} 90^{\circ}$	FL 2076－M2 2NO＋1NC
21 L	FL 2157－M2 $\Theta 3 N C$			FL 2176－M2 3NO
22 L	FL 2257－M2 $\Theta 2 \mathrm{NO}+1 \mathrm{NC}$	$25^{\circ} \mathrm{S}$	$S=$ mechanical switching point	FL 2276－M2 1NO＋2NC
2 R	FL 257－M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$	$S=\text { mechanical switching point }$	positive opening on contacts 21－22 only	FL 276－M2 2x（1NO－1NC）
E1 交	FL E157－M2 1NO－1NC	positive opening on contacts 21－22 only		
Max．speed	page 213 －type 1	$0.5 \mathrm{~m} / \mathrm{s}$ with cam at 30°	$0.5 \mathrm{~m} / \mathrm{s}$ with cam at 30°	$0.5 \mathrm{~m} / \mathrm{s}$
Actuating force	$0.1 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.21 \mathrm{Nm}(0.36 \mathrm{Nm} \Theta)$	$0.21 \mathrm{Nm}(0.36 \mathrm{Nm} \Theta)$	initial 20 N －final 40 N
Travel diagrams	page 214 －group 4			page 214 －group 6

All values in the drawings are in mm

Position switches with swivelling lever without actuator

Contact type:		Regular head	Compact head	
	action action action before action d action ed and ed action pendent action ronic ock			
5	R	FL 538-M2 Θ 1NO+1NC	FL 558-M2 Θ 1NO+1NC	FL 540-M2 \bigodot 1NO+1NC
6	L	FL 638-M2 Θ 1NO+1NC	FL 658-M2 Θ 1NO+1NC	Bistable switch
7	L0	FL 738-M2 Θ 1NO+1NC	FL 758-M2 Θ 1NO+1NC	
9	L	FL 938-M2 Θ 2NC	FL 958-M2 Θ 2NC	$0 \quad 45^{\circ} 65^{\circ} \oplus 80^{\circ} 90^{\circ}$
10	L	FL 1038-M2 2NO	FL 1058-M2 2NO	
11	R	FL 1138-M2 Θ 2NC	FL 1158-M2 Θ 2NC	S = mechanical switching point
12	R	FL 1238-M2 2NO	FL 1258-M2 2NO	positive opening on contacts 21-22 only
13	LV	FL 1338-M2 Θ 2NC	FL 1358-M2 Θ 2NC	
14	LS	FL 1438-M2 Θ 2NC	FL 1458-M2 Θ 2NC	
15	LS	FL 1538-M2 2NO	FL 1558-M2 2NO	
16	\square	FL 1638-M2 Θ 2NC		
18	LA	FL 1838-M2 Θ 1NO+1NC	FL 1858-M2 Θ 1NO+1NC	
20	L	FL 2038-M2 Θ 1NO+2NC	FL 2058-M2 Θ 1NO+2NC	
21	L	FL 2138-M2 $\Theta 3 \mathrm{NC}$	FL 2158-M2 $\Theta 3 \mathrm{NC}$	
22	L	FL 2238-M2 Θ 2NO+1NC	FL 2258-M2 Θ 2NO+1NC	
2	R	FL 238-M2 2x(1NO-1NC)	FL 258-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC}$)	
E1	友	FL E138-M2 1NO-1NC	FL E158-M2 1NO-1NC	
Actuating force		$0.1 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.5 \mathrm{~m} / \mathrm{s}$ with cam at 30°
Travel diagrams		page 214 - group 4	page 214 - group 4	$0.21 \mathrm{Nm}(0.36 \mathrm{Nm} \Theta)$

All values in the drawings are in mm

IMPORTANT

For safety applications: join only switches and actuators marked with symbol Θ next to the product code. For more information about safety applications see details on page 211.

[^2]
Special separate actuators

IMPORTANT: These separate actuators can be used only with items of the FD, FP, FL, FC series.
Stainless steel rollers, $\varnothing 20 \mathrm{~mm}$

VF L31-R24 Θ	VF L35-R24 $\Theta{ }^{\text {(1) }}$ (3)	VF L51-R24 Θ	VF L52-R24 Θ	VF L56-R24 $\Theta{ }^{\text {(3) }}$	VF L57-R24 Θ

Technopolymer rollers, $\varnothing 35$ mm

VF L31-R25 $\Theta{ }^{(4)}$	VF L35-R25 ${ }^{(1)}{ }^{(3)}$	VF L51-R25 $\Theta{ }^{(4)}$	VF L52-R25 Θ	VF L56-R25 $\Theta{ }^{\text {(3) }}$	VF L57-R25 Θ

Rubber rollers, $\varnothing 40 \mathrm{~mm}$

VF L31-R5 Θ (4)	VF L35-R5 ${ }^{(1)}{ }^{(13)}$	VF L51-R5 Θ (4)	VF L52-R5 Θ	VF L56-R5 $\underbrace{(3)}$	VF L57-R5 Θ (4)

Rubber rollers, $\varnothing 50 \mathrm{~mm}$

VF L31-R26 $\Theta{ }^{(4)}$	VF L35-R26 $\Theta{ }^{(1)}{ }^{(3)}$	VF L51-R26 $\Theta{ }^{\text {(4) }}$	VF L52-R26 $\Theta{ }^{(4)}$	VF L56-R26 $\Theta{ }^{\text {(3) }}$	VF L57-R26 $\Theta{ }^{\text {(4) }}$

Protruding rubber rollers, $\varnothing 50 \mathrm{~mm}$

VF L35-R27 $\Theta{ }^{(1)}{ }^{(3)}$	VF L56-R27 $\Theta{ }^{\text {(3) }}$

Selection diagram

CONDUIT ENTRY

With cable gland	
K23	
	for cables $\varnothing 6 \ldots 12 \mathrm{~mm}$
K27	for cables $\varnothing 3 . \ldots 7 \mathrm{~mm}$

Code structure
Attention! The feasibility of a code number does not mean the effective availability of a product. Please contact our sales office.

Contact type

silver contacts (standard)
G
silver contacts, $1 \mu \mathrm{~m}$ gold coating (not for contact block 3)

Threaded conduit entry
M2 M20×1.5 (standard)
PG11

Ambient temperature
$-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ (standard)
T6 $-40^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$

Rollers

standard roller
stainless steel $\varnothing 20 \mathrm{~mm}$
(for actuators $02,05,31,35,51,52,56,57$)
R25 technopolymer, $\varnothing 35 \mathrm{~mm}$
(for actuators 31, 35, 51, 52,56,57)
R5 rubber, $\varnothing 40 \mathrm{~mm}$
(for actuators 31, 35, 51, 52, 56, 57)
R26 rubber, $\varnothing 50 \mathrm{~mm}$
(for actuators 31, 35, 51, 52, 56, 57)
R27 rubber, protruding, $\varnothing 50 \mathrm{~mm}$
(for actuators 35 and 36)

Pre-installed cable glands

 no cable gland (standard)K23 cable gland for cables $\varnothing 6 \ldots 12 \mathrm{~mm}$
K27 cable gland for cables $\emptyset 3 \ldots 7^{\circ} \mathrm{mm}$
K50 M12 metal connector, 5-pole
For the complete list of possible combinations please contact our technical department

Main features

- Metal housing, one conduit entry
- Protection degree IP67
- 3 contact blocks available
- 26 actuators available
- Versions with M12 connector
- Versions with gold-plated silver contacts

Quality marks:

IMQ approval:	EG605
UL approval:	E131787
CCC approval:	2007010305230000
EAC approval:	RU C-IT.AД35.B. 00454

Technical data

Housing

Metal housing, powder-coated
One threaded conduit entry:
Protection degree:
M20×1.5 (standard)
IP67 acc. to EN 60529
with cable gland presenting same or higher protection degree

General data

Ambient temperature:
Max. actuation frequency:
Mechanical endurance:
Mounting position:
Safety parameter $\mathrm{B}_{10 \mathrm{D}}$:
Mechanical interlock, not coded:
Tightening torques for installation:

$-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$

3600 operating cycles/hour
20 million operating cycles any
40,000,000 for NC contacts
type 1 acc. to EN ISO 14119 see page 211-222

Cable cross section (flexible copper strands)
Contact blocks 33, 34:
Contact block 3:

\min.	$1 \times 0.34 \mathrm{~mm}^{2}$	$(1 \times$ AWG 22)
\max.	$2 \times 1.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 16)
\min.	$1 \times 0.5 \mathrm{~mm}^{2}$	$(1 \times$ AWG 20)
\max.	$2 \times 1.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 16)

In compliance with standards:

IEC 60947-5-1, EN 60947-5-1, EN 60947-1, IEC 60204-1, EN 60204-1, EN ISO 14119, EN ISO 12100, IEC 60529, EN 60529, UL 508, CSA 22.2 No. 14.

Approvals:

IEC 60947-5-1, UL 508, CSA 22.2 No.14, GB14048.5-2001.

Compliance with the requirements of:

Low Voltage Directive 2014/35/EU, EMC Directive 2014/30/EU.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.

Installation for safety applications:

Use only switches marked with the symbol Θ next to the product code. Always connect the safety circuit to the NC contacts (normally closed contacts: 11-12, 21-22 or 31-32) as required by EN ISO 14119, paragraph 5.4 for specific interlock applications and EN ISO $13849-2$ tables D3 (well-tried components) and D. 8 (fault exclusions) for safety applications in general. Actuate the switch at least up to the positive opening travel shown in the travel diagrams on page 214. Actuate the switch at least with the positive opening force, reported in brackets below each article, next to the actuating force value.
§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see the instructions given on pages 211 to 222.

Features approved by IMO

Rated insulation voltage (U_{i}):	500 Vac 400 Vac (for contact blocks 33, 34)
Conventional free air thermal current	10 A
($\mathrm{t}_{\text {th }}$):	
Protection against short circuits:	type aM fuse 10 A 500 V
Rated impulse withstand voltage (U_{im})	6 kV
	4 kV (for contact blocks 33, 34)
Protection degree of the housing:	IP67
MV terminals (screw terminals)	
Pollution degree:	3
Utilization category:	AC15
Operating voltage (Ue):	$400 \mathrm{Vac}(50 \mathrm{~Hz})$
Operating current (le):	3 A
Forms of the contact element:	Zb, Y + Y

Features approved by UL

Utilization category Q300 (69 VA, 125-250 Vdc) A600 (720 VA, 120-600 Vac)
Housing features type 1, 4X, 12, 13
For all contact blocks except 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductors, rigid or flexible, wire size 12,14 AWG. Tightening torque for terminal screws of 7.1 lb in (0.8 Nm).
For contact blocks 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductors, rigid or flexible, wire size 14 AWG. Tightening torque for terminal screws of
12 lb in (1.4 Nm).
In compliance with standard: UL 508, CSA 22.2 No. 14
Please contact our technical department for the list of approved products.

Positive opening of contacts on contact blocks 33, 34
In compliance with standards: EN 60947-1, EN 60947-5-1 + A1:2009, fundamental requirements of the Low Voltage Directive 2014/35/EU.

Please contact our technical department for the list of approved products.

Wiring diagram for M12 connectors

		With external rubber gasket		With external rubber gasket
Contact block				
3 R	FC 308-M2 1NO-1NC	FC 310-M2 1NO-1NC	FC 311-M2 1NO-1NC	FC 315-M2 1NO-1NC
33 L	FC 3308-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FC 3310-M2 Θ 1NO+1NC	FC 3311-M2 Θ 1NO+1NC	FC 3315-M2 Θ 1NO+1NC
34 L	FC 3408-M2 Θ 2NC	FC 3410-M2 Θ 2NC	FC 3411-M2 Θ 2NC	FC 3415-M2 Θ 2NC
Max. speed	page 213 - type 4	page 213 - type 4	page 213 - type 4	page 213 - type 2
Actuating force	$6 \mathrm{~N}(25 \mathrm{~N}$ - $)$	$7 \mathrm{~N}(25 \mathrm{~N}$ - $)$	$6 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$7 \mathrm{~N}(25 \mathrm{~N} \Theta)$
Travel diagrams	page 214 - group 1			

(

	Square rod, $3 \times 3 \mathrm{~mm}$		Other rollers available. See page 52	Glass fibre rod
Contact block				
3 R	FC 333-M2 1NO-1NC	FC 334-M2 1NO-1NC	FC 335-M2 1NO-1NC	FC 336-M2 1NO-1NC
33 L	FC 3333-M2 1NO+1NC	FC 3334-M2 1NO+1NC	FC 3335-M2 $\Theta{ }^{\text {(1) }} 1 \mathrm{NO}+1 \mathrm{NC}$	FC 3336-M2 1NO+1NC
34 L	FC 3433-M2 2NC	FC 3434-M2 2NC	FC 3435-M2 ${ }^{(1)} 2 \mathrm{NC}$	FC 3436-M2 2NC
Max. speed	$1.5 \mathrm{~m} / \mathrm{s}$	$1 \mathrm{~m} / \mathrm{s}$	page 213 - type 1	$1.5 \mathrm{~m} / \mathrm{s}$
Actuating force	0.09 Nm	0.09 Nm	$0.09 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	0.09 Nm
Travel diagrams	page 214 - group 4			

	Other rollers available. See page 52	Other rollers available. See page 52	Porcelain roller	Other rollers available. See page 52
Contact block				
Contact block 3 R	FC 351-M2 1NO-1NC	FC 352-M2 1NO-1NC	FC 353-E11M2 1NO-1NC	FC 356-M2 1NO-1NC
33 L	FC 3351-M2 \rightarrow 1NO+1NC	FC 3352-M2 \rightarrow 1NO+1NC	FC 3353-E11M2V9 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FC 3356-M2 Θ 1NO+1NC
34 L	FC 3451-M2 Θ 2NC	FC 3452-M2 Θ 2NC	FC 3453-E11M2V9 Θ 2NC	FC 3456-M2 Θ 2NC
Max. speed	page 213 - type 1	page 213 - type 1	$0.5 \mathrm{~m} / \mathrm{s}$	page 213 - type 1
Actuating force	$0.05 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.05 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.02 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.09 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$
Travel diagrams	page 214 - group 4	page 214 - group 4	page 214 - group 5	page 214 - group 4

${ }^{(1)}$ Positive opening only with actuator set to max. See page 51.
All values in the drawings are in mm

Contact type:	Other rollers available. See page 52	Rope switch for signalling
$\begin{aligned} \hline \mathbf{R} & =\text { snap action } \\ \hline \mathbf{L} & =\text { slow action } \end{aligned}$		
3 R	FC 357-M2 1NO-1NC	FC 376-M2 1NO-1NC
33 L	FC 3357-M2 Θ 1NO+1NC	FC 3376-M2 1NO+1NC
34 L	FC 3457-M2 Θ 2NC	FC 3476-M2 2 NC
Max. speed	page 213 - type 1	$0.5 \mathrm{~m} / \mathrm{s}$
Actuating force	$0.09 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	initial 20 N - final 40 N
Travel diagrams	page 214 - group 4	page 214 - group 6

All values in the drawings are in mm
Position switches with swivelling lever without actuator

IMPORTANT

For safety applications: join only switches and actuators marked with symbol Θ next to the product code.
For more information about safety applications see details on page 211.

Separate actuators
IMPORTANT: These separate actuators can be used only with items of the FD, FP, FL, FC series.

Technopolymer roller $\varnothing 20 \mathrm{~mm}$	Adjustable round rod Ø $3 \times 125 \mathrm{~mm}$	Adjustable square rod, $3 \times 3 \times 125 \mathrm{~mm}$	Flexible rod with pointed end	Adjustable actuator with technopolymer roller	Adjustable glass fibre rod
VF L31 Θ	VF L32 ${ }^{(3)}$	VF L33 ${ }^{(3)}$	VF L34	VF L35 $\Theta{ }^{\text {(1) }}$ (3)	VF L36 ${ }^{(3)}$
Technopolymer roller $\varnothing 20 \mathrm{~mm}$	Technopolymer roller $\varnothing 20$ mm	Porcelain roller	Adjustable safety actuator with technopolymer roller	Technopolymer roller $\varnothing 20 \mathrm{~mm}$	
VF L51 Θ	VF L52 Θ	VF L53 $\Theta^{(2)}$	VF L56 $\Theta^{(3)}$	VF L57 Θ	

Special separate actuators
Stainless steel rollers, $\varnothing 20 \mathrm{~mm}$

VF L31-R24 Θ	VF L35-R24 Θ (1) (3)	VF L51-R24 Θ	VF L52-R24 Θ	VF L56-R24 $\Theta{ }^{\text {(3) }}$	VF L57-R24 Θ

Technopolymer rollers, $\varnothing 35 \mathrm{~mm}$

VF L31-R25 $\Theta{ }^{\text {(4) }}$	VF L35-R25 ${ }^{(1)}{ }^{(3)}$	VF L51-R25 $\Theta{ }^{(4)}$	VF L52-R25 Θ	VF L56-R25 $\Theta{ }^{(3)}$	VF L57-R25 Θ

Rubber rollers, $\varnothing 40 \mathrm{~mm}$

VF L31-R5 Θ (4)	VF L35-R5 $\Theta{ }^{(1)}{ }^{(3)}$	VF L51-R5 Θ (4)	VF L52-R5 Θ	VF L56-R5 $\underbrace{(3)}$	VF L57-R5 Θ (4)

Rubber rollers, $\varnothing 50 \mathrm{~mm}$

VF L31-R26 $\underbrace{(4)}$	VF L35-R26 $\underbrace{(1)}{ }^{(3)}$	VF L51-R26 $\Theta{ }^{\text {(4) }}$	VF L52-R26 $\Theta{ }^{(4)}$	VF L56-R26 $\Theta{ }^{\text {(3) }}$	VF L57-R26 $\Theta{ }^{\text {(4) }}$

Protruding rubber rollers, $\varnothing 50 \mathrm{~mm}$

[^3]
Description

Pizzato Elettrica position switches are daily installed in every type of industrial machinery all over the world for applications in the sector of wood, metal, plastic, automotive, packaging, lifting, medicinal, naval, etc.
In order to be used in a wide variety of sectors and countries, Pizzato Elettrica position switches are designed to be assembled in a lot of configurations, thanks to a wide range of body shapes, dozens of contact blocks, hundreds of actuators and materials, different actuating forces and
several fixing methods.
Pizzato Elettrica can offer one of the widest product range of position switches in the world. Moreover, the use of high quality materials, high reliability technologies (e.g. twin bridge contact blocks) as well as the IP67 protection degree make this range of position switches one of the most technologically evolved

Protection degree IP67

These devices are designed to be used in the toughest environmental conditions and they pass the IP67 immersion test acc. to EN 60529. They can therefore be used in all environments where maximum protection degree of the housing is required.

Adjustable levers

For switches with swivelling lever, the lever can be adjusted in 10° steps over the entire 360° range. The positive movement transmission is always guaranteed thanks to the particular geometrical coupling
 between the lever and the revolving shaft as prescribed for safety applications by the German standard BG-GS-ET-15.

Head with variable orientation

For all switches the head can be rotated in 90° steps.

Extended temperature range

These devices are also available in a special version suitable for an ambient operating temperature range from $-40^{\circ} \mathrm{C}$ up to $+80^{\circ} \mathrm{C}$. They can therefore be used for applications in cold stores, sterilisers and other equipment with low temperature environments. The special materials used to produce these versions retain their characteristics even under these conditions, thereby expanding the installation possibilities.

Reversible levers

For switches with swivelling lever, the lever can be fastened on straight or reverse side maintaining the positive coupling. In this way two different working planes of the lever are possible.

Adjustable safety lever

The adjustable lever code 56 (and variants) is provided with a notching that prevents the sliding also in case the fastening screw becomes loose.
Thanks to the special geometrical coupling it is suitable for safety applications.

Independent contacts

The contact block 16 is provided with two NC contacts, both with positive opening, that can be independently switched depending on the lever turning direction.

Contact block

Contact blocks with captive screws, finger protection, twin bridge contacts and double interruption for higher contact reliability. They are available in multiple variants with shifted activation travels, simultaneous or overlapping. They are suitable for many different applications.

Stainless steel external metallic parts

AISI 304
Upon request, some of these devices can be supplied with stainless steel external metallic parts instead of the usual zinc-plated steel. This solution is particularly suited for environments where aggressive chemical agents or saline mist are present. See page 191.

Increased or reduced actuating force

For actuators with swivelling lever, versions with increased or reduced actuating force are available upon request, in order to have a switch perfectly tailored for the application. For further information contact our technical department.

Selection diagram

CONDUIT ENTRY

product options
Sold separately as accessory

Code structure

Attention! The feasibility of a code number does not mean the effective availability of a product. Please contact our sales office. article
FR 502-W3XGM2 70 R23T6

Reset

without reset (standard)
W3 simultaneous reset
W4 simultaneous reset, increased force

External metallic parts
zinc-plated steel (standard)
X stainless steel

Main features

- Technopolymer housing, one conduit entry
- Protection degree IP67
- 17 contact blocks available
- 48 actuators available
- Versions with external parts in stainless steel
- Versions with M12 connector
- Versions with gold-plated silver contacts

Technical data

Housing

Housing made of glass fibre reinforced technopolymer, self-extinguishing, shock-proof and with double insulation:
One threaded conduit entry:
Protection degree:
M20x1.5 (standard)
IP67 acc. to EN 60529 with cable gland presenting same or higher protection degree

General data

Ambient temperature:
Max. actuation frequency:
Mechanical endurance:
Mounting position:
Safety parameter B_{100} :
Mechanical interlock, not coded:
Tightening torques for installation:
$-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$
3600 operating cycles/hour
20 million operating cycles
any
40,000,000 for NC contacts
type 1 acc. to EN ISO 14119
see page 211-222

Cable cross section (flexible copper strands)

Contact blocks 20, 21, 22, 33, 34:

Contact blocks $5,6,7,9,10,11,12,13,14,15,16,18:$

Contact block 2:

In compliance with standards:

IEC 60947-5-1, EN 60947-5-1, EN 60947-1, EN 50047, IEC 60204-1, EN 60204-1,
EN ISO 14119, EN ISO 12100, IEC 60529, EN 60529, UL 508, CSA 22.2 No. 14
Approvals:
IEC 60947-5-1, UL 508, CSA 22.2 No.14, GB14048.5-2001.

Compliance with the requirements of:

Low Voltage Directive 2014/35/EU, EMC Directive 2014/30/EU.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.

Quality marks:

IMQ approval:	EG610
UL approval:	E131787
CCC approval:	2007010305230013
EAC approval:	RU C-IT.AД35.B. 00454

Installation for safety applications:

Use only switches marked with the symbol Θ next to the product code. Always connect the safety circuit to the NC contacts (normally closed contacts: 11-12, 21-22 or 31-32) as required by EN ISO 14119, paragraph 5.4 for specific interlock applications and EN ISO $13849-2$ tables D3 (well-tried components) and D. 8 (fault exclusions) for safety applications in general. Actuate the switch at least up to the positive opening travel shown in the travel diagrams on page 216. Actuate the switch at least with the positive opening force, reported in brackets below each article, next to the actuating force value.
§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see the instructions given on pages 211 to 222.

Electrical data		Utilization category
	10 A 500 Vac 600 Vdc 400 Vac 500 Vdc (contact blocks 2, 11, 12, 20, 21, 22, 33, 34) 6 kV 4 kV (contact blocks $20,21,22,33,34$) 1000 A acc. to EN 60947-5-1 type aM fuse 10 A 500 V 3	Alternating current: AC15 $(50 \div 60 \mathrm{~Hz})$ Ue (V) 250 400 500 le (A) 6 4 1 Direct current: DC13 Ue (V) 24 125 250 le (A) 6 1.1 0.4
	4 A 250 Vac 300 Vdc type gG fuse 4 A 500 V 3	Slternating current: AC15 $(50 \div 60 \mathrm{~Hz})$ Ue (V) 24 120 250 le (A) 4 4 4 Direct current: DC13 Ue (V) 24 125 250 le (A) 4 1.1 0.4
	```2 A 30 Vac 36 Vdc type gG fuse 2 A 500 V 3```	Alternating current: AC15 $(50 \div 60 \mathrm{~Hz})$   Ue (V) 24   le (A) 2   Direct current: DC13   Ue (V) 24   le (A) 2

## Features approved by IMO

Rated insulation voltage (Ui):

Conventional free air thermal current (lth): Protection against short circuits:
Rated impulse withstand voltage $\left(\mathrm{U}_{\text {imp }}\right)$ :

Protection degree of the housing
MV terminals (screw terminals)
Pollution degree:
Utilization category:
Operating voltage (Ue)
Operating current (le):

500 Vac
400 Vac (for contact blocks 2, 11, 12, 20 $21,22,33,34)$
10 A
type aM fuse 10 A 500 V
6 kV
4 kV
(for contact blocks 20, 21, 22, 33, 34) IP67

3
AC15
$400 \mathrm{Vac}(50 \mathrm{~Hz})$
3 A

## Features approved by UL

Utilization category Q300 (69 VA, 125-250 Vdc)
A600 ( $720 \mathrm{VA}, 120-600 \mathrm{Vac}$ )
Housing features type $1,4 \mathrm{X}$ "indoor use only", 12,13
For all contact blocks except 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductors, rigid or flexible, wire size 12, 14 AWG. Tightening torque for terminal screws of 7.1 lb in ( 0.8 Nm ).
For contact blocks 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductors, rigid or flexible, wire size 14 AWG. Tightening torque for terminal screws of
12 lb in ( 1.4 Nm ).
In compliance with standard: UL 508, CSA 22.2 No. 14
Please contact our technical department for the list of approved products.

Forms of the contact element: $Z a, Z b, Z a+Z a, Y+Y, X+X, Y+Y+X, Y+Y+Y, Y+X+X$
Positive opening of contacts on contact blocks $5,6,7,9,11,13,14,16,18,20$, 21, 22, 33, 34
In compliance with standards: EN 60947-1, EN 60947-5-1 + A1:2009, fundamental requirements of the Low Voltage Directive 2014/35/EU.

Please contact our technical department for the list of approved products.

Wiring diagram for M12 connectors

$\begin{gathered} \text { Contact block } 2 \\ \text { 1NO-1NC+1NO- } \\ \text { 1NC } \end{gathered}$	Contact block 5 $1 \mathrm{NO}+1 \mathrm{NC}$	Contact block 6 $1 \mathrm{NO}+1 \mathrm{NC}$	Contact block 7 $1 \mathrm{NO}+1 \mathrm{NC}$	$\begin{gathered} \text { Contact block } 9 \\ \text { 2NC } \end{gathered}$	$\begin{gathered} \text { Contact block } 10 \\ 2 \text { NO } \end{gathered}$	Contact block 11 2NC	Contact block 12 2NO	$\begin{aligned} & \text { Contact block13 } \\ & \text { 2NC } \end{aligned}$
M12 connector, 8 -pole	M12 connector, 4 -pole	M12 connector, 4-pole	M12 connector, 4-pole	M12 connector, 4 -pole	M12 connector, 4-pole	M12 connector, 4 -pole	M12 connector, 4-pole	M12 connector, 4-pole
Contacts Pin no.   NO 3-4	Contacts Pin no.   NC $1-2$	$\begin{array}{cc} \hline \text { Contacts } & \text { Pin no. } \\ \text { NC } & 1-2 \end{array}$	$\begin{array}{cc} \text { Contacts } & \text { Pin no. } \\ \text { NC } & 1-2 \end{array}$	$\begin{array}{cc} \text { Contacts } & \text { Pin no. } \\ \text { NC } & 1-2 \end{array}$	Contacts Pin no.   NO $1-2$	Contacts Pin no.   NC $1-2$	Contacts Pin no.   NO $1-2$	$\begin{array}{cc} \hline \text { Contacts } & \text { Pin no. } \\ \text { NC (1 } \left.{ }^{\circ}\right) & 1-2 \end{array}$
NC 5-6	NO 3-4	NO 3-4	NO 3-4	NC $\quad 3-4$	NO 3-4	NC 3-4	NO 3-4	NC (20) 3 -4
NC 7-8								
NO 1-2								
Contact block 14 2NC	Contact block 15 2NO	$\begin{gathered} \text { Contact block } 16 \\ 2 N C \end{gathered}$	Contact block 18 $1 \mathrm{NO}+1 \mathrm{NC}$	$\begin{aligned} & \text { Contact block } 20 \\ & \text { NNC+1NO } \end{aligned}$	Contact block 21 3NC	Contact block 22 $1 \mathrm{NC}+2 \mathrm{NO}$	Contact block33 $1 \mathrm{NC}+1 \mathrm{NO}$	$\begin{aligned} & \text { Contact block34 } \\ & \text { 2NC } \end{aligned}$
M12 connector, 4-pole	M12 connector, 4-pole	M12 connector, 4 -pole	M12 connector, 4-pole	M12 connector, 8 -pole	M12 connector, 8 -pole	M12 connector, 8 -pole	M12 connector, 4-pole	M12 connector, 4-pole
Contacts Pin no.   NC (1) 1-2	Contacts Pin no.   NO (19) 1-2	Contacts Pin no.   NC, lever to the right 1-2	Contacts Pin no.   NC 1-2	Contacts Pin no.   NC $\quad 3-4$	Contacts Pin no.   NC $\quad 3-4$	Contacts Pin no.   NC $\quad 3-4$	Contacts Pin no.   NC $\quad 1-2$	Contacts Pin no.   NC $\quad 1-2$
NC (2) ${ }^{\circ}$ 3-4	NO (2 ${ }^{\circ}$ ) 3-4	NC, lever to the left 3-4	NO 3-4	NC 5-6	NC 5-6	NO 5-6	NO 3-4	NC 3-4
				NO 7-8	NC 7-8	NO 7-8		



M12 connector, 4-pole

Contacts	Pin no.
+	1
-	3
NC	2
NO	4


Contact type:		With external rubber gasket	With stainless steel roller on request	With external rubber gasket   With stainless steel roller on request
$\mathbf{R}$ = snap action   $\mathbf{L}$ = slow action   LO = slow action   break make before   LS = slow action shifted   LV = slow action shifted and spaced   LI = slow action independent   LA = slow action close   育 = electronic   PNP				
Contact block				
5 R	FR 501-M2 $\Theta$ 1NO+1NC	FR 5A1-M2 $\Theta$ 1NO+1NC	FR 502-M2 $\Theta$ 1NO+1NC	FR 5A2-M2 $\Theta$ 1NO+1NC
6 L	FR 601-M2 $\Theta$ 1NO+1NC	FR 6A1-M2 $\Theta$ 1NO+1NC	FR 602-M2 $\Theta$ 1NO+1NC	FR 6A2-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$
7 LO	FR 701-M2 $\Theta$ 1NO+1NC	FR 7A1-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FR 702-M2 $\Theta$ 1NO+1NC	FR 7A2-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$
$9 \quad \mathrm{~L}$	FR 901-M2 $\Theta$ 2NC	FR 9A1-M2 $\Theta 2 \mathrm{NC}$	FR 902-M2 $\Theta$ 2NC	FR 9A2-M2 $\Theta$ 2NC
10 L	FR 1001-M2 2NO	FR 10A1-M2 2NO	FR 1002-M2 2NO	FR 10A2-M2 2NO
11 R	FR 1101-M2 $\Theta$ 2NC	FR 11A1-M2 $\Theta$ 2NC	FR 1102-M2 $\Theta$ 2NC	FR 11A2-M2 $\Theta$ 2NC
12 R	FR 1201-M2 2NO	FR 12A1-M2 2NO	FR 1202-M2 2NO	FR 12A2-M2 2NO
13 LV	FR 1301-M2 $\Theta$ 2NC	FR 13A1-M2 $\Theta$ 2NC	FR 1302-M2 $\Theta$ 2NC	FR 13A2-M2 $\Theta$ 2NC
14 LS	FR 1401-M2 $\Theta$ 2NC	FR 14A1-M2 $\Theta$ 2NC	FR 1402-M2 $\Theta$ 2NC	FR 14A2-M2 $\Theta$ 2NC
15 LS	FR 1501-M2 2NO	FR 15A1-M2 2No	FR 1502-M2 2NO	FR 15A2-M2 2NO
18 LA	FR 1801-M2 $\Theta$ 1NO+1NC	FR 18A1-M2 $\Theta$ 1NO+1NC	FR 1802-M2 $\Theta$ 1NO+1NC	FR 18A2-M2 $\Theta$ 1NO+1NC
20 L	FR 2001-M2 $\Theta$ 1NO+2NC	FR 20A1-M2 $\Theta$ 1NO+2NC	FR 2002-M2 $\Theta$ 1NO+2NC	FR 20A2-M2 $\Theta$ 1NO+2NC
21 L	FR 2101-M2 $\Theta$ 3NC	FR 21A1-M2 $\Theta 3 \mathrm{NC}$	FR 2102-M2 $\Theta$ 3NC	FR 21A2-M2 $\Theta 3 \mathrm{NC}$
22 L	FR 2201-M2 $\Theta$ 2NO+1NC	FR 22A1-M2 $\Theta$ 2NO+1NC	FR 2202-M2 $\Theta$ 2NO+1NC	FR 22A2-M2 $\Theta 2 \mathrm{NO}+1 \mathrm{NC}$
2 R	FR 201-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$		FR 202-M2 2x(1NO-1NC)	FR 2A2-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC})$
E1 $\pi$	FR E101-M2 1NO-1NC	FR E1A1-M2 1NO-1NC	FR E102-M2 1NO-1NC	FR E1A2-M2 1NO-1NC
Max. speed	page 215 - type 4	page 215 - type 4	page 215 - type 3	page 215 - type 3
Actuating force	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$6 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$6 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$4.3 \mathrm{~N}(25 \mathrm{~N} \Theta)$
Travel diagrams	page 216 - group 1	page 216 - group 1	page 216 - group 2	page 216 - group 2



All values in the drawings are in mm
Items with code on green background are stock items
Accessories See page 197

Contact type：	With external rubber gasket	With external rubber gasket	Secured only by means of threaded head in vertical position	
Contact block				
5 R	FR 5A7－M2 $\Theta$ 1NO＋1NC	FR 508－M2 $\Theta$ 1NO＋1NC	FR 510－M2 $\Theta$ 1NO＋1NC	FR 512－M2 $\Theta$ 1NO＋1NC
6 L	FR 6A7－M2 $\Theta$ 1NO＋1NC	FR 608－M2 $\Theta$ 1NO＋1NC	FR 610－M2 $\Theta$ 1NO＋1NC	FR 612－M2 $\Theta$ 1NO＋1NC
7 L0	FR 7A7－M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FR 708－M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FR 710－M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FR 712－M2 $\Theta$ 1NO＋1NC
9 L	FR 9A7－M2 $\Theta$ 2NC	FR 908－M2 $\Theta$ 2NC	FR 910－M2 $\Theta$ 2NC	FR 912－M2 $\Theta$ 2NC
10 L	FR 10A7－M2 2NO	FR 1008－M2 2NO	FR 1010－M2 2NO	FR 1012－M2 2NO
11 R	FR 11A7－M2 $\Theta$ 2NC	FR 1108－M2 $\Theta$ 2NC	FR 1110－M2 $\Theta$ 2NC	FR 1112－M2 $\Theta$ 2NC
12 R	FR 12A7－M2 2NO	FR 1208－M2 2NO	FR 1210－M2 2NO	FR 1212－M2 2NO
13 LV	FR 13A7－M2 $\Theta$ 2NC	FR 1308－M2 $\Theta$ 2NC	FR 1310－M2 $\Theta$ 2NC	FR 1312－M2 $\Theta$ 2NC
14 LS	FR 14A7－M2 $\Theta$ 2NC	FR 1408－M2 $\Theta$ 2NC	FR 1410－M2 $\Theta$ 2NC	FR 1412－M2 $\Theta$ 2NC
15 LS	FR 15A7－M2 2NO	FR 1508－M2 2NO	FR 1510－M2 2NO	FR 1512－M2 2NO
18 LA	FR 18A7－M2 $\Theta$ 1NO＋1NC	FR 1808－M2 $\Theta$ 1NO＋1NC	FR 1810－M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FR 1812－M2 $\Theta$ 1NO＋1NC
20 L	FR 20A7－M2 $\Theta$ 1NO＋2NC	FR 2008－M2 $\Theta$ 1NO＋2NC	FR 2010－M2 $\Theta$ 1NO＋2NC	FR 2012－M2 $\Theta$ 1NO＋2NC
21 L	FR 21A7－M2 $\Theta 3 \mathrm{NC}$	FR 2108－M2 $\Theta$ 3NC	FR 2110－M2 $\Theta$ 3NC	FR 2112－M2 $\Theta$ 3NC
22 L	FR 22A7－M2 $\Theta$ 2NO＋1NC	FR 2208－M2 $\Theta$ 2NO＋1NC	FR 2210－M2 $\Theta$ 2NO＋1NC	FR 2212－M2 $\Theta$ 2NO＋1NC
2 R	FR 2A7－M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$	FR 208－M2 2x（1NO－1NC）	FR 210－M2 2x（1NO－1NC）	FR 212－M2 2x（1NO－1NC）
E1 亩	FR E1A7－M2 1NO－1NC	FR E108－M2 1NO－1NC	FR E110－M2 1NO－1NC	FR E112－M2 1NO－1NC
Max．speed	page 215 －type 3	page 215 －type 4	page 215 －type 4	page 215 －type 4
Actuating force	$3 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$8 \mathrm{~N}(25 \mathrm{~N}$－	$8 \mathrm{~N}(25 \mathrm{~N}$－$)$	$8 \mathrm{~N}(25 \mathrm{~N})^{\text {）}}$
Travel diagrams	page 216 －group 3	page 216 －group 1	page 216 －group 1	page 216 －group 1


Contact block				Roller，Ø 11 mm ，technopolymer	Roller，$\varnothing 12 \mathrm{~mm}$ ，stainless steel	
5	R		FR 513－M2 $\Theta$ 1NO＋1NC	FR 514－M2 $\Theta$ 1NO＋1NC	FR 515－M2 $\Theta$ 1NO＋1NC	FR 515－M2R28 $\Theta$ 1NO＋1NC
6	L	FR 613－M2 $\Theta$ 1NO＋1NC	FR 614－M2 $\Theta$ 1NO＋1NC	FR 615－M2 $\Theta$ 1NO＋1NC	FR 615－M2R28 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	
7	LO	FR 713－M2 $\Theta$ 1NO＋1NC	FR 714－M2 $\Theta$ 1NO＋1NC	FR 715－M2 $\Theta$ 1NO＋1NC	FR 715－M2R28 $\Theta 1$ OO＋1NC	
9	L	FR 913－M2 $\Theta$ 2NC	FR 914－M2 $\Theta$ 2NC	FR 915－M2 $\Theta$ 2NC	FR 915－M2R28 $\Theta$ 2NC	
10	L	FR 1013－M2 2NO	FR 1014－M2 2NO	FR 1015－M2 2NO	FR 1015－M2R28 2NO	
11	R	FR 1113－M2 $\Theta$ 2NC	FR 1114－M2 $\Theta$ 2NC	FR 1115－M2 $\Theta$ 2NC	FR 1115－M2R28 $\Theta$ 2NC	
12	R	FR 1213－M2 2NO	FR 1214－M2 2NO	FR 1215－M2 2NO	FR 1215－M2R28 2NO	
13	LV	FR 1313－M2 $\Theta$ 2NC	FR 1314－M2 $\Theta$ 2NC	FR 1315－M2 $\Theta$ 2NC	FR 1315－M2R28 $\Theta$ 2NC	
14	LS	FR 1413－M2 $\Theta 2 \mathrm{NC}$	FR 1414－M2 $\Theta$ 2NC	FR 1415－M2 $\Theta 2 \mathrm{NC}$	FR 1415－M2R28 $\Theta$ 2NC	
15	LS	FR 1513－M2 2NO	FR 1514－M2 2NO	FR 1515－M2 2NO	FR 1515－M2R28 2NO	
18	LA	FR 1813－M2 $\Theta$ 1NO＋1NC	FR 1814－M2 $\Theta$ 1NO＋1NC	FR 1815－M2 $\Theta$ 1NO＋1NC	FR 1815－M2R28 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	
20	L	FR 2013－M2 $\Theta$ 1NO＋2NC	FR 2014－M2 $\Theta$ 1NO＋2NC	FR 2015－M2 $\Theta$ 1NO＋2NC	FR 2015－M2R28 $\Theta$ 1NO＋2NC	
21	L	FR 2113－M2 $\Theta$ 3NC	FR 2114－M2 $\Theta 3 \mathrm{NC}$	FR 2115－M2 $\Theta 3 \mathrm{NC}$	FR 2115－M2R28 $\Theta$ 3NC	
22	$\square$	FR 2213－M2 $\Theta$ 2NO＋1NC	FR 2214－M2 $\Theta$ 2NO＋1NC	FR 2215－M2 $\Theta$ 2NO＋1NC	FR 2215－M2R28 $\Theta 2 \mathrm{NO}+1 \mathrm{NC}$	
2	R	FR 213－M2 2x（1NO－1NC）	FR 214－M2 2x（1NO－1NC）	FR 215－M2 2x（1NO－1NC）	FR 215－M2R28 2x（1NO－1NC）	
E1	同	FR E113－M2 1NO－1NC	FR E114－M2 1NO－1NC	FR E115－M2 1NO－1NC	FR E115－M2R28 1NO－1NC	
Max．speed		page 215 －type 2	page 215 －type 4	page 215 －type 2	page 215 －type 2	
Actuating force		$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$				
Travel diagrams		page 216－group 1	page 216 －group 1	page 216 －group 1	page 216 －group 1	

All values in the drawings are in mm
Items with code on green background are stock items
Accessories See page 197
$\rightarrow$ The 2D and 3D files are available at www．pizzato．com




Contact block	Porcelain roller	Other rollers available. See on page 66	Other rollers available. See on page 66	Other rollers available. See on page 66
5 R	FR 553-E0M2V9 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FR 554-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FR 555-M2 $\Theta$ (1) $1 \mathrm{NO}+1 \mathrm{NC}$	FR 556-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$
6 L	FR 653-E0M2V9 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FR 654-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FR 655-M2 $\Theta$ (1) $1 \mathrm{NO}+1 \mathrm{NC}$	FR 656-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$
7 LO	FR 753-E0M2V9 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FR 754-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FR 755-M2 $\Theta$ (1) $1 \mathrm{NO}+1 \mathrm{NC}$	FR 756-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$
9 L	FR 953-E0M2V9 $\Theta 2 \mathrm{NC}$	FR 954-M2 $\Theta 2 \mathrm{NC}$	FR 955-M2 $\Theta$ (1) 2 NC	FR 956-M2 $\Theta$ 2NC
10 L	FR 1053-E0M2V9 2NO	FR 1054-M2 2NO	FR 1055-M2 2NO	FR 1056-M2 2NO
11 R		FR 1154-M2 $\Theta$ 2NC	FR 1155-M2 $\rightarrow$ (1) 2 NC	FR 1156-M2 $\Theta$ 2NC
12 R	FR 1253-E0M2V9 2NO	FR 1254-M2 2NO	FR 1255-M2 2NO	FR 1256-M2 2NO
13 LV	FR 1353-E0M2V9 $\Theta 2 N C$	FR 1354-M2 $\Theta$ 2NC	FR 1355-M2 $\Theta$ (1) 2NC	FR 1356-M2 $\rightarrow 2 \mathrm{NC}$
14 LS	FR 1453-E0M2V9 $\Theta 2 N C$	FR 1454-M2 $\Theta$ 2NC	FR 1455-M2 $\rightarrow$ (1) 2 NC	FR 1456-M2 $\Theta$ 2NC
15 LS	FR 1553-E0M2V9 2NO	FR 1554-M2 2NO	FR 1555-M2 2NO	FR 1556-M2 2NO
16 LI		FR 1654-M2 $\Theta$ 2NC	FR 1655-M2 $\rightarrow$ (1) ${ }^{\text {2 }}$ (1)	FR 1656-M2 $\Theta$ 2NC
18 LA	FR 1853-E0M2V9 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FR 1854-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FR 1855-M2 $\Theta$ (1) $1 \mathrm{NO}+1 \mathrm{NC}$	FR 1856-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$
20 L	FR 2053-E0M2V9 $\Theta 1 \mathrm{NO}+2 \mathrm{NC}$	FR 2054-M2 $\Theta$ 1NO+2NC	FR 2055-M2 $\Theta$ (1) $1 \mathrm{NO}+2 \mathrm{NC}$	FR 2056-M2 $\Theta 1 \mathrm{NO}+2 \mathrm{NC}$
21 L	FR 2153-E0M2V9 $\Theta 3 N C$	FR 2154-M2 $\Theta$ 3NC	FR 2155-M2 $\rightarrow$ (1) 3 NC	FR 2156-M2 $\Theta$ 3NC
22 L	FR 2253-E0M2V9 $\Theta 2 \mathrm{NO}+1 \mathrm{NC}$	FR 2254-M2 $\Theta 2 \mathrm{NO}+1 \mathrm{NC}$	FR 2255-M2 $\Theta$ (1) $2 \mathrm{NO}+1 \mathrm{NC}$	FR 2256-M2 $\Theta 2 \mathrm{NO}+1 \mathrm{NC}$
2 R	FR 253-E0M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC})$	FR 254-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC}$ )	FR 255-M2 2x(1NO-1NC)	FR 256-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC}$ )
E1 交	FR E153-E0M2V9 1NO-1NC	FR E154-M2 1NO-1NC	FR E155-M2 1NO-1NC	FR E156-M2 1NO-1NC
Max. speed	$0.5 \mathrm{~m} / \mathrm{s}$	page 215 - type 1	page 215 - type 1	page 215 - type 1
Actuating force	$0.03 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$
Travel diagrams	page 216 - group 6	page 216 - group 5	page 216 - group 5	page 216 - group 5

[^4]

## FR series position switches with reset



Pizzato Elettrica has developed a reset device code W3 to make perfectly simultaneous the actuator and the contact block tripping.
This device consists in a block to be mounted between the body and the head of the switch that can be rotated independently from the head. This new device offers the following advantages:

- The reset device can be integrated into almost all standard actuator heads
- Contact blocks with snap action are no more necessary because the tripping movement is executed by the reset device itself
- The reset device can be rotated independently from the head ensuring maximum flexibility during installation
-Two actuating forces: standard and increased for vibration applications
- Mechanical endurance: 1 million operating cycles.


All values in the drawings are in mm
Items with code on green background are stock items


6	$\square$
9	$\square$
10	L
20	$\square$
21	$\square$
22	$\square$
2	[
Max. speed	
Actuating force	
Travel diagrams	


Other rollers available. See on page 66	Other rollers available. See on page 66
FR 652-W3M2 $\Theta$ 1NO+1NC	FR 654-W3M2 $\Theta$ 1NO+1
FR 952-W3M2 $\Theta$ 2NC	FR 954-W3M2 $\Theta$ 2NC
FR 1052-W3M2 2NO	FR 1054-W3M2 2NO
FR 2052-W3M2 $\Theta$ 1NO+2NC	FR 2054-W3M2 $\Theta 1 \mathrm{NO}+2 \mathrm{NC}$
FR 2152-W3M2 $\Theta 3 N C$	FR 2154-W3M2 $\Theta$ 3NC
FR 2252-W3M2 $\Theta 2 \mathrm{NO}+1 \mathrm{NC}$	FR 2254-W3M2 $\Theta$ 2NO+1NC
FR 252-W3M2 2NO+2NC	FR 254-W3M2 2NO+2NC
page 215 - type 1	page 215 - type 1
$0.07 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.07 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$
page 217 - group 4	page 217 - group 4


Other rollers available. See on page 66	Other rollers available. See on page 66
FR 656-W3M2 $\Theta$ 1NO+1NC	

All values in the drawings are in mm

## Increased actuating force



The switch can be delivered with increased actuating force (option W4). Ideal for vibration applications.

Actuators	Actuating for
$01,14,15,16$	7 N
02,05	6 N
07	3.5 N
$30 \ldots 57$	0.08 Nm

To order the switch with reset and increased actuating force, replace the -W3 option with
-W4 in the order code.
Example: FR 601-W3M2 $\rightarrow$ FR 601-W4M2

Position switches with swivelling lever without actuator


## IMPORTANT

For safety applications: join only switches and actuators marked with symbol $\Theta$ next to the product code.
For more information about safety applications see details on page 211.

## Separate actuators

IMPORTANT: These separate actuators can be used only with items of the FR, FM, FX, FZ and FK series,

Technopolymer roller Ø 18 mm	Technopolymer roller Ø 18 mm	Adjustable square rod, $3 \times 3 \times 125 \mathrm{~mm}$	Flexible rod with pointed end	Adjustable round rod $\varnothing 3 \times 125 \mathrm{~mm}$	Technopolymer roller $\varnothing 20 \mathrm{~mm}$	
VF LE30 $\Theta$	VF LE31 $\Theta$	VF LE33	VF LE34	VF LE50	VF LE51 $\Theta$	
Technopolymer roller $\varnothing 20$ mm	Porcelain roller	Technopolymer roller $\varnothing 20$ mm	Adjustable actuator with technopolymer roller	Adjustable safety actuator with technopolymer roller	Technopolymer roller Ø 20 mm	Adjustable glass fibre rod


VF LE52 $\Theta$	VF LE53 ${ }^{(2)}$	VF LE54 $\Theta$	VF LE55 $\Theta{ }^{(1)}$	VF LE56 $\Theta$	VF LE57 $\Theta$	VF LE69

[^5]

Stainless steel rollers, $\varnothing 20$ mm

VF LE31-R24 $\Theta$	VF LE51-R24 $\Theta$	VF LE52-R24 $\Theta$	VF LE54-R24 $\Theta$	VF LE55-R24 $\Theta{ }^{\text {(1) }}$	VF LE56-R24 $\Theta$	VF LE57-R24 $\Theta$

Technopolymer rollers, $\varnothing 35$ mm


Rubber rollers, $\varnothing 40$ mm

VF LE31-R5 $\underbrace{(4)}$	VF LE51-R5 $\underbrace{(4)}$	VF LE52-R5 $\Theta$	VF LE54-R5 ${ }^{(4)}$	VF LE55-R5 $\underbrace{(1)}$	VF LE56-R5 $\Theta$	VF LE57-R5 $\Theta$ (4)

Rubber rollers, $\varnothing 50 \mathrm{~mm}$


## Protruding rubber rollers, $\varnothing 50 \mathrm{~mm}$



## Selection diagram


product options
Sold separately as accessory


## Code structure

Attention! The feasibility of a code number does not mean the effective availability of a product. Please contact our sales office article ptions options
FM 502-W3GM2K50R23T6

Housing
FM metal, one conduit entry

Contact block	
$\mathbf{5}$	$1 \mathrm{NO}+1 \mathrm{NC}$, snap action
$\mathbf{6}$	$1 \mathrm{NO}+1 \mathrm{NC}$, slow action
$\mathbf{7}$	$1 \mathrm{NO}+1 \mathrm{NC}$, slow action, make before break
...	$\ldots \ldots \ldots \ldots . . . . . . . . . . .$.


Actuators	
$\mathbf{0 1}$	short plunger
$\mathbf{0 2}$	roller lever
$\mathbf{0 5}$	angled lever with roller
$\mathbf{\ldots}$	.....................

Reset
without reset (standard)
W3 simultaneous reset
W4 simultaneous reset, increased force

## Contact type

silver contacts (standard)

G silver contacts, $1 \mu \mathrm{~m}$ gold coating (except contact block 2)

G1 silver contacts, $2.5 \mu \mathrm{~m}$ gold coating (not for contact block 2, 20, 21, 22)

Ambient temperature
$-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ (standard)
T6 $-40^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$

Pre-installed cable glands or connectors no cable gland or connector (standard)
K23 cable gland for cables $\varnothing 6 \ldots 12 \mathrm{~mm}$
K50 M12 metal connector, 5-pole
For the complete list of possible combinations please contact our technical department.

Threaded conduit entry		Rollers	
M2	M20x1.5 (standard)		
	PG 13.5	standard roller	

(for actuators A4, 15)\end{array}\right|\)


## Main features

- Metal housing, one conduit entry
- Protection degree IP67
- 17 contact blocks available
- 43 actuators available
- Versions with M12 connector
- Versions with gold-plated silver contacts


## Quality marks:

## 

IMO approval:	EG609
UL approval:	E131787
CCC approval:	2007010305229998
EAC approval:	RU C-IT.AД35.B.00454

## Technical data

## Housing

Metal housing, powder-coated
One threaded conduit entry:
Protection degree:
M20x1.5 (standard)
IP67 acc. to EN 60529 with cable gland presenting same or higher protection degree

## General data

Ambient temperature:
Max. actuation frequency:
Mechanical endurance:
Mounting position:
Safety parameter $\mathrm{B}_{100}$ :
Mechanical interlock, not coded:
Tightening torques for installation:

$$
-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}
$$

3600 operating cycles/hour
20 million operating cycles any
40,000,000 for NC contacts type 1 acc. to EN ISO 14119 see page 211-222

Cable cross section (flexible copper strands)
Contact blocks 20, 21, 22, 33, 34:
Contact blocks $5,6,7,9,10,11,12,13,14,15,16,18$ :
Contact block 2:

$\min$.	$1 \times 0.34 \mathrm{~mm}^{2}$	$(1 \times$ AWG 22)
$\max$.	$2 \times 1.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 16)
$\min$.	$1 \times 0.5 \mathrm{~mm}^{2}$	$(1 \times$ AWG 20)
$\max$.	$2 \times 2.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 14)
$\min$.	$1 \times 0.5 \mathrm{~mm}^{2}$	$(1 \times$ AWG 20)
$\max$.	$2 \times 1.5 \mathrm{~mm}^{2}$	$(2 \times$ AWG 16)

In compliance with standards:
IEC 60947-5-1, EN 60947-5-1, EN 60947-1, EN 50047, IEC 60204-1, EN 60204-1, EN ISO 14119, EN ISO 12100, IEC 60529, EN 60529, UL 508, CSA 22.2 No. 14

## Approvals:

IEC 60947-5-1, UL 508, CSA 22.2 No.14, GB14048.5-2001.

## Compliance with the requirements of:

Low Voltage Directive 2014/35/EU, EMC Directive 2014/30/EU.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.

## Installation for safety applications:

Use only switches marked with the symbol $\Theta$ next to the product code. Always connect the safety circuit to the NC contacts (normally closed contacts: 11-12, 21-22 or 31-32) as required by EN ISO 14119, paragraph 5.4 for specific interlock applications and EN ISO $13849-2$ tables D3 (well-tried components) and D. 8 (fault exclusions) for safety applications in general. Actuate the switch at least up to the positive opening travel shown in the travel diagrams on page 216. Actuate the switch at least with the positive opening force, reported in brackets below each article, next to the actuating force value.
§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see the instructions given on pages 211 to 222.


## Features approved by IMO

Rated insulation voltage ( $\mathrm{U}_{\mathrm{i}}$ ):	500 Vac   400 Vac (for contact blocks 2, 11, 12, 20,   21,22, 33, 34)
Conventional free air thermal current	10 A
$\left(I_{\text {th }}\right)$ :	
Protection against short circuits:	type aM fuse 10 A 500 V
Rated impulse withstand voltage ( $\left.\mathrm{U}_{\text {imp }}\right): \begin{aligned} & 6 \mathrm{kV} \\ & 4 \mathrm{kV}\end{aligned}$	
Protection degree of the housing:	IP67
MV terminals (screw terminals)	
Pollution degree:	
Utilization category:	AC15
Operating voltage ( $\mathrm{U}_{\text {e }}$ ):	$400 \mathrm{Vac}(50 \mathrm{~Hz})$
Operating current $\left(I_{e}\right)^{e}$ :	3 A
Forms of the contact element: $\mathrm{Za}, \mathrm{Zb}, \mathrm{Za}+\mathrm{Za}, \mathrm{Y}+\mathrm{Y}, \mathrm{X}+\mathrm{X}, \mathrm{Y}+\mathrm{Y}+\mathrm{X}, \mathrm{Y}+\mathrm{Y}+\mathrm{Y}, \mathrm{Y}+\mathrm{X}+\mathrm{X}$	
Positive opening of contacts on contact blocks $5,6,7,9,11,13,14,16,18,20$,	
21, 22, 33, 34	
In compliance with standards: EN 60947-1, EN 60947-5-1+ A1:2009, fundamental requirements of the Low Voltage Directive 2014/35/EU.	

## Features approved by UL

Utilization category Q 300 ( $69 \mathrm{VA}, 125-250 \mathrm{Vdc}$ )

$$
\text { A600 (720 VA, } 120-600 \mathrm{Vac})
$$

Housing features type 1, 4X, 12, 13
For all contact blocks except 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductors, rigid or flexible, wire size 12, 14 AWG. Tightening torque for terminal screws of 7.1 lb in ( 0.8 Nm ).
For contact blocks 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper ( Cu ) conductors, rigid or flexible, wire size 14 AWG. Tightening torque for terminal screws of 12 lb in ( 1.4 Nm ).

In compliance with standard: UL 508, CSA 22.2 No. 14
Please contact our technical department for the list of approved products.

## Wiring diagram for M12 connectors

$\begin{aligned} & \text { Contact block } 2 \\ & \text { 1NO-1NC+1NO- } \\ & \text { 1NC } \end{aligned}$	Contact block 5 $1 \mathrm{NO}+1 \mathrm{NC}$	Contact block 6 1NO+1NC	Contact block 7   $1 \mathrm{NO}+1 \mathrm{NC}$	$\begin{aligned} & \text { Contact block } 9 \\ & \text { 2NC } \end{aligned}$	Contact block 10 2NO	Contact block 11 2NC	Contact block 12 2NO	Contact block 13 2NC
M12 connector, 8 -pole	M12 connector, 5-pole							
Contacts Pin no.   NO 3-4	Contacts Pin no.   NC $\quad 1-2$	Contacts Pin no.   NO $\quad 1-2$	Contacts Pin no.   NC $\quad 1-2$	Contacts Pin no.   NO $\quad 1-2$	Contacts Pin no.   NC (1 ${ }^{\circ}$ ) $1-2$			
NC 5-6	NO 3-4	NO 3-4	NO 3-4	NC 3-4	NO 3-4	NC 3-4	NO 3-4	NC ( $2^{\circ}$ ) $\quad 3-4$
NC 7-8	ground 5	ground						
NO 1-2								
Contact block 14 2NC	Contact block15 2NO	Contact block 16 2NC	Contact block 18 $1 \mathrm{NO}+1 \mathrm{NC}$	$\begin{aligned} & \text { Contact block } 20 \\ & 2 \mathrm{NC}+1 \mathrm{NO} \end{aligned}$	Contact block 21 3NC	$\begin{gathered} \text { Contact block } 22 \\ 1 \mathrm{NC}+2 \mathrm{NO} \end{gathered}$	$\begin{aligned} & \text { Contact block33 } \\ & 1 N C+1 \text { NO } \end{aligned}$	Contact block34 2NC
M12 connector, 5-pole	M12 connector, 5-pole	M12 connector, 5-pole	M12 connector, 5-pole	M12 connector, 8 -pole	M12 connector, 8 -pole	M12 connector, 8 -pole	M12 connector, 5-pole	M12 connector, 5 -pole
Contacts Pin no. $N C\left(1^{\circ}\right) \quad 1-2$	Contacts Pin no.   NO ( $1^{\circ}$ ) 1-2	Contacts Pin no.   $N C$, lever to the right 1-2	Contacts Pin no.   NC $\quad 1-2$	Contacts Pin no.   NC $\quad 3-4$	Contacts Pin no.   NC $\quad 3-4$	Contacts Pin no.   NC $\quad 3-4$	Contacts Pin no.   NC 1-2	Contacts Pin no.   NC $\quad 1-2$
NC (20) 3 -4	NO (20) 3-4	$N C$, lever to the left $3-4$	NO 3-4	NC 5-6	NC 5-6	NO 5-6	NO 3-4	NC $\quad 3-4$
ground 5	ground 5	ground 5	ground 5	NO 7-8	NC 7-8	NO 7-8	ground 5	ground 5
				ground 1	ground 1	ground 1		

## Contact block E1 PNP

M12 connector, 5-pole

Contacts	Pin no.
+	1
-	3
NC	2
NO	4
ground	5



Contact block	With stainless steel roller on request			With external rubber gasket
5 -	FM 505-M2 $\Theta$ 1NO+1NC	FM 5A5-M2 $\Theta$ 1NO+1NC	FM 507-M2 $\Theta$ 1NO+1NC	FM 5A7-M2 $\Theta$ 1NO+1NC
6 L	FM 605-M2 $\Theta$ 1NO+1NC	FM 6A5-M2 $\Theta$ 1NO+1NC	FM 607-M2 $\Theta$ 1NO+1NC	FM 6A7-M2 $\Theta$ 1NO+1NC
7 L0	FM 705-M2 $\Theta$ 1NO+1NC	FM 7A5-M2 $\Theta$ 1NO+1NC	FM 707-M2 $\Theta$ 1NO+1NC	FM 7A7-M2 $\Theta$ 1NO+1NC
9 L	FM 905-M2 $\Theta$ 2NC	FM 9A5-M2 $\Theta$ 2NC	FM 907-M2 $\Theta$ 2NC	FM 9A7-M2 $\Theta$ 2NC
10 L	FM 1005-M2 2NO	FM 10A5-M2 2NO	FM 1007-M2 2NO	FM 10A7-M2 2NO
11 R	FM 1105-M2 $\Theta$ 2NC	FM 11A5-M2 $\Theta$ 2NC	FM 1107-M2 $\Theta$ 2NC	FM 11A7-M2 $\Theta$ 2NC
12 R	FM 1205-M2 2NO	FM 12A5-M2 2NO	FM 1207-M2 2NO	FM 12A7-M2 2NO
13 LV	FM 1305-M2 $\Theta$ 2NC	FM 13A5-M2 $\Theta$ 2NC	FM 1307-M2 $\Theta$ 2NC	FM 13A7-M2 $\Theta$ 2NC
14 LS	FM 1405-M2 $\Theta$ 2NC	FM 14A5-M2 $\Theta$ 2NC	FM 1407-M2 $\Theta$ 2NC	FM 14A7-M2 $\Theta$ 2NC
15 LS	FM 1505-M2 2NO	FM 15A5-M2 2NO	FM 1507-M2 2NO	FM 15A7-M2 2NO
18 LA	FM 1805-M2 $\Theta$ 1NO+1NC	FM 18A5-M2 $\Theta$ 1NO+1NC	FM 1807-M2 $\Theta$ 1NO+1NC	FM 18A7-M2 $\Theta$ 1NO+1NC
20 L	FM 2005-M2 $\Theta$ 1NO+2NC	FM 20A5-M2 $\Theta$ 1NO+2NC	FM 2007-M2 $\Theta$ 1NO+2NC	FM 20A7-M2 $\Theta$ 1NO+2NC
21 L	FM 2105-M2 $\Theta 3 \mathrm{NC}$	FM 21A5-M2 $\Theta 3 N C$	FM 2107-M2 $\Theta$ 3NC	FM 21A7-M2 $\Theta$ 3NC
22 L	FM 2205-M2 $\Theta 2 \mathrm{NO}+1 \mathrm{NC}$	FM 22A5-M2 $\Theta$ 2NO+1NC	FM 2207-M2 $\Theta$ 2NO+1NC	FM 22A7-M2 $\Theta 2 \mathrm{NO}+1 \mathrm{NC}$
2 R	FM 205-M2 2x(1NO-1NC)	FM 2A5-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC})$	FM 207-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC})$	FM 2A7-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC})$
E1 A	FM E105-M2 1NO-1NC	FM E1A5-M2 1NO-1NC	FM E107-M2 1NO-1NC	FM E1A7-M2 1NO-1NC
Max. speed	page 215 - type 3			
Actuating force	$6 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$4.3 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$4 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$3 \mathrm{~N}(25 \mathrm{~N} \Theta)$
Travel diagrams	page 216 - group 2	page 216 - group 2	page 216 - group 3	page 216 - group 3

All values in the drawings are in mm
Items with code on green background are stock items
Accessories See page 197

Contact type:	With external rubber gasket			
5 R	FM 508-M2 $\Theta$ 1NO+1NC	FM 512-M2 $\Theta$ 1NO+1NC	FM 513-M2 $\Theta$ 1NO+1NC	FM 514-M2 $\Theta$ 1NO+1NC
6 L	FM 608-M2 $\Theta$ 1NO+1NC	FM 612-M2 $\Theta$ 1NO+1NC	FM 613-M2 $\Theta$ 1NO+1NC	FM 614-M2 $\Theta$ 1NO+1NC
7 L0	FM 708-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FM 712-M2 $\Theta$ 1NO+1NC	FM 713-M2 $\Theta$ 1NO+1NC	FM 714-M2 $\Theta$ 1NO+1NC
9 L	FM 908-M2 $\Theta$ 2NC	FM 912-M2 $\Theta$ 2NC	FM 913-M2 $\Theta$ 2NC	FM 914-M2 $\Theta$ 2NC
10 L	FM 1008-M2 2NO	FM 1012-M2 2NO	FM 1013-M2 2NO	FM 1014-M2 2NO
11 R	FM 1108-M2 $\Theta$ 2NC	FM 1112-M2 $\Theta$ 2NC	FM 1113-M2 $\Theta$ 2NC	FM 1114-M2 $\Theta$ 2NC
12 R	FM 1208-M2 2NO	FM 1212-M2 2NO	FM 1213-M2 2NO	FM 1214-M2 2NO
13 LV	FM 1308-M2 $\Theta$ 2NC	FM 1312-M2 $\Theta$ 2NC	FM 1313-M2 $\Theta$ 2NC	FM 1314-M2 $\Theta$ 2NC
14 LS	FM 1408-M2 $\Theta$ 2NC	FM 1412-M2 $\Theta$ 2NC	FM 1413-M2 $\Theta$ 2NC	FM 1414-M2 $\Theta$ 2NC
15 LS	FM 1508-M2 2NO	FM 1512-M2 2NO	FM 1513-M2 2NO	FM 1514-M2 2NO
18 LA	FM 1808-M2 $\Theta$ 1NO+1NC	FM 1812-M2 $\Theta$ 1NO+1NC	FM 1813-M2 $\Theta$ 1NO+1NC	FM 1814-M2 $\Theta$ 1NO+1NC
20 L	FM 2008-M2 $\Theta 1 \mathrm{NO}+2 \mathrm{NC}$	FM 2012-M2 $\Theta$ 1NO+2NC	FM 2013-M2 $\Theta$ 1NO+2NC	FM 2014-M2 $\Theta$ 1NO+2NC
21 L	FM 2108-M2 $\Theta$ 3NC	FM 2112-M2 $\Theta 3 \mathrm{NC}$	FM 2113-M2 $\Theta 3 N \mathrm{C}$	FM 2114-M2 $\Theta 3 N C$
22 L	FM 2208-M2 $\Theta$ 2NO+1NC	FM 2212-M2 $\Theta 2 \mathrm{NO}+1 \mathrm{NC}$	FM 2213-M2 $\Theta$ 2NO+1NC	FM 2214-M2 $\Theta 2 \mathrm{NO}+1 \mathrm{NC}$
2 R	FM 208-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC})$	FM 212-M2 2x(1NO-1NC)	FM 213-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$	FM 214-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$
E1 A	FM E108-M2 1NO-1NC	FM E112-M2 1NO-1NC	FM E113-M2 1NO-1NC	FM E114-M2 1NO-1NC
Max. speed	page 215 - type 4	page 215 - type 4	page 215 - type 2	page 215 - type 4
Actuating force	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$8 \mathrm{~N}(25 \mathrm{~N}$ - $)$
Travel diagrams	page 216 - group 1			


Contact block			With external rubber gasket		With external rubber gasket	
5 R	FM 515-M2R28 $\Theta$ 1NO+1NC	FM 516-M2 $\Theta$ 1NO+1NC	FM 520-M2	$1 \mathrm{NO}+1 \mathrm{NC}$	FM 521-M2	$1 \mathrm{NO}+1 \mathrm{NC}$
6 L	FM 615-M2R28 $\Theta$ 1NO+1NC	FM 616-M2 $\Theta$ 1NO+1NC				
7 L0	FM 715-M2R28 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FM 716-M2 $\Theta$ 1NO+1NC				
9 L	FM 915-M2R28 $\Theta$ 2NC	FM 916-M2 $\Theta$ 2NC				
10 L	FM 1015-M2R28 2NO	FM 1016-M2 2NO	FM 1020-M2	2NO	FM 1021-M2	2NO
11 R	FM 1115-M2R28 $\Theta$ 2NC	FM 1116-M2 $\Theta$ 2NC				
12 R	FM 1215-M2R28 2NO	FM 1216-M2 2NO	FM 1220-M2	2NO	FM 1221-M2	2NO
13 LV	FM 1315-M2R28 $\Theta$ 2NC	FM 1316-M2 $\Theta$ 2NC				
14 LS	FM 1415-M2R28 $\Theta$ 2NC	FM 1416-M2 $\Theta 2 N C$				
15 LS	FM 1515-M2R28 2NO	FM 1516-M2 2NO				
18 LA	FM 1815-M2R28 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FM 1816-M2 $\Theta$ 1NO+1NC	FM 1820-M2	1NO+1NC	FM 1821-M2	$1 \mathrm{NO}+1 \mathrm{NC}$
20 L	FM 2015-M2R28 $\Theta$ 1NO+2NC	FM 2016-M2 $\Theta$ 1NO+2NC	FM 2020-M2	$1 \mathrm{NO}+2 \mathrm{NC}$	FM 2021-M2	$1 \mathrm{NO}+2 \mathrm{NC}$
21 L	FM 2115-M2R28 $\Theta 3 N C$	FM 2116-M2 $\Theta 3 \mathrm{NC}$	FM 2120-M2	3NC	FM 2121-M2	3NC
22 L	FM 2215-M2R28 $\Theta$ 2NO+1NC	FM 2216-M2 $\Theta 2 \mathrm{NO}+1 \mathrm{NC}$	FM 2220-M2	2NO+1NC	FM 2221-M2	2NO+1NC
2 R	FM 215-M2R28 2x(1NO-1NC)	FM 216-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC})$	FM 220-M2	2x(1NO-1NC)	FM 221-M2	2x(1NO-1NC)
E1 $\pi$	FM E115-M2R28 1NO-1NC	FM E116-M2 1NO-1NC	FM E120-M2	1NO-1NC	FM E121-M2	1NO-1NC
Max. speed	page 215 - type 2	page 215 - type 2	$1 \mathrm{~m} / \mathrm{s}$		$1 \mathrm{~m} / \mathrm{s}$	
Actuating force	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	0.07 Nm		0.07 Nm	
Travel diagrams	page 216 - group 1	page 216 - group 1	page 216 - group 4		page 216 - group 4	

All values in the drawings are in mm
Items with code on green background are stock items
Accessories See page 197
The 2D and 3D files are available at www.pizzato.com



All values in the drawings are in mm
Items with code on green background are stock items
Accessories See page 197
$\rightarrow$ The 2D and 3D files are available at www.pizzato.com


${ }^{(1)}$ Positive opening only with actuator set to max. See page 77 .
All values in the drawings are in mm


Pizzato Elettrica has developed a reset device code W3 to make perfectly simultaneous the actuator and the contact block tripping. This new device consists in a block to be mounted between the body and the head of the switch that can be rotated independently from the head. This new device offers the following advantages:

- The reset device can be integrated into almost all standard actuator heads
- Contact blocks with snap action are no more necessary because the tripping movement is executed by the reset device itself
- The reset device can be rotated independently from the head ensuring maximum flexibility during installation
- Two actuating forces: standard and increased for vibration applications
- Mechanical endurance: 1 million operating cycles.



All values in the drawings are in mm


## Increased actuating force



The switch can be delivered with increased actuating force (option W4). Ideal for vibration applications.

Actuators	Actuating force
$01,14,15,16$	7 N
02,05	6 N
07	3.5 N
$30 \ldots 57$	0.08 Nm

To order the switch with reset and increased actuating force, replace the -W3 option with
-W4 in the order code.
Example: FM 601-W3M2 $\boldsymbol{\rightarrow}$ FM 601-W4M2

Position switches with swivelling lever without actuator


## IMPORTANT

For safety applications: join only switches and actuators marked with symbol $\Theta$ next to the product code.
For more information about safety applications see details on page 211.

## Separate actuators

IMPORTANT: These separate actuators can be used only with items of the FR, FM, FX, FZ and FK series.

Technopolymer roller Ø 18 mm	Technopolymer roller $\varnothing 18$ mm	Adjustable square rod, $3 \times 3 \times 125 \mathrm{~mm}$	Flexible rod with pointed end	Adjustable round rod $\varnothing 3 \times 125 \mathrm{~mm}$	Technopolymer roller $\varnothing 20$ mm	
VF LE30 $\Theta$	VF LE31 $\Theta$	VF LE33	VF LE34	VF LE50	VF LE51 $\Theta$	
Technopolymer roller $\varnothing 20$ mm	Porcelain roller	Technopolymer roller $\varnothing 20$ mm	Adjustable actuator with technopolymer roller	Adjustable safety actuator with technopolymer roller	Technopolymer roller $\varnothing 20$ mm	Adjustable glass fibre rod


VF LE52 $\Theta$	VF LE53 ${ }^{(2)}$	VF LE54 $\Theta$	VF LE55 ${ }^{(1)}$	VF LE56 $\Theta$	VF LE57 $\Theta$	VF LE69

[^6]Stainless steel rollers, Ø 20 mm

VF LE31-R24 $\Theta$	VF LE51-R24 $\Theta$	VF LE52-R24 $\Theta$	VF LE54-R24 $\Theta$	VF LE55-R24 $\Theta{ }^{\text {(1) }}$	VF LE56-R24 $\Theta$	VF LE57-R24 $\Theta$

Technopolymer rollers, $\varnothing 35$ mm


Rubber rollers, $\varnothing 40$ mm

VF LE31-R5 $\overbrace{}^{(4)}$	VF LE51-R5 $\underbrace{(4)}$	VF LE52-R5 $\Theta$	VF LE54-R5 $\underbrace{(4)}$	VF LE55-R5 $\underbrace{(1)}$	VF LE56-R5 $\Theta$	VF LE57-R5 $\Theta$ (4)

Rubber rollers, $\varnothing 50 \mathrm{~mm}$


## Protruding rubber rollers, $\varnothing 50 \mathrm{~mm}$



## Selection diagram



CONDUIT ENTRY

product options
Sold separately as accessory



## Main features

- Technopolymer housing, two conduit entries
- Protection degree IP67
- 17 contact blocks available
- 43 actuators available
- Versions with external parts in stainless steel
- Versions with M12 connector
- Versions with gold-plated silver contacts


## Technical data

## Housing

Housing made of glass fibre reinforced technopolymer, self-extinguishing, shock-proof and with double insulation:
Two knock-out threaded conduit entries. M20x1.5 (standard)
Protection degree:
IP67 acc. to EN 60529 with cable gland presenting same or higher protection degree

## General data

Ambient temperature:
Max. actuation frequency:
Mechanical endurance:
Mounting position:
Safety parameter $\mathrm{B}_{100}$ :
Mechanical interlock, not coded:
Tightening torques for installation:
$-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$
3600 operating cycles/hour
20 million operating cycles any
40,000,000 for NC contacts type 1 acc. to EN ISO 14119
see page 211-222

Cable cross section (flexible copper strands)
Contact blocks 20, 21, 22, 33, 34:
Contact blocks $5,6,7,9,10,11,12,13,14,15,16,18$ :
Contact block 2:

## In compliance with standards:

IEC 60947-5-1, EN 60947-5-1, EN 60947-1, IEC 60204-1, EN 60204-1, EN ISO 14119, EN ISO 12100, IEC 60529, EN 60529, UL 508, CSA 22.2 No. 14.

## Approvals:

IEC 60947-5-1, UL 508, CSA 22.2 No.14, GB14048.5-2001.

## Compliance with the requirements of:

Low Voltage Directive 2014/35/EU, EMC Directive 2014/30/EU.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.

IMQ approval:	EG610
UL approval:	E131787
CCC approval:	2007010305230013
EAC approval:	RU C-IT.АД35.В.00454

Installation for safety applications:
Use only switches marked with the symbol $\Theta$ next to the product code. Always connect the safety circuit to the NC contacts (normally closed contacts: 11-12, 21-22 or 31-32) as required by EN ISO 14119, paragraph 5.4 for specific interlock applications and EN ISO $\mathbf{1 3 8 4 9 - 2}$ tables D3 (well-tried components) and D. 8 (fault exclusions) for safety applications in general. Actuate the switch at least up to the positive opening travel shown in the travel diagrams on page 216. Actuate the switch at least with the positive opening force, reported in brackets below each article, next to the actuating force value.
§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see the instructions given on pages 211 to 222.


## Features approved by IMO

Rated insulation voltage ( $U_{i}$ ):<br>Conventional free air thermal current ( ${ }_{\text {th }}$ ):<br>Protection against short circuits: Rated impulse withstand voltage $\left(\mathrm{U}_{\mathrm{imp}}\right)$ :<br>Protection degree of the housing:<br>MV terminals (screw terminals)<br>Pollution degree:<br>Utilization category:<br>Operating voltage ( $U_{e}$ ):<br>Operating current ( $\left.l_{\mathrm{e}}\right)_{\mathrm{e}}$ :<br>500 Vac<br>400 Vac (for contact blocks 2, 11, 12, 20, 21,22, 33, 34)<br>10 A<br>type aM fuse 10 A 500 V<br>6 kV<br>4 kV (for contact blocks 20, 21, 22, 33, 34)<br>IP67<br>3<br>AC15<br>$400 \mathrm{Vac}(50 \mathrm{~Hz})$<br>3 A<br>Forms of the contact element: $\mathrm{Za}, \mathrm{Zb}, \mathrm{Za}+Z a, Y+Y, X+X, Y+Y+X, Y+Y+Y, Y+X+X$<br>Positive opening of contacts on contact blocks $5,6,7,9,11,13,14,16,18,20$,<br>21, 22, 33, 34<br>In compliance with standards: EN 60947-1, EN 60947-5-1+ A1:2009, fundamental requirements of the Low Voltage Directive 2014/35/EU.<br>Please contact our technical department for the list of approved products.

## Features approved by UL

Utilization category 0300 ( $69 \mathrm{VA}, 125-250 \mathrm{Vdc})$ A600 (720 VA, $120-600 \mathrm{Vac})$
Housing features type 1, 4X "indoor use only", 12, 13
For all contact blocks except 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper ( Cu ) conductors, rigid or flexible, wire size 12, 14 AWG. Tightening torque for terminal screws of 7.1 lb in ( 0.8 Nm ).
For contact blocks 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper ( Cu ) conductors, rigid or flexible, wire size 14 AWG. Tightening torque for terminal screws of 12 lb in (1.4 Nm).

In compliance with standard: UL 508, CSA 22.2 No. 14
Please contact our technical department for the list of approved products.

## Wiring diagram for M12 connectors

$\begin{aligned} & \text { Contact block } 2 \\ & 1 \mathrm{NO}-1 \mathrm{NC}+1 \mathrm{NO}- \\ & 1 \mathrm{NC} \end{aligned}$	Contact block 5 $1 \mathrm{NO}+1 \mathrm{NC}$	Contact block 6 $1 \mathrm{NO}+1 \mathrm{NC}$	Contact block 7   $1 \mathrm{NO}+1 \mathrm{NC}$	$\begin{gathered} \text { Contact block } 9 \\ \text { 2NC } \end{gathered}$	$\begin{gathered} \text { Contact block10 } \\ 2 \text { NO } \end{gathered}$	$\begin{gathered} \text { Contact block11 } \\ 2 \mathrm{NC} \end{gathered}$	$\begin{gathered} \text { Contact block12 } \\ 2 \text { NO } \end{gathered}$	$\begin{gathered} \text { Contact block13 } \\ \text { 2NC } \end{gathered}$
M12 connector, 8 -pole	M12 connector, 4 -pole	M12 connector, 4 -pole	M12 connector, 4-pole	M12 connector, 4 -pole	M12 connector, 4-pole	M12 connector, 4-pole	M12 connector, 4-pole	M12 connector, 4-pole
Contacts Pin no.   NO 3-4	Contacts Pin no.   NC 1-2	Contacts Pin no.   NC 1-2	Contacts Pin no.   NC 1-2	Contacts Pin no.   NC $\quad 1-2$	Contacts Pin no.   NO 1-2	Contacts Pin no.   NC 1-2	Contacts Pin no.   NO 1-2	Contacts Pin no.   NC (19) 1-2
NC 5-6	NO 3-4	NO 3-4	NO 3-4	NC 3-4	NO 3-4	NC $\quad 3-4$	NO 3-4	NC ( $2^{\circ}$ ) 3 -4
NC 7-8								
NO 1-2								


$\begin{gathered} \text { Contact block14 } \\ 2 N C \end{gathered}$	$\begin{aligned} & \text { Contact block15 } \\ & 2 \text { NO } \end{aligned}$	$\begin{gathered} \text { Contact block16 } \\ 2 N C \end{gathered}$	$\begin{gathered} \text { Contact block18 } \\ 1 \mathrm{NO}+1 \mathrm{NC} \end{gathered}$	$\begin{gathered} \text { Contact block } 20 \\ 2 N C+1 \text { NO } \end{gathered}$	$\begin{gathered} \text { Contact block } 21 \\ \text { 3NC } \end{gathered}$	$\begin{gathered} \text { Contact block } 22 \\ 1 \mathrm{NC}+2 \mathrm{NO} \end{gathered}$	$\begin{aligned} & \text { Contact block33 } \\ & \text { 1NC+1NO } \end{aligned}$	$\begin{aligned} & \text { Contact block34 } \\ & \text { 2NC } \end{aligned}$
M12 connector, 4-pole	M12 connector, 4-pole	M12 connector, 4-pole	M12 connector, 4-pole	M12 connector, 8-pole	M12 connector, 8-pole	M12 connector, 8-pole	M12 connector, 4-pole	M12 connector, 4-pole
Contacts Pin no.   NC (19) 1-2	Contacts Pin no. $\mathrm{NO}\left(1^{\circ}\right) \quad 1-2$	Contacts Pin no.   NC, lever to the right 1-2	Contacts Pin no.   NC 1-2	Contacts Pin no. $\text { NC } \quad 3-4$	Contacts Pin no. $\text { NC } \quad 3-4$	Contacts Pin no. $\text { NC } \quad 3-4$	Contacts Pin no.   NC 1-2	Contacts Pin no. $\text { NC } \quad 1-2$
NC ( $2^{\circ}$ ) 3 -4	NO (2) ${ }^{\circ} \mathrm{l}$-4	NC, lever to the left 3-4	NO 3-4	NC 5-6	NC 5-6	NO 5-6	NO 3-4	NC 3-4
				NO 7-8	NC 7-8	NO 7-8		



M12 connector, 4-pole

Contacts	Pin no.
+	1
-	3
NC	2
NO	4

FX series position switches



All values in the drawings are in mm
Items with code on green background are stock items

Contact type:				
Contact block				
5 R	FX 508-M2 $\Theta$ 1NO+1NC	FX 512-M2 $\Theta$ 1NO+1NC	FX 513-M2 $\Theta$ 1NO+1NC	FX 514-M2 $\Theta$ 1NO+1NC
6 L	FX 608-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FX 612-M2 $\Theta$ 1NO+1NC	FX 613-M2 $\Theta$ 1NO+1NC	FX 614-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$
7 L0	FX 708-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FX 712-M2 $\Theta$ 1NO+1NC	FX 713-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FX 714-M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$
9 L	FX 908-M2 $\Theta 2 \mathrm{NC}$	FX 912-M2 $\Theta$ 2NC	FX 913-M2 $\Theta$ 2NC	FX 914-M2 $\Theta 2 \mathrm{NC}$
10 L	FX 1008-M2 2NO	FX 1012-M2 2NO	FX 1013-M2 2NO	FX 1014-M2 2NO
11 R	FX 1108-M2 $\Theta$ 2NC	FX 1112-M2 $\Theta$ 2NC	FX 1113-M2 $\Theta$ 2NC	FX 1114-M2 $\Theta$ 2NC
12 R	FX 1208-M2 2NO	FX 1212-M2 2NO	FX 1213-M2 2NO	FX 1214-M2 2NO
13 LV	FX 1308-M2 $\Theta$ 2NC	FX 1312-M2 $\Theta$ 2NC	FX 1313-M2 $\Theta$ 2NC	FX 1314-M2 $\Theta$ 2NC
14 LS	FX 1408-M2 $\Theta$ 2NC	FX 1412-M2 $\Theta$ 2NC	FX 1413-M2 $\Theta$ 2NC	FX 1414-M2 $\Theta$ 2NC
15 LS	FX 1508-M2 2NO	FX 1512-M2 2NO	FX 1513-M2 2NO	FX 1514-M2 2NO
18 LA	FX 1808-M2 $\Theta$ 1NO+1NC	FX 1812-M2 $\Theta$ 1NO+1NC	FX 1813-M2 $\Theta$ 1NO+1NC	FX 1814-M2 $\Theta$ 1NO+1NC
20 L	FX 2008-M2 $\Theta$ 1NO+2NC	FX 2012-M2 $\Theta$ 1NO+2NC	FX 2013-M2 $\Theta$ 1NO+2NC	FX 2014-M2 $\Theta$ 1NO+2NC
21 L	FX 2108-M2 $\Theta 3$ 3 ${ }^{\text {F }}$	FX 2112-M2 $\Theta 3 \mathrm{NC}$	FX 2113-M2 $\Theta 3 \mathrm{NC}$	FX 2114-M2 $\Theta 3 \mathrm{NC}$
22 L	FX 2208-M2 $\Theta 2 \mathrm{NO}+1 \mathrm{NC}$	FX 2212-M2 $\Theta$ 2NO+1NC	FX 2213-M2 $\Theta$ 2NO+1NC	FX 2214-M2 $\Theta$ 2NO+1NC
2 R	FX 208-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$	FX 212-M2 2x(1NO-1NC)	FX 213-M2 2x(1NO-1NC)	FX 214-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC})$
E1 $\quad$ 元	FX E108-M2 1NO-1NC	FX E112-M2 1NO-1NC	FX E113-M2 1NO-1NC	FX E114-M2 1NO-1NC
Max. speed	page 215 - type 4	page 215 - type 4	page 215 - type 2	page 215 - type 4
Actuating force	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$			
Travel diagrams	page 216 - group 1			



All values in the drawings are in mm

FX series position switches


Contact block		Square rod, $3 \times 3 \mathrm{~mm}$		Round rod, $\varnothing 3 \mathrm{~mm}$, stainless steel	Other rollers available. See on page 90
5	R	FX 533-M2 1NO+1NC	FX 534-M2 1NO+1NC	FX 550-M2 1NO+1NC	FX 551-M2 $\Theta$ 1NO+1NC
6	-	FX 633-M2 1NO+1NC	FX 634-M2 1NO+1NC	FX 650-M2 1NO+1NC	FX 651-M2 $\Theta$ 1NO+1NC
7	L0	FX 733-M2 1NO+1NC	FX 734-M2 1NO+1NC	FX 750-M2 1NO+1NC	FX 751-M2 $\Theta$ 1NO+1NC
9	L	FX 933-M2 2NC	FX 934-M2 2NC	FX 950-M2 2NC	FX 951-M2 $\Theta$ 2NC
10	L	FX 1033-M2 2NO	FX 1034-M2 2NO	FX 1050-M2 2NO	FX 1051-M2 2NO
11	R	FX 1133-M2 2NC	FX 1134-M2 2NC	FX 1150-M2 2NC	FX 1151-M2 $\Theta$ 2NC
12	R	FX 1233-M2 2NO	FX 1234-M2 2 NO	FX 1250-M2 2NO	FX 1251-M2 2NO
13	LV	FX 1333-M2 2NC	FX 1334-M2 2NC	FX 1350-M2 2NC	FX 1351-M2 $\Theta$ 2NC
14	LS	FX 1433-M2 2NC	FX 1434-M2 2NC	FX 1450-M2 2NC	FX 1451-M2 $\Theta$ 2NC
15	LS	FX 1533-M2 2NO	FX 1534-M2 2NO	FX 1550-M2 2NO	FX 1551-M2 2NO
16	LI	FX 1633-M2 2NC	FX 1634-M2 2NC	FX 1650-M2 2NC	FX 1651-M2 $\Theta$ 2NC
18	LA	FX 1833-M2 1NO+1NC	FX 1834-M2 1NO+1NC	FX 1850-M2 1NO+1NC	FX 1851-M2 $\Theta$ 1NO+1NC
20	L	FX 2033-M2 1NO+2NC	FX 2034-M2 1NO+2NC	FX 2050-M2 1NO+2NC	FX 2051-M2 $\Theta$ 1NO+2NC
21	L	FX 2133-M2 3NC	FX 2134-M2 3NC	FX 2150-M2 3NC	FX 2151-M2 $\Theta 3 \mathrm{NC}$
22	L	FX 2233-M2 $2 \mathrm{NO}+1 \mathrm{NC}$	FX 2234-M2 $2 \mathrm{NO}+1 \mathrm{NC}$	FX 2250-M2 $2 \mathrm{NO}+1 \mathrm{NC}$	FX 2251-M2 $\Theta$ 2NO+1NC
2	R	FX 233-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$	FX 234-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$	FX 250-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$	FX 251-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$
E1	友	FX E133-M2 1NO-1NC	FX E134-M2 1NO-1NC	FX E150-M2 1NO-1NC	FX E151-M2 1NO-1NC
Max. speed		$1.5 \mathrm{~m} / \mathrm{s}$	$1.5 \mathrm{~m} / \mathrm{s}$	$1.5 \mathrm{~m} / \mathrm{s}$	page 215 - type 1
Actuating force		0.06 Nm	0.06 Nm	0.06 Nm	$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$
Travel diagrams		page 216 - group 5			

All values in the drawings are in mm
Accessories See page 197

		Other rollers available．See on page 90	Porcelain roller	Other rollers available．See on page 90	See on pag
Contact   R   LO   break   LS $=$   LV $=$   L   LA $=$   亩   Conta	action action action before action d action d and d action action onic ock				
5	R	FX 552－M2 $\Theta$ 1NO＋1NC	FX 553－E0M2V9 $\Theta$ 1NO＋1NC	FX 554－M2 $\odot 1 \mathrm{NO}+1 \mathrm{NC}$	FX 555－M2 $\rightarrow^{\text {（1）}} 1 \mathrm{NO}+1 \mathrm{NC}$
6	L	FX 652－M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FX 653－E0M2V9 $\Theta$ 1NO＋1NC	FX 654－M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FX 655－M2 $\Theta$（1） $1 \mathrm{NO}+1 \mathrm{NC}$
7	LO	FX 752－M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FX 753－E0M2V9 $\Theta$ 1NO＋1NC	FX 754－M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FX 755－M2 $\underbrace{(1)} 1 \mathrm{NO}+1 \mathrm{NC}$
9	L	FX 952－M2 $\Theta$ 2NC	FX 953－E0M2V9 $\Theta$ 2NC	FX 954－M2 $\Theta$ 2NC	FX 955－M2 $\underbrace{(1)} 2 \mathrm{NC}$
10	L	FX 1052－M2 2NO	FX 1053－E0M2V9 2NO	FX 1054－M2 2NO	FX 1055－M2 2NO
11	R	FX 1152－M2 $\Theta$ 2NC		FX 1154－M2 $\Theta$ 2NC	FX 1155－M2 $\Theta{ }^{\text {（1）}} 2 \mathrm{NC}$
12	R	FX 1252－M2 2NO	FX 1253－E0M2V9 2NO	FX 1254－M2 2NO	FX 1255－M2 2NO
13	LV	FX 1352－M2 $\Theta$ 2NC	FX 1353－E0M2V9 $\Theta$ 2NC	FX 1354－M2 $\Theta$ 2NC	FX 1355－M2 $\Theta$（1）2NC
14	LS	FX 1452－M2 $\Theta$ 2NC	FX 1453－E0M2V9 $\Theta$ 2NC	FX 1454－M2 $\Theta$ 2NC	FX 1455－M2 $\Theta{ }^{\text {（1）}}$ 2NC
15	LS	FX 1552－M2 2NO	FX 1553－E0M2V9 2NO	FX 1554－M2 2NO	FX 1555－M2 2NO
16	LI	FX 1652－M2 $\Theta$ 2NC		FX 1654－M2 $\Theta$ 2NC	FX 1655－M2 $\Theta{ }^{\text {（1）}}$ 2NC
18	LA	FX 1852－M2 $\Theta$ 1NO＋1NC	FX 1853－E0M2V9 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FX 1854－M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FX 1855－M2 $\underbrace{\text {（1）}} 1 \mathrm{NO}+1 \mathrm{NC}$
20	L	FX 2052－M2 $\Theta$ 1NO＋2NC	FX 2053－E0M2V9 $\Theta 1$ NO＋2NC	FX 2054－M2 $\Theta$ 1NO＋2NC	FX 2055－M2 $\Theta$（1） $1 \mathrm{NO}+2 \mathrm{NC}$
21	L	FX 2152－M2 $\Theta 3 \mathrm{NC}$	FX 2153－E0M2V9 $\Theta 3 \mathrm{NC}$	FX 2154－M2 $\Theta 3 \mathrm{NC}$	FX 2155－M2 $\oplus$（1）3NC
22	L	FX 2252－M2 $\Theta$ 2NO＋1NC	FX 2253－EOM2V9 $\Theta 2 \mathrm{NO}+1 \mathrm{NC}$	FX 2254－M2 $\Theta$ 2NO＋1NC	FX 2255－M2 $\Theta$（1） $2 \mathrm{NO}+1 \mathrm{NC}$
2	R	FX 252－M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC})$	FX 253－E0M2 2x（1NO－1NC）	FX 254－M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$	FX 255－M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC})$
E1	交	FX E152－M2 1NO－1NC	FX E153－E0M2V9 1NO－1NC	FX E154－M2 1NO－1NC	FX E155－M2 1NO－1NC
Max．speed		page 215 －type 1	$0.5 \mathrm{~m} / \mathrm{s}$	page 215 －type 1	page 215 －type 1
Actuating force		$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.03 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$
Travel diagrams		page 216 －group 5	page 216 －group 6	page 216 －group 5	page 216 －group 5


Contact block		Other rollers available．See on page 90	Other rollers available．See on page 90	Glass fibre rod	Rope switch for signalling
5	R	FX 556－M2 $\Theta$ 1NO＋1NC	FX 557－M2 $\Theta$ 1NO＋1NC	FX 569－M2 1NO＋1NC	FX 576－M2 1NO＋1NC
6	$\square$	FX 656－M2 $\Theta$ 1NO＋1NC	FX 657－M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FX 669－M2 1NO＋1NC	FX 676－M2 1NO＋1NC
7	LO	FX 756－M2 $\Theta$ 1NO＋1NC	FX 757－M2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FX 769－M2 1NO＋1NC	FX 776－M2 1NO＋1NC
9	L	FX 956－M2 $\Theta$ 2NC	FX 957－M2 $\Theta$ 2NC	FX 969－M2 2NC	FX 976－M2 2NO
10	$\square$	FX 1056－M2 2NO	FX 1057－M2 2NO	FX 1069－M2 2 NO	FX 1076－M2 2 NC
11	R	FX 1156－M2 $\Theta$ 2NC	FX 1157－M2 $\Theta$ 2NC	FX 1169－M2 2NC	FX 1176－M2 2NO
12	R	FX 1256－M2 2NO	FX 1257－M2 2NO	FX 1269－M2 2NO	FX 1276－M2 2NC
13	LV	FX 1356－M2 $\Theta$ 2NC	FX 1357－M2 $\Theta$ 2NC	FX 1369－M2 2NC	FX 1376－M2 2NO
14	LS	FX 1456－M2 $\Theta$ 2NC	FX 1457－M2 $\Theta$ 2NC	FX 1469－M2 2NC	FX 1476－M2 2 NO
15	LS	FX 1556－M2 2NO	FX 1557－M2 2NO	FX 1569－M2 2NO	FX 1576－M2 2NC
16	LT	FX 1656－M2 $\Theta$ 2NC	FX 1657－M2 $\Theta$ 2NC	FX 1669－M2 2 NC	
18	LA	FX 1856－M2 $\Theta$ 1NO＋1NC	FX 1857－M2 $\Theta$ 1NC＋1NO	FX 1869－M2 1NC＋1NO	FX 1876－M2 1NO＋1NC
20	L	FX 2056－M2 $\Theta$ 1NO＋2NC	FX 2057－M2 $\Theta 1$ NO＋2NC	FX 2069－M2 1NO＋2NC	FX 2076－M2 2NO＋1NC
21	$\square$	FX 2156－M2 $\Theta 3 \mathrm{NC}$	FX 2157－M2 $\Theta 3 \mathrm{NC}$	FX 2169－M2 3NC	FX 2176－M2 3NO
22	L	FX 2256－M2 $\Theta$ 2NO＋1NC	FX 2257－M2 $\Theta$ 2NO＋1NC	FX 2269－M2 $2 \mathrm{NO}+1 \mathrm{NC}$	FX 2276－M2 1NO＋2NC
2	R	FX 256－M2 2x（1NO－1NC）	FX 257－M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$	FX 269－M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC}$ ）	FX 276－M2 2x（1NO－1NC）
E1	交	FX E156－M2 1NO－1NC	FX E157－M2 1NO－1NC	FX E169－M2 1NO－1NC	
Max．speed		page 215 －type 1	page 215 －type 1	$1.5 \mathrm{~m} / \mathrm{s}$	$0.5 \mathrm{~m} / \mathrm{s}$
Actuating force		$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	0.06 Nm	initial 20 N －final 40 N
Travel diagrams		page 216 －group 5	page 216 －group 5	page 216 －group 5	page 216 －group 7

${ }^{(1)}$ Positive opening only with actuator set to max．See page 89.
All values in the drawings are in mm


Pizzato Elettrica has developed a reset device code W3 to make perfectly simultaneous the actuator and the contact block tripping. This new device consists in a block to be mounted between the body and the head of the switch that can be rotated independently from the head. This new device offers the following advantages:

- The reset device can be integrated into almost all standard actuator heads
- Contact blocks with snap action are no more necessary because the tripping movement is executed by the reset device itself
- The reset device can be rotated independently from the head ensuring maximum flexibility during installation
- Two actuating forces: standard and increased for vibration applications
- Mechanical endurance: 1 million operating cycles.

Contact type: $\begin{aligned} \mathbf{R} & =\text { snap action } \\ \hline \mathbf{L} & =\text { slow action } \end{aligned}$		With stainless steel roller on request	With stainless steel roller on request	
Contact block				
6 L	FX 601-W3M2 $\Theta$ 1NO+1NC	FX 602-W3M2 $\Theta$ 1NO+1NC	FX 605-W3M2 $\Theta$ 1NO+1NC	FX 607-W3M2 $\Theta$ 1NO+1NC
$9 \square$	FX 901-W3M2 $\Theta$ 2NC	FX 902-W3M2 $\Theta$ 2NC	FX 905-W3M2 $\Theta$ 2NC	FX 907-W3M2 $\Theta$ 2NC
10 L	FX 1001-W3M2 2NO	FX 1002-W3M2 2NO	FX 1005-W3M2 2NO	FX 1007-W3M2 2NO
20 L	FX 2001-W3M2 $\Theta$ 1NO+2NC	FX 2002-W3M2 $\Theta$ 1NO+2NC	FX 2005-W3M2 $\Theta$ 1NO+2NC	FX 2007-W3M2 $\Theta$ 1NO+2NC
21 L	FX 2101-W3M2 $\Theta 3 N \mathrm{C}$	FX 2102-W3M2 $\Theta 3 N C$	FX 2105-W3M2 $\Theta 3 N C$	FX 2107-W3M2 $\Theta$ 3NC
22 L	FX 2201-W3M2 $\Theta 2 \mathrm{NO}+1 \mathrm{NC}$	FX 2202-W3M2 $\Theta 2 \mathrm{NO}+1 \mathrm{NC}$	FX 2205-W3M2 $\Theta 2 \mathrm{NO}+1 \mathrm{NC}$	FX 2207-W3M2 $\Theta 2 \mathrm{NO}+1 \mathrm{NC}$
2 L	FX 201-W3M2 2NO+2NC	FX 202-W3M2 2NO+2NC	FX 205-W3M2 2NO+2NC	FX 207-W3M2 2NO+2NC
Max. speed	page 215 - type 4	page 215 - type 3	page 215 - type 3	page 215 - type 3
Actuating force	$4.5 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$4 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$4 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$2.5 \mathrm{~N}(25 \mathrm{~N} \Theta)$
Travel diagrams	page 217 - group 1	page 217 - group 2	page 217 - group 2	page 217 - group 3



All values in the drawings are in mm


All values in the drawings are in mm

## Increased actuating force



The switch can be delivered with increased actuating force (option W4). Ideal for vibration applications.

Actuators	Actuating force
$01,14,15,16$	7 N
02,05	6 N
07	3.5 N
$30 \ldots 57$	0.08 Nm

To order the switch with reset and increased actuating force, replace the -W3 option with
-W4 in the order code.
Example: FX 601-W3M2 $\rightarrow$ FX 601-W4M2

## Position switches with swivelling lever without actuator



## IMPORTANT

For safety applications: join only switches and actuators marked with symbol $\Theta$ next to the product code.
For more information about safety applications see details on page 211.

## Separate actuators

IMPORTANT: These separate actuators can be used only with items of the FR, FM, FX, FZ and FK series.

Technopolymer roller $\varnothing 18$ mm	Technopolymer roller $\varnothing 18$ mm	Adjustable square rod, $3 \times 3 \times 125 \mathrm{~mm}$	Flexible rod with pointed end	Adjustable round rod $\varnothing 3 \times 125 \mathrm{~mm}$	Technopolymer roller $\varnothing 20$ mm	
VF LE30 $\Theta$	VF LE31 $\Theta$	VF LE33	VF LE34	VF LE50	VF LE51 $\Theta$	
Technopolymer roller $\varnothing 20$ mm	Porcelain roller	Technopolymer roller $\varnothing 20$ mm	Adjustable actuator with technopolymer roller	Adjustable safety actuator with technopolymer roller	Technopolymer roller $\varnothing 20$ mm	Adjustable glass fibre rod


		(Q)				
VF LE52 $\Theta$	VF LE53 $\Theta{ }^{(2)}$	VF LE54 $\Theta$	VF LE55 $\underbrace{(1)}$	VF LE56 $\Theta$	VF LE57 $\Theta$	VF LE69

[^7]Stainless steel rollers, $\varnothing 20 \mathrm{~mm}$

VF LE31-R24 $\Theta$	VF LE51-R24 $\Theta$	VF LE52-R24 $\Theta$	VF LE54-R24 $\Theta$	VF LE55-R24 $\Theta{ }^{\text {(1) }}$	VF LE56-R24 $\Theta$	VF LE57-R24 $\Theta$

Technopolymer rollers, $\varnothing 35$ mm


Rubber rollers, $\varnothing 40 \mathrm{~mm}$

VF LE31-R5 $\Theta$	VF LE51-R5 $\underbrace{(4)}$	VF LE52-R5 $\Theta$	VF LE54-R5 $\underbrace{(4)}$	VF LE55-R5 $\rightarrow$	VF LE56-R5 $\Theta$	VF LE57-R5 $\Theta$

Rubber rollers, $\varnothing 50 \mathrm{~mm}$


Protruding rubber rollers, $\varnothing 50 \mathrm{~mm}$


## Selection diagram


product options
Sold separately as accessory


## Code structure

Attention! The feasibility of a code number does not mean the effective availability of a product. Please contact our sales office.

## 

Housing
FZ metal, two conduit entries

Contact block	
$\mathbf{5}$	$1 \mathrm{NO}+1 \mathrm{NC}$, snap action
$\mathbf{6}$	$1 \mathrm{NO}+1 \mathrm{NC}$, slow action
$\mathbf{7}$	1NO +1 NC , slow action, make before break
$\boldsymbol{\ldots}$	$\ldots \ldots \ldots \ldots \ldots . . . . . . . .$.


Actuators	
$\mathbf{0 1}$	short plunger
$\mathbf{0 2}$	roller lever
$\mathbf{0 5}$	angled lever with roller
$\mathbf{\ldots}$	.......................

Reset

> without reset (standard)

W3 simultaneous reset
W4 simultaneous reset, increased force
Contact type
silver contacts (standard)

G
silver contacts, $1 \mu \mathrm{~m}$ gold coating (not for contact block 2)

G1 silver contacts, $2.5 \mu \mathrm{~m}$ gold coating (not for contact block
2, 20, 21, 22)

Ambient temperature
$-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ (standard)
T6 $-40^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$

Pre-installed cable glands or connectors
no cable gland or connector (standard)
K123 cable gland for cables $\varnothing 6 \ldots 12 \mathrm{~mm}$ on the right
K51 M12 metal connector, 5-pole, right
For the complete list of possible combinations please contact our technical department.

Threaded conduit entry		Rollers	
M2	M20x1.5 (standard)		
	PG 13.5	standard roller	

(for actuators A4, 15)\end{array}\right]\)


## Main features

- Metal housing, two conduit entries
- Protection degree IP67
- 17 contact blocks available
- 42 actuators available
- Versions with M12 connector
- Versions with gold-plated silver contacts


## Quality marks:

## 

IMQ approval:		EG609
UL approval:	E131787	
CCC approval:	2007010305229998	
EAC approval:	RU C-IT.АД35.В.00454	

## Technical data

## Housing

Metal housing, powder-coated
Two threaded conduit entries:
Protection degree:

## General data

Ambient temperature: $\quad-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$
Max. actuation frequency:
Mechanical endurance:
Mounting position:
Safety parameter $\mathrm{B}_{10 \mathrm{D}}$ :
Mechanical interlock, not coded:
Tightening torques for installation:
3600 operating cycles/hour 20 million operating cycles any
40,000,000 for NC contacts type 1 acc. to EN ISO 14119 see page 211-222

Cable cross section (flexible copper strands)
Contact blocks 20, 21, 22, 33, 34:

Contact blocks $5,6,7,9,10,11,12,13,14,15,16,18:$
Contact block 2 :

## In compliance with standards:

IEC 60947-5-1, EN 60947-5-1, EN 60947-1, IEC 60204-1, EN 60204-1, EN ISO 14119, EN ISO 12100, IEC 60529, EN 60529, UL 508, CSA 22.2 No. 14.

## Approvals:

IEC 60947-5-1, UL 508, CSA 22.2 No.14, GB14048.5-2001.

## Compliance with the requirements of:

Low Voltage Directive 2014/35/EU, EMC Directive 2014/30/EU.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.

## Installation for safety applications:

Use only switches marked with the symbol $\Theta$ next to the product code. Always connect the safety circuit to the NC contacts (normally closed contacts: 11-12, 21-22 or 31-32) as required by EN ISO 14119, paragraph 5.4 for specific interlock applications and EN ISO $13849-2$ tables D3 (well-tried components) and D. 8 (fault exclusions) for safety applications in general. Actuate the switch at least up to the positive opening travel shown in the travel diagrams on page 216. Actuate the switch at least with the positive opening force, reported in brackets below each article, next to the actuating force value.
§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see the instructions given on pages 211 to 222.

Electrical data			Utilization category			
	Thermal current ( $I_{t n}$ ): Rated insulation voltage ( $U_{i}$ ):	```10 A 500 Vac 600 Vdc 400 Vac 500 Vdc (contact blocks 2, 11, 12, 20, 21, 22, 33, 34) 6 kV 4 kV (contact blocks 20, 21, 22, 33,34) 1000 A acc. to EN 60947-5-1 type aM fuse 10 A 500 V 3```	Alternating current: AC15 (50 $\div 60 \mathrm{~Hz}$ )			
			$\mathrm{Ue}(\mathrm{V})$	250	400	500
			le (A)	6	4	1
	Rated impulse withstand voltage ( $\mathrm{U}_{\text {imp }}$ ) :		Direct current: DC13			
	Conditional short circuit current:		Ue (V)	24	125	250
	Protection against short circuits: Pollution degree:		le (A)	6	1.1	0.4
	Thermal current ( $\left.\right\|_{\text {th }}$ ):   Rated insulation voltage ( $U_{i}$ ):   Protection against short circuits:   Pollution degree:	```4A 250 Vac 300 Vdc type gG fuse 4 A 500 V 3```	Alternating current: AC15 ( $50 \div 60 \mathrm{~Hz}$ )			
			Ue (V)	24	120	250
			le (A)	4	4	4
			Direct	ent: D		
			Ue (V)			250
			le (A)			0.4
	Thermal current $\left(l_{\text {th }}\right)$ :   Rated insulation voltage ( $\mathrm{U}_{\mathrm{i}}$ ):   Protection against short circuits:   Pollution degree:	$\begin{aligned} & 2 \mathrm{~A} \\ & 30 \mathrm{Vac} 36 \mathrm{Vdc} \\ & \text { type gG fuse } 2 \mathrm{~A} 500 \mathrm{~V} \\ & 3 \end{aligned}$	Alternating current: AC15 $(50 \div 60 \mathrm{~Hz})$			
			$\mathrm{Ue}(\mathrm{V})$	24		
			le (A)	2		
			Direct	ent: D		
			$\mathrm{Ue}(\mathrm{V})$	$24$		
			le (A)	2		

## Features approved by IMO

Rated insulation voltage ( $U_{i}$ ):
500 Vac
400 Vac for contact blocks 2, 11, 12, 20, 21,22, 33, 34)
Conventional free air thermal current 10 A

Protection against short circuits:
type aM fuse 10 A 500 V
Rated impulse withstand voltage ( $\mathrm{U}_{\text {imo }}$ ): 6 kV
4 kV (for contact blocks 20, 21, 22, 33, 34)

Protection degree of the housing:
MV terminals (screw terminals)
Pollution degree:
Utilization category:
Operating voltage ( $U_{e}$ ):
3

Operating current $\left(l_{e}\right)^{e}$ :
AC15
$400 \mathrm{Vac}(50 \mathrm{~Hz})$
3 A

Forms of the contact element: $Z a, Z b, Z a+Z a, Y+Y, X+X, Y+Y+X, Y+Y+Y, Y+X+X$
Positive opening of contacts on contact blocks $5,6,7,9,11,13,14,16,18,20$,
21, 22, 33, 34
In compliance with standards: EN 60947-1, EN 60947-5-1 + A1:2009, fundamental
requirements of the Low Voltage Directive 2014/35/EU.

## Features approved by UL

Utilization category Q 300 ( $69 \mathrm{VA}, 125-250 \mathrm{Vdc}$ )

$$
\text { A600 (720 VA, } 120-600 \mathrm{Vac})
$$

Housing features type 1, 4X, 12, 13
For all contact blocks except 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductors, rigid or flexible, wire size 12, 14 AWG. Tightening torque for terminal screws of 7.1 lb in ( 0.8 Nm ).
For contact blocks 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper ( Cu ) conductors, rigid or flexible, wire size 14 AWG. Tightening torque for terminal screws of 12 lb in ( 1.4 Nm ).

In compliance with standard: UL 508, CSA 22.2 No. 14
Please contact our technical department for the list of approved products

Please contact our technical department for the list of approved products.

## Wiring diagram for M12 connectors

Contact block 2   $1 \mathrm{NO}-1 \mathrm{NC}+1 \mathrm{NO}-$   1NC	Contact block 5 $1 \mathrm{NO}+1 \mathrm{NC}$	Contact block 6 1NO+1NC	Contact block 7 $1 \mathrm{NO}+1 \mathrm{NC}$	Contact block 9 2NC	$\begin{gathered} \text { Contact block } 10 \\ 2 \mathrm{NO} \end{gathered}$	Contact block 11 2NC	Contact block 12 2NO	Contact block 13 2NC
M12 connector, 8-pole	M12 connector, 5-pole							
Contacts Pin no.   NO 3-4	Contacts Pin no.   NC $\quad 1-2$	Contacts Pin no.   NC 1-2	Contacts Pin no.   NC 1-2	Contacts Pin no.   NC 1-2	Contacts Pin no.   NO 1-2	Contacts Pin no.   NC $\quad 1-2$	Contacts Pin no   NO 1-2	Contacts Pin no.   NC (1) 1-2
NC 5-6	NO 3-4	NO 3-4	NO 3-4	NC 3-4	NO 3-4	NC 3-4	NO 3-4	NC (2) ${ }^{\circ}{ }^{\circ} \mathrm{-4}$
NC 7-8	ground 5	ground 5	ground 5	ground	ground	ground 5	ground 5	ground
NO 1-2								
Contact block 14 2NC	Contact block 15 2NO	Contact block 16 2NC	$\begin{gathered} \text { Contact block } 18 \\ 1 \mathrm{NO}+1 \mathrm{NC} \end{gathered}$	$\begin{aligned} & \text { Contact block } 20 \\ & 2 N C+1 \text { NO } \end{aligned}$	$\begin{gathered} \text { Contact block } 21 \\ \text { 3NC } \end{gathered}$	$\begin{gathered} \text { Contact block } 22 \\ 1 \mathrm{NC}+2 \mathrm{NO} \end{gathered}$	$\begin{aligned} & \text { Contact block33 } \\ & 1 \mathrm{NC}+1 \mathrm{NO} \end{aligned}$	$\begin{aligned} & \text { Contact block34 } \\ & \text { 2NC } \end{aligned}$
M12 connector, 5-pole	M12 connector, 5-pole	M12 connector, 5-pole	M12 connector, 5 -pole	M12 connector, 8 -pole	M12 connector, 8-pole	M12 connector, 8-pole	M12 connector, 5-pole	M12 connector, 5-pole
Contacts Pin no.   NC (1 ${ }^{\circ}$ ) 1-2	Contacts Pin no.   NO (1 ${ }^{\circ}$ ) 1-2	Contacts Pin no.   NC, lever to the right 1-2	Contacts Pin no. $\text { NC } \quad 1-2$	Contacts Pin no.   NC $3-4$	$\begin{array}{cc} \text { Contacts } & \text { Pin no. } \\ \text { NC } & 3-4 \end{array}$	$\begin{array}{cc} \text { Contacts } & \text { Pin no. } \\ \text { NC } & 3-4 \end{array}$	$\begin{array}{cc} \text { Contacts } & \text { Pin no. } \\ \text { NC } & 1-2 \end{array}$	Contacts Pin no   NC $\quad 1-2$
NC (20) 3 -4	NO (20) 3 -4	NC , lever to the left 3-4	NO 3-4	NC 5-6	NC 5-6	NO 5-6	NO 3-4	NC 3-4
ground 5	ground 5	ground 5	ground 5	NO 7-8	NC 7-8	NO 7-8	ground 5	ground 5
				ground 1	ground	ground 1		

## Contact block E1 PNP

M12 connector, 5-pole

Contacts	Pin no.
+	1
-	3
NC	2
NO	4
ground	5

FZ series position switches


Contact block		With stainless steel roller on request	With external ru With stainless	ber gasket		With external rubber gasket	
5	R		FZ 505-M2 $\Theta$ 1 ${ }^{\text {NO+1NC }}$	FZ 5A5-M2	$1 \mathrm{NO}+1 \mathrm{NC}$	FZ 507-M2 $\Theta$ 1 ${ }^{\text {NO+1NC }}$	FZ 5A7-M2 $\Theta$ - ${ }^{\text {NOO}}+1 \mathrm{NC}$
6	$\square$	FZ 605-M2 $\Theta$ 1 ${ }^{\text {NO}+1 \mathrm{NC}}$	FZ 6A5-M2	$1 \mathrm{NO}+1 \mathrm{NC}$	FZ 607-M2 $\Theta$ 1 ${ }^{\text {NO}+1 N C}$	FZ 6A7-M2 $\Theta$ 1 ${ }^{\text {NO}+1 N C}$	
7	L0	FZ 705-M2 $\odot 1$ (NO+1NC	FZ 7A5-M2	(1) $1 \mathrm{NO}+1 \mathrm{NC}$	FZ 707-M2 $\odot 1$ 1 O+1NC	FZ 7A7-M2 $\Theta 1$ (NO+1NC	
9	$\square$	FZ 905-M2 $\Theta$ 2NC	FZ 9A5-M2	$\Theta 2 \mathrm{NC}$	FZ 907-M2 $\Theta$ 2NC	FZ 9A7-M2 $\Theta$ 2NC	
10	$\square$	FZ 1005-M2 2NO	FZ 10A5-M2	2 No	FZ 1007-M2 2NO	FZ 10A7-M2 2NO	
11	R	FZ 1105-M2 $\oplus$ 2NC	FZ 11A5-M2	(-2NC	FZ 1107-M2 $\oplus$ 2NC	FZ 11A7-M2 $\Theta$ 2NC	
12	R	FZ 1205-M2 2NO	FZ 12A5-M2	2 No	FZ 1207-M2 2NO	FZ 12A7-M2 2NO	
13	LV	FZ 1305-M2 $\Theta$ 2NC	FZ 13A5-M2	(-2NC	FZ 1307-M2 $\Theta$ 2NC	FZ 13A7-M2 $\odot$ 2NC	
14	LS	FZ 1405-M2 $\Theta$ 2NC	FZ 14A5-M2	$\oplus$ 2NC	FZ 1407-M2 $\Theta$ 2NC	FZ 14A7-M2 $\Theta$ 2NC	
15	LS	FZ 1505-M2 2NO	FZ 15A5-M2	2 No	FZ 1507-M2 2NO	FZ 15A7-M2 2NO	
18	LA	FZ 1805-M2 $\odot 1{ }^{\text {1NO}+1 N C}$	FZ 18A5-M2	(-1) $1 \mathrm{NO}+1 \mathrm{NC}$	FZ 1807-M2 $\bigodot$ ¢ ${ }^{1 N O+1 N C}$	FZ 18A7-M2 $\Theta$ - ${ }^{\text {N }}$ O+1NC	
20	$\square$	FZ 2005-M2 $\Theta$ 1 ${ }^{\text {NO}+2 N C}$	FZ 20A5-M2	$\Theta 1 \mathrm{NO}+2 \mathrm{NC}$	FZ 2007-M2 $\Theta$ 1 ${ }^{\text {NO}+2 N C}$	FZ 20A7-M2 $\Theta$ 1NO+2NC	
21	$\square$	FZ 2105-M2 $\Theta$ 3NC	FZ 21A5-M2	$\Theta 3 \mathrm{NC}$	FZ 2107-M2 $\Theta$ 3NC	FZ 21A7-M2 $\Theta$ 3NC	
22	$\square$	FZ 2205-M2 $\Theta$ 2NO+1NC	FZ 22A5-M2	¢ $2 \mathrm{NO}+1 \mathrm{NC}$	FZ 2207-M2 $\Theta$ 2NO+1NC	FZ 22A7-M2 $\Theta$ 2NO+1NC	
2	R	FZ 205-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC})$	FZ 2A5-M2	$2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$	FZ 207-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$	FZ 2A7-M2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$	
E1	因	FZ E105-M2 1NO-1NC	FZ E1A5-M2	$1 \mathrm{NO}-1 \mathrm{NC}$	FZ E107-M2 1NO-1NC	FZ E1A7-M2 1NO-1NC	
Max. speed		page 215 - type 3	page 2	15 - type 3	page 215 - type 3	page 215 - type 3	
Actuating force		$6 \mathrm{~N}(25 \mathrm{~N} \Theta)$	4.3 N	$(25 \mathrm{~N} \Theta)$	$4 \mathrm{~N}(25 \mathrm{~N}$ )	$3 \mathrm{~N}(25 \mathrm{~N}$ )	
Travel diagrams		page 216 - group 2	page 2	6 - group 2	page 216 - group 3	page 216 - group 3	

All values in the drawings are in mm



All values in the drawings are in mm

FZ series position switches


Contact block			Round rod, $\varnothing 3$	, stainless steel	Other rollers available. See on page 102	Other rollers available. See on page 102
5 R	FZ 534-M2	$1 \mathrm{NO}+1 \mathrm{NC}$	FZ 550-M2	1NO+1NC	FZ 551-M2 $\Theta$ 1NO+1NC	FZ 552-M2 $\Theta$ 1NO+1NC
6 L	FZ 634-M2	$1 \mathrm{NO}+1 \mathrm{NC}$	FZ 650-M2	$1 \mathrm{NO}+1 \mathrm{NC}$	FZ 651-M2 $\Theta$ 1NO+1NC	FZ 652-M2 $\Theta$ 1NO+1NC
7 L0	FZ 734-M2	$1 \mathrm{NO}+1 \mathrm{NC}$	FZ 750-M2	$1 \mathrm{NO}+1 \mathrm{NC}$	FZ 751-M2 $\Theta$ 1NO+1NC	FZ 752-M2 $\Theta$ 1NO+1NC
9 L	FZ 934-M2	2NC	FZ 950-M2	2 NC	FZ 951-M2 $\Theta$ 2NC	FZ 952-M2 $\Theta$ 2NC
10 L	FZ 1034-M2	2 NO	FZ 1050-M2	2NO	FZ 1051-M2 2NO	FZ 1052-M2 2NO
11 R	FZ 1134-M2	2NC	FZ 1150-M2	2NC	FZ 1151-M2 $\Theta$ 2NC	FZ 1152-M2 $\Theta$ 2NC
12 R	FZ 1234-M2	2NO	FZ 1250-M2	2NO	FZ 1251-M2 2NO	FZ 1252-M2 2NO
13 LV	FZ 1334-M2	2NC	FZ 1350-M2	2NC	FZ 1351-M2 $\Theta$ 2NC	FZ 1352-M2 $\Theta$ 2NC
14 LS	FZ 1434-M2	2NC	FZ 1450-M2	2NC	FZ 1451-M2 $\Theta$ 2NC	FZ 1452-M2 $\Theta$ 2NC
15 LS	FZ 1534-M2	2 NO	FZ 1550-M2	2NO	FZ 1551-M2 2NO	FZ 1552-M2 2NO
16 L	FZ 1634-M2	2NC	FZ 1650-M2	2 NC	FZ 1651-M2 $\Theta$ 2NC	FZ 1652-M2 $\Theta$ 2NC
18 LA	FZ 1834-M2	1NO+1NC	FZ 1850-M2	$1 \mathrm{NO}+1 \mathrm{NC}$	FZ 1851-M2 $\Theta$ 1NO+1NC	FZ 1852-M2 $\Theta$ 1NO+1NC
20 L	FZ 2034-M2	$1 \mathrm{NO}+2 \mathrm{NC}$	FZ 2050-M2	$1 \mathrm{NO}+2 \mathrm{NC}$	FZ 2051-M2 $\Theta$ 1NO+2NC	FZ 2052-M2 $\Theta$ 1NO+2NC
21 L	FZ 2134-M2	3NC	FZ 2150-M2	3NC	FZ 2151-M2 $\Theta 3 N C$	FZ 2152-M2 $\Theta$ 3NC
22 L	FZ 2234-M2	2NO+1NC	FZ 2250-M2	2NO+1NC	FZ 2251-M2 $\Theta$ 2NO+1NC	FZ 2252-M2 $\Theta$ 2NO+1NC
2 R	FZ 234-M2	$2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$	FZ 250-M2	2x(1NO-1NC)	FZ 251-M2 2x(1NO-1NC)	FZ 252-M2 2x(1NO-1NC)
E1 A	FZ E134-M2	1NO-1NC	FZ E150-M2	$1 \mathrm{NO}-1 \mathrm{NC}$	FZ E151-M2 1NO-1NC	FZ E152-M2 1NO-1NC
Max. speed	$1.5 \mathrm{~m} / \mathrm{s}$		$1.5 \mathrm{~m} / \mathrm{s}$		page 215 - type 1	page 215 - type 1
Actuating force	0.06 Nm		0.06 Nm		$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$
Travel diagrams	page 216 - group 5		page 216 - group 5		page 216 - group 5	page 216 - group 5

All values in the drawings are in mm

[^8]

${ }^{(1)}$ Positive opening only with actuator set to max. See page 101.
All values in the drawings are in mm


Pizzato Elettrica has developed a reset device code W3 to make perfectly simultaneous the actuator and the contact block tripping. This device consists in a block to be mounted between the body and the head of the switch that can be rotated independently from the head. This new device offers the following advantages:

- The reset device can be integrated into almost all standard actuator heads
- Contact blocks with snap action are no more necessary because the tripping movement is executed by the reset device itself
- The reset device can be rotated independently from the head ensuring maximum flexibility during installation
- Two actuating forces: standard and increased for vibration applications
- Mechanical endurance: 1 million operating cycles.

Contact type: $\begin{aligned} & \hline \mathbf{R} \\ & \text { = snap action } \\ & \hline \mathbf{L} \end{aligned} \text { = slow action }$		With stainless steel roller on request	With stainless steel roller on request	
Contact block				
6 L	FZ 601-W3M2 $\Theta$ 1NO+1NC	FZ 602-W3M2 $\Theta$ 1NO+1NC	FZ 605-W3M2 $\Theta$ 1NO+1NC	FZ 607-W3M2 $\Theta$ 1N0
9 L	FZ 901-W3M2 $\Theta$ 2NC	FZ 902-W3M2 $\Theta$ 2NC	FZ 905-W3M2 $\Theta$ 2NC	FZ 907-W3M2 $\Theta$ 2NC
10 L	FZ 1001-W3M2 2NO	FZ 1002-W3M2 2NO	FZ 1005-W3M2 2NO	FZ 1007-W3M2 2NO
20 L	FZ 2001-W3M2 $\Theta$ 1NO+2NC	FZ 2002-W3M2 $\Theta$ 1NO+2NC	FZ 2005-W3M2 $\Theta$ 1NO+2NC	FZ 2007-W3M2 $\Theta$ 1NO+2NC
21 L	FZ 2101-W3M2 $\Theta 3 \mathrm{NC}$	FZ 2102-W3M2 $\Theta 3$ NC	FZ 2105-W3M2 $\Theta$ 3NC	FZ 2107-W3M2 $\Theta$ 3NC
22 L	FZ 2201-W3M2 $\Theta$ 2NO+1NC	FZ 2202-W3M2 $\Theta$ 2NO+1NC	FZ 2205-W3M2 $\Theta$ 2NO+1NC	FZ 2207-W3M2 $\Theta$ 2NO+1NC
2 R	FZ 201-W3M2 2NO+2NC	FZ 202-W3M2 2NO+2NC	FZ 205-W3M2 2NO+2NC	FZ 207-W3M2 2NO+2NC
Max. speed	page 215 - type 4	page 215 - type 3	page 215 - type 3	page 215 - type 3
Actuating force	$4.5 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$4 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$4 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$2.5 \mathrm{~N}(25 \mathrm{~N} \Theta)$
Travel diagrams	page 217 - group 1	page 217 - group 2	page 217 - group 2	page 217 - group 3



All values in the drawings are in mm


## Increased actuating force



The switch can be delivered with increased actuating force (option W4). Ideal for vibration applications.

Actuators	Actuating force
$01,14,15,16$	7 N
02,05	6 N
07	3.5 N
30.57	0.08 Nm

To order the switch with reset and increased actuating force, replace the -W3 option with
W4 in the order code
Example: FZ 601-W3M2 $\rightarrow$ FZ 601-W4M2

## Position switches with swivelling lever without actuator



## IMPORTANT

For safety applications: join only switches and actuators marked with symbol $\Theta$ next to the product code.
For more information about safety applications see details on page 211.

## Separate actuators

IMPORTANT: These separate actuators can be used only with items of the FR, FM, FX, FZ and FK series.

Technopolymer roller $\varnothing 18 \mathrm{~mm}$	Technopolymer roller $\varnothing 18 \mathrm{~mm}$	Adjustable square rod, $3 \times 3 \times 125 \mathrm{~mm}$	Flexible rod with pointed end	Adjustable round rod ø $3 \times 125 \mathrm{~mm}$	Technopolymer roller $\varnothing 20 \mathrm{~mm}$	
VF LE30 $\Theta$	VF LE31 $\Theta$	VF LE33	VF LE34	VF LE50	VF LE51 $\Theta$	
Technopolymer roller $\varnothing 20$ mm	Porcelain roller	Technopolymer roller $\varnothing 20$ mm	Adjustable actuator with technopolymer roller	Adjustable safety actuator with technopolymer roller	Technopolymer roller $\varnothing 20$ mm	Adjustable glass fibre rod
VF LE52 $\Theta$	VF LE53 $\Theta{ }^{(2)}$	VF LE54 $\Theta$	VF LE55 $\Theta{ }^{(1)}$	VF LE56 $\Theta$	VF LE57 $\Theta$	VF LE69

[^9]

Stainless steel rollers, $\varnothing 20$ mm

VF LE31-R24 $\Theta$	VF LE51-R24 $\Theta$	VF LE52-R24 $\Theta$	VF LE54-R24 $\Theta$	VF LE55-R24 $\Theta{ }^{\text {(1) }}$	VF LE56-R24 $\Theta$	VF LE57-R24 $\Theta$

Technopolymer rollers, $\varnothing 35$ mm


Rubber rollers, $\varnothing 40$ mm

VF LE31-R5 $\underbrace{(4)}$	VF LE51-R5 $\underbrace{(4)}$	VF LE52-R5 $\Theta$	VF LE54-R5 $\underbrace{(4)}$	VF LE55-R5 ${ }^{(1)}$	VF LE56-R5 $\Theta$	VF LE57-R5 $\underbrace{(4)}$

Rubber rollers, $\varnothing 50 \mathrm{~mm}$


Protruding rubber rollers, $\varnothing 50 \mathrm{~mm}$


## Selection diagram



CONDUIT ENTRY

product options
Sold separately as accessory


Code structure
Attention! The feasibility of a code number does not mean the effective availability of a product. Please contact our sales office. article options options FK $302-\mathrm{W} 3 \mathrm{XG} 1 \mathrm{~K} 24 \mathrm{R} 23 \mathrm{~T} 6$


External metallic parts
zinc-plated steel (standard)
X stainless steel



## Main features

- Technopolymer housing, one conduit entry
- Protection degree IP67
- 3 contact blocks available
- 46 actuators available
- Versions with external parts in stainless steel
- Versions with gold-plated silver contacts


## Quality marks:

## 

IMQ approval:	EG610
UL approval:	E131787
CCC approval:	2007010305230013
EAC approval:	RU C-IT.АД35.В.00454

Installation for safety applications:
Use only switches marked with the symbol $\Theta$ next to the product code. Always connect the safety circuit to the NC contacts (normally closed contacts: 11-12, 21-22 or 31-32) as required by EN ISO 14119, paragraph $\mathbf{5 . 4}$ for specific interlock applications and EN ISO $\mathbf{1 3 8 4 9 - 2}$ tables D3 (well-tried components) and D. 8 (fault exclusions) for safety applications in general. Actuate the switch at least up to the positive opening travel shown in the travel diagrams on page 216. Actuate the switch at least with the positive opening force, reported in brackets below each article, next to the actuating force value.
§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see the instructions given on pages 211 to 222.

Electrical data			Utilization category			
	Thermal current $\left(l_{\text {th }}\right)$ : Rated insulation voltage ( $U_{i}$ ):	$10 \mathrm{~A}$   500 Vac 600 Vdc	Alternating current: AC15 ( $50 \div 60 \mathrm{~Hz}$ )			
		400 Vac 500 Vdc (contact blocks 33, 34)	Ue (V)	250	400	500
	Rated impulse withstand voltage ( $\mathrm{U}_{\text {imp }}$ ):	6 kV	le (A)	6	4	1
		4 kV (contact block 33, 34)	Direct current: DC13			
	Conditional short circuit current:	1000 A acc. to EN 60947-5-1	Ue (V)	24	125	250
	Protection against short circuits: Pollution degree:	type aM fuse 10 A 500 V 3	le (A)	6	1.1	0.4


Features approved by IMO	
Rated insulation voltage ( $\mathrm{U}_{\mathrm{i}}$ ):	500 Vac   400 Vac (for contact blocks 33,   34)
Conventional free air thermal current	10 A
Protection against short circuits:	type aM fuse 10 A 500 V
Rated impulse withstand voltage ( $\mathrm{U}_{\text {imp }}$ ): 6 6 kV	
Protection degree of the housing: MV terminals (screw terminals)	IP67
Pollution degree:	3
Utilization category:	AC15
Operating voltage ( $\mathrm{U}_{\mathrm{e}}$ ):	$400 \mathrm{Vac}(50 \mathrm{~Hz})$
Operating current ( $l_{\mathrm{e}}$ ):	3 A
Forms of the contact element: $\mathrm{Zb}, \mathrm{Y}+\mathrm{Y}$	
Positive opening of contacts on contact blocks 33, 34	
In compliance with standards: EN 60947-1, requirements of the Low Voltage Directive	EN 60947-5-1 + A1:2009, fundamental 2014/35/EU.

## Features approved by IMO

## Features approved by UL

Utilization category Q300 (69 VA, 125-250 Vdc) A600 (720 VA, 120-600 Vac)
Housing features type 1, 4 X "indoor use only", 12, 13
For all contact blocks except 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductors, rigid or flexible, wire size 12, 14 AWG. Tightening torque for terminal screws of 7.1 lb in ( 0.8 Nm ).
For contact blocks 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductors, rigid or flexible, wire size 14 AWG. Tightening torque for terminal screws of 12 lb in (1.4 Nm).

In compliance with standard: UL 508, CSA 22.2 No. 14
Please contact our technical department for the list of approved products.

FK series position switches

Contact ty		With stainless steel roller on request	With external rubber gasket	With external rubber gasket
$\begin{aligned} & \mathbf{R}=\text { snap action } \\ & \mathbf{L}=\text { slow action } \end{aligned}$				
Contact block				
$3 \quad \mathbf{R}$	FK 301-M1 1NO-1NC	FK 302-M1 1NO-1NC	FK 3A2-M1 1NO-1NC	FK 3A4-M1 1NO-1NC
33 L	FK 3301-M1 $\Theta$ 1NO+1NC	FK 3302-M1 $\Theta$ 1NO+1NC	FK 33A2-M1 $\Theta$ 1NO+1NC	FK 33A4-M1 $\Theta$ 1NO+1NC
34 L	FK 3401-M1 $\Theta$ 2NC	FK 3402-M1 $\Theta$ 2NC	FK 34A2-M1 $\Theta$ 2NC	FK 34A4-M1 $\Theta$ 2NC
Max. speed	page 215 - type 4	page 215 - type 3	page 215 - type 3	page 215 - type 5
Actuating force	$5 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$4 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$4.3 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$4.3 \mathrm{~N}(25 \mathrm{~N} \Theta)$
Travel diagrams	page 216 - group 1	page 216 - group 2	page 216 - group 2	page 216 - group 1

With stainless steel roller on request
With external rubber gasket
With stainless steel roller on request

	With external rubber gasket	Secured only by means of threaded head in vertical position		
Contact block				
$3 \quad \mathbf{R}$	FK 308-M1 1NO-1NC	FK 310-M1 1NO-1NC	FK 312-M1 1NO-1NC	FK 313-M1 1NO-1NC
$33 \quad$ L	FK 3308-M1 $\Theta$ 1NO+1NC	FK 3310-M1 $\Theta$ 1NO+1NC	FK 3312-M1 $\Theta$ 1NO+1NC	FK 3313-M1 $\Theta$ 1NO+1NC
$34 \quad$ L	FK 3408-M1 $\Theta$ 2NC	FK 3410-M1 $\Theta$ 2NC	FK 3412-M1 $\Theta$ 2NC	FK 3413-M1 $\Theta$ 2NC
Max. speed	page 215 - type 4	page 215 - type 4	page 215 - type 4	page 215 - type 2
Actuating force	$5 \mathrm{~N}(25 \mathrm{~N} \Theta)$			
Travel diagrams	page 216 - group 1	page 216-group 1	page 216-group 1	page 216 - group 1

All values in the drawings are in mm

[^10]| Contact type: $\begin{array}{\|l\|l} \hline \mathbf{R} & =\text { snap action } \\ \mathbf{L} & =\text { slow action } \end{array}$ |  | Roller, $\varnothing 11 \mathrm{~mm}$, technopolymer | Roller, $\varnothing 12 \mathrm{~mm}$, stainless steel |  |
| :---: | :---: | :---: | :---: | :---: |
| Contact block |  |  |  |  |
| 3 R | FK 314-M1 1NO-1NC | FK 315-M1 1NO-1NC | FK 315-M1R28 1NO-1NC | FK 316-M1 1NO-1NC |
| 33 L | FK 3314-M1 $\Theta$ 1NO+1NC | FK 3315-M1 $\Theta$ 1NO+1NC | FK 3315-M1R28 $\Theta$ 1NO+1NC | FK 3316-M1 $\Theta$ 1NO+1NC |
| $34 \square$ | FK 3414-M1 $\Theta$ 2NC | FK 3415-M1 $\Theta$ 2NC | FK 3415-M1R28 $\Theta$ 2NC | FK 3416-M1 $\Theta$ 2NC |
| Max. speed | page 215 - type 4 | page 215 - type 2 | page 215 - type 2 | page 215 - type 2 |
| Actuating force | $6 \mathrm{~N}(25 \mathrm{~N} \Theta)$ | $5 \mathrm{~N}(25 \mathrm{~N} \Theta)$ | $5 \mathrm{~N}(25 \mathrm{~N} \Theta)$ | $5 \mathrm{~N}(25 \mathrm{~N} \Theta)$ |
| Travel diagrams | page 216 - group 1 |


| Secured only by means of threaded |
| :--- | :--- |
| head in vertical position |

With external rubber gasket
With $\varnothing$ 20 mm stainless steel roller on request Other rollers available. See on page 112

All values in the drawings are in mm
Accessories See page 197

FK series position switches


	Other rollers available. See on page 112			
Contact ${ }^{\text {bok }}$				
3 R	FK 354-M1 1NO-1NC	FK 355-M1 1NO-1NC	FK 356-M1 1NO-1NC	FK 357-M1 1NO-1NC
33 L	FK 3354-M1 $\Theta$ 1NO+1NC	FK 3355-M1 $\Theta$ (1) $1 \mathrm{NO}+1 \mathrm{NC}$	FK 3356-M1 $\Theta$ 1NO+1NC	FK 3357-M1 $\Theta$ 1NO+1NC
$34 \square$	FK 3454-M1 $\Theta$ 2NC	FK 3455-M1 $\Theta{ }^{\text {(1) }} 2 \mathrm{NC}$	FK 3456-M1 $\Theta$ 2NC	FK 3457-M1 $\Theta$ 2NC
Max. speed	page 215 - type 1			
Actuating force	$0.05 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$			
Travel diagrams	page 216 - group 5			



[^11]All values in the drawings are in mm
Accessories See page 197


Pizzato Elettrica has developed a reset device code W3 to make perfectly simultaneous the actuator and the contact block tripping. This new device consists in a block to be mounted between the body and the head of the switch that can be rotated independently from the head. This new device offers the following advantages:

- The reset device can be integrated into almost all standard actuator heads
- Contact blocks with snap action are no more necessary because the tripping movement is executed by the reset device itself
- The reset device can be rotated independently from the head ensuring maximum flexibility during installation
- Two actuating forces: standard and increased for vibration applications
- Mechanical endurance: 1 million operating cycles.


	With $\varnothing 12 \mathrm{~mm}$ stainless steel roller on request	With $\varnothing 20 \mathrm{~mm}$ stainless steel roller on request	Other rollers available. See on page 112	Other rollers available. See on page 112
Contact block				
33 L	FK 3315-W3M1 $\Theta$ 1NO+1NC	FK 3330-W3M1 $\Theta$ 1NO+1NC	FK 3331-W3M1 $\Theta$ 1NO+1NC	FK 3351-W3M1 $\Theta$ 1NO+1NC
$34 \square$	FK 3415-W3M1 $\Theta$ 2NC	FK 3430-W3M1 $\Theta$ 2NC	FK 3431-W3M1 $\Theta$ 2NC	FK 3451-W3M1 $\Theta$ 2NC
Max. speed	page 215 - type 2	page 215 - type 1	page 215 - type 1	page 215 - type 1
Actuating force	$4.5 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$0.07 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.07 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.07 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$
Travel diagrams	page 217 - group 1	page 217 - group 4	page 217 - group 4	page 217 - group 4



All values in the drawings are in mm

Position switches with swivelling lever without actuator

Contact type: $\begin{array}{ll} \hline \mathbf{R} & =\text { snap action } \\ \mathbf{L} & =\text { slow action } \end{array}$		With manual reset knob
Contact block		
$3 \quad \mathbf{R}$	FK 338-M1 1NO-1NC	
33 L	FK 3338-M1 $\Theta$ 1NO+1NC	FK 3338-W3M1 $\Theta$ 1NO+1NC
34 L	FK 3438-M1 $\Theta$ 2NC	FK 3438-W3M1 $\Theta$ 2NC
Actuating force	$0.05 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.07 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$
Travel diagrams	page 216 - group 5	page 217 - group 4

## IMPORTANT

For safety applications: join only switches and actuators marked with symbol $\Theta$ next to the product code.
For more information about safety applications see details on page 211.

## Increased actuating force



The switch can be delivered with increased actuating force (option W4). Ideal for vibration applications.

Actuators	Actuating force
$01,14,15,16$	7 N
02,05	6 N
07	3.5 N
$30 \ldots 57$	0.08 Nm

[^12]
## Separate actuators

IMPORTANT: These separate actuators can be used only with items of the FR, FM, FX, FZ and FK series.

Technopolymer roller Ø 18 mm	Technopolymer roller $\varnothing 18$ mm	Adjustable square rod, $3 \times 3 \times 125 \mathrm{~mm}$	Flexible rod with pointed end	Adjustable round rod $\varnothing 3 \times 125 \mathrm{~mm}$	Technopolymer roller $\varnothing 20$ mm	
VF LE30 $\Theta$	VF LE31 $\Theta$	VF LE33	VF LE34	VF LE50	VF LE51 $\Theta$	
Technopolymer roller $\varnothing 20$ mm	Porcelain roller	Technopolymer roller $\varnothing 20$ mm	Adjustable actuator with technopolymer roller	Adjustable safety actuator with technopolymer roller	Technopolymer roller $\varnothing 20$ mm	Adjustable glass fibre rod


VF LE52 $\Theta$	VF LE53 $\Theta{ }^{\text {(2) }}$	VF LE54 $\Theta$	VF LE55 $\overbrace{}^{(1)}$	VF LE56 $\Theta$	VF LE57 $\Theta$	VF LE69

- ${ }^{(1)}$ Actuator VF LE55 can only be used in safety applications if adjusted to its max. length, as shown in the figure to the right. If an adjustable
lever is required for safety applications, use the VF LE56 adjustable safety lever.
- ${ }^{(2)}$ The position switch obtained by assembling switch FK •38-M1 (e.g. FK 338-M1, FK 3338-M1 ...) with actuator VF LE53 will not present the same travel diagrams and actuating forces as switch FK •53-E0M1V9 (e.g. FK 353-E0M1, FK 3353-E0M1V9...).
${ }^{(4)}$ The actuator cannot be rotated to the inside because it will hit the switch head upon actuation.

Stainless steel rollers, $\varnothing 20 \mathrm{~mm}$

VF LE31-R24 $\Theta$	VF LE51-R24 $\Theta$	VF LE52-R24 $\Theta$	VF LE54-R24 $\Theta$	VF LE55-R24 $\Theta{ }^{\text {(1) }}$	VF LE56-R24 $\Theta$	VF LE57-R24 $\Theta$

Technopolymer rollers, $\varnothing 35 \mathrm{~mm}$


Rubber rollers, $\varnothing 40$ mm

VF LE31-R5 ${ }^{(4)}$	VF LE51-R5 ${ }^{(4)}$	VF LE52-R5 $\rightarrow$	VF LE54-R5 ${ }^{(4)}$	VF LE55-R5 $\Theta{ }^{(1)}$	VF LE56-R5 $\Theta$	VF LE57-R5 $\Theta$ (4)

Rubber rollers, $\varnothing 50 \mathrm{~mm}$


Protruding rubber rollers, $\varnothing 50 \mathrm{~mm}$


## Description




#### Abstract

The result of the long-standing expertise of Pizzato Elettrica in the creation of position switches, the NA, NB, NF series achieve the highest standard of flexibility and depth of range present today on the pre-wired switches market. Configurable, adjustable, pivotable and, not least, customisable with special cables or custom wiring - these are features that today make these series unique in the European panorama, ideal for easily providing our customers with customised switches.


## Switches with connectors



The new fundamental feature of this series of prewired switches is that the switch body and the wired connector are separated.
Using the connector the end-user can replace a product on field without having to disconnect the complete wiring.
Moreover in this way it is easier to combine products with different cable types and lengths.

Protection degrees IP67 and IP69K
$D$ These devices are designed to be used in the toughest environmental conditions and they pass the IP67 immersion test acc. to EN 60529. They can therefore be used in all environments where maximum protection degree of the housing is required. Due to their special design, these devices are suitable for use in equipment subjected to cleaning with high pressure hot water jets. These devices meet the IP69K test requirements according to ISO 20653 (water jets with 100 bar and $80^{\circ} \mathrm{C}$ ).

## Adjustable levers

For switches with swivelling lever, the lever can be adjusted in $10^{\circ}$ steps over the entire $360^{\circ}$ range.
The positive movement transmission is always guaranteed thanks to the particular geometrical coupling between the lever and the revolving shaft as prescribed for safety applications by the German standard BG-GS-ET-15.


Positive opening contact blocks with 1,2,3 or 4 poles


These series of contact blocks are versatile and compact.
They have the same dimensions of the previous versions, but now it is possible to have up to 4 different contacts which are galvanically separated and provided with positive opening (NC contacts)
The allowed standard combinations are: $1 \mathrm{NO}+1 \mathrm{NC}$, $2 \mathrm{NC}, 1 \mathrm{NO}+2 \mathrm{NC}, 2 \mathrm{NO}+2 \mathrm{NC}$. Other combinations available on request.
The contact blocks have been designed so that they keep the same pin assignment on the connector independently of the action type (slow or snap action) and the number of contacts. In this way, the same cables with connector can be used for units with slow action and snap action as well.

## Head with variable orientation

All heads can be turned in $90^{\circ}$ steps. The new head for swivelling levers has been designed with compact dimensions so that it does not protrude over the switch profile. Therefore, it is also possible to install the switches on the wall.


Reversible levers


For switches with swivelling lever, the lever can be fastened on straight or reverse side maintaining the positive coupling.
In this way two different working planes of the lever are possible.

## Orientable cable outputs



The connector with cable is provided with a cavity to allow cable bending up to $90^{\circ}$.
In this way a flush wall mounting is also possible as well as an easier adjustment of the cable to the supporting flange.

## Unidirectional heads

All switches with swivelling lever are supplied with a selector for choosing the lever operating direction.
The following operations are possible: right/left (standard factory setting), only from the right or only from the left. The operating direction can be selected by rotating the dedicated ring mounted on all heads of this kind.


## Increased or reduced actuating force

For actuators with swivelling lever, versions with increased or reduced actuating force are available upon request, in order to have a switch perfectly tailored for the application. For further information contact our technical department.


## $90^{\circ}$ redirection for actuators



This component highly extends the application possibilities of this product range.
All the actuators that can be attached directly to the body of the switch can also be fastened on this transmission, thus making feasible applications and positioning of the switch that were previously impossible. The redirection piece can also be used in case of heads for swivelling levers. Although possible, the use of multiple transmissions in series is not recommended.


## Reversible housing

Thanks to the shape of the fixing holes and of the switch body, as well as the possibility of rotating the head, make this switch perfectly symmetrical.
If a switch with cable output on the left (since the connector cannot be rotated) is required, it is possible to rotate the complete device by maintaining the final position of the actuator unchanged.


## Extended temperature range

$-40^{\circ} \mathrm{C}$
These devices are also available in a special version suitable for an ambient operating temperature range from $-40^{\circ} \mathrm{C}$ up to $+80^{\circ} \mathrm{C}$.
They can therefore be used for applications in cold stores, sterilisers and other equipment with low temperature environments. The special materials used to produce these versions retain their characteristics even under these conditions, thereby expanding the installation possibilities.

## Adjustable levers with anti-unscrewing washer

In some applications during the installation of the switches problems are encountered due to the variability of the fastenings and the folds of the structural work.
In other cases, small finishing adjustments are required due to the application. Nearly all swivel-

ling levers for switches of the NA, NB and NF series can be adjusted in 1 mm steps along the switch length.
This feature, combined with the additional possibility of the radial adjustment of the actuator, provides the installer with a never before achieved flexibility in the final adjustment of the product.
All this while maintaining the positive geometric locking between lever and swivel shaft as prescribed for safety applications.

## Switch components available separately

This product series has been provided with a modular design so that single parts can also be ordered separately. This is an asset both for distributors and for final customers of electrical material in the procurement of spare parts as well as for custom combinations.

NA B110BB-DN2 NA B11000 VN AAOBB VN CM11DN2


## M12 connectors

All contact configurations are available with M12 connector both with two contacts (with 5 -pin M12 connector) as well as 3 or 4 contacts (with 8 -pin M12 connector). With exit direction below or to the right, these make application in narrow spaces possible, as, with the simple rotation of the switch, the reversible housing also easily allows the exit direction to the left. The M12 connector is also available at the end of the cable, whose length can be tailored to the customer, and the cable can be bent at $90^{\circ}$, allowing installation on walls.


## AMP connectors

Furthermore, AMP connectors for 2-contact versions are available too. These connectors, specially developed for the automotive industry, are immune to vibration due to the quick coupling.


Selection diagram for item combinations of the NA-NB series



AMP connector, bottom

product options
Sold separately as accessory




## Main features

- Metal housing, right or bottom cable output
- Protection degrees IP67 and IP69K
- 4 types of integrated cable available
- Versions with M12 connector suitable for safety applications $\Theta$
- Versions with AMP connector
- 14 contact blocks available
- 36 actuators available

Quality marks:


## Technical data

Housing
Metal housing, baked with UV resistant powder coating.
Versions with integrated cable, standard length 2 m , other lengths $0.5 \ldots 10 \mathrm{~m}$ on request.
Versions with integrated M12 connector.
Versions with 0.2 m cable length and M12 connector, other lengths $0.1 \ldots 3 \mathrm{~m}$
available on request.
Protection degree:
IP67 acc. to EN 60529
IP69K acc. to ISO 20653
(Protect the cables from direct high-pressure and
high-temperature jets)
Corrosion resistance in saline mist:
$\geq 300$ hours in NSS acc. to ISO 9227

## General data

Ambient temperature for switches without cable: $-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ (standard)
$-40^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ (extended T6)
Ambient temperature for switches with cable:
Max. actuation frequency:
Mechanical endurance:
Mounting position:
Safety parameter $\mathrm{B}_{100}$ :
Mechanical interlock, not coded:
Vibration resistance
(0BB, 2KB, 2KC, 2KD actuators):
Tightening torques for installation:
See table on page 118
3600 operating cycles/hour
20 million operating cycles
any
40,000,000 for NC contacts
type 1 acc. to EN ISO 14119
$5 \ldots 150 \mathrm{~Hz}\left(7.9 \mathrm{~m} / \mathrm{s}^{2}\right)$
acc. to EN 61373 cl .9
see page 211-222

## Electrical data

Rated impulse withstand voltage ( $\mathrm{U}_{\text {imp }}$ ): 4 kV
Conditional short circuit current: 1000 A acc. to EN 60947-5-1
Pollution degree: 3
In compliance with standards:
IEC 60947-5-1, EN 60947-5-1, IEC 60204-1, EN 60204-1, EN ISO 14119,
EN ISO 12100, IEC 60529, EN 60529, ISO 20653, UL 508, CSA 22.2 No. 14.

## Compliance with the requirements of:

Low Voltage Directive 2014/35/EU, EMC Directive 2014/30/EU.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.

## § Installation for safety applications:

Use only switches marked with the symbol $\Theta$ next to the product code. Always connect the safety circuit to the NC contacts (normally closed contacts: see "Internal cable wiring" on page 118) as required by EN ISO 14119, paragraph 5.4 for specific interlock applications and EN ISO 13849-2 tables D3 (well-tried components) and D. 8 (failure exclusions) for safety applications in general. Actuate the switch at least up to the positive opening travel shown in the travel diagrams on page 220. Actuate the switch at least with the positive opening force, reported in brackets below each article, next to the actuating force value.
§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see the instructions given on pages 211 to 222.
§ Important: Switch off the circuit voltage before disconnecting the connector from the switch. The connector is not suitable for separation of electrical loads. According to EN 60204-1, versions with 8-pole M12 (2NO+2NC) and AMP connector can be used only in PELV circuits.

## Features approved by IMO

```
Rated insulation voltage (U): () 250 Vac
Conventional free air thermal current 10 A (1-2 contacts) / 6 A (2-3 contacts) /
(\mp@subsup{|}{\mathrm{ th)}}{2}
Protection against short circuits
(fuse):
Rated impulse withstand voltage
(U imp):
Protection degree of the housing:
MA terminals (crimped terminals)
Pollution degree:
Utilization category:
Operating voltage (()):
Operating current (l ()
 10 A (1-2 contacts) / 6 A (2-3 contacts) /
 4 A (4 contacts or 5-pole M12 connector) type gG
 4 kV
 IP67
 3
 AC15 / DC13 (with connector)
 250 Vac (50 Hz) / 24 Vdc (with connector)
 3 A / 2 A (with connector)
Forms of the contact element: X, Y, X+Y, X+X,Y+Y,Y+Y+X,X+X+Y,X+X+Y+Y,Zb
Positive opening of contacts on contact blocks B01, B11, B02,B12,B21, B22,
G01, G11,G02,G12, G21,G22, L01, L11, L02, L12, L21, L22,H01,H11,H02,
H12,H21, H22
In compliance with standards: EN 60947-1, EN 60947-5-1 + A1:2009,
fundamental requirements of the Low Voltage Directive 2014/35/EU.
```

Please contact our technical department for the list of approved products

## Features approved by UL

Utilization categories R300 pilot duty (28 VA, 125-250 Vdc) B300 pilot duty ( $360 \mathrm{VA}, 120-240 \mathrm{Vac}$ ) (1-2-3 cont.) C300 pilot duty ( $180 \mathrm{VA}, 120-240 \mathrm{Vac}$ ) ( 4 cont.)

Housing features type 1, 4X "indoor use only", 12 .
Housing features for the version with 1-2 contacts and type N cable Type 1, 4X "indoor use only"

In compliance with standard: UL 508, CSA 22.2 No. 14

Please contact our technical department for the list of approved products.

Ambient temperatures for switches with cable and electrical data

	Connection type	Output with cable								Output with M12 connector		Output with AMP connector
	Contact block	2 contacts				3 contacts		4 contacts		2 contacts	3 or 4 contacts	2 contacts
	Cable or connector type	N	G	H	R	N	H	N	R	M12 connector, 5-pole	M12 connector, 8 -pole	AMP Superseal
	Conductors	$5 \times 0.75 \mathrm{~mm}^{2}$	$5 \times 0.75 \mathrm{~mm}^{2}$	$5 \times 0.75 \mathrm{~mm}^{2}$	$5 \times 0.5 \mathrm{~mm}^{2}$	$7 \times 0.5 \mathrm{~mm}^{2}$	$7 \times 0.5 \mathrm{~mm}^{2}$	$9 \times 0.34 \mathrm{~mm}^{2}$	$9 \times 0.5 \mathrm{~mm}^{2}$	$5 \times 0.25 \mathrm{~mm}^{2}$	$8 \times 0.25 \mathrm{~mm}^{2}$	1.5 connector
	Application field	General	General	General, mobile installation	Rail	General	General, mobile installation	General	Rail	General	General	General
	In compliance with standards	05VV-F	05VV-F	05EO-H	EN50306-4 $1 \mathrm{E}-300 \mathrm{~V}$ 5G0,5 mm ${ }^{2}$ MM-90 EN 50306-4 EN 45545	03VV-F	03E7O-H	03VV-F	$\begin{aligned} & \text { EN50306-4 } \\ & 1 P-300- \\ & 9 G 0.5 \mathrm{~mm}^{2} \\ & \text { MNM } 9003060-4 \\ & \text { EN } 45545 \end{aligned}$	O3VV-H	O3VV-H	1
	Sheath	PVC	PVC	PUR   HALOGEN   FREE	1	PVC	PUR HALOGEN FREE	PVC	1	PVC	PVC	1
	Self-extinguishing	$\begin{aligned} & \text { IEC 60332-1-2 } \\ & \text { IEC 60332-1-3 } \end{aligned}$	IEC 60332-1-2   IEC 60332-1-3   IEC 60332-3   CEI 20-22 II	$\begin{aligned} & \text { IEC 60332-1-2 } \\ & \text { IEC 60332-1-3 } \end{aligned}$	$\begin{aligned} & \text { IEC 60332-1 } \\ & \text { EN 50305 } \\ & \text { EN 50306-1 } \end{aligned}$	$\begin{aligned} & \text { IEC 60332-1-2 } \\ & \text { IEC 60332-1-3 } \end{aligned}$	$\begin{aligned} & \text { IEC 60332-1-2 } \\ & \text { IEC 60332-1-3 } \end{aligned}$	$\begin{aligned} & \text { IEC 60332-1-2 } \\ & \text { IEC 60332-1-3 } \end{aligned}$	$\begin{aligned} & \text { IEC 60332-1 } \\ & \text { EN 50305 } \\ & \text { EN } 50306-1 \end{aligned}$	$\begin{aligned} & \text { IEC 60332-3 } \\ & \text { CEI 20-22 II } \end{aligned}$	$\begin{aligned} & \text { IEC 60332-3 } \\ & \text { CEI 20-22 II } \end{aligned}$	1
	Oil resistant	1	1	UL 758	1	1	UL 758	1	1	ISO 6722-1	ISO 6722-1	1
	Max. speed	1	1	$100 \mathrm{~m} / \mathrm{min}$	1	1	$300 \mathrm{~m} / \mathrm{min}$	1	1	$50 \mathrm{~m} / \mathrm{min}$	$50 \mathrm{~m} / \mathrm{min}$	1
	Max. acceleration	1	1	$2 \mathrm{~m} / \mathrm{s}^{2}$	1	1	$25 \mathrm{~m} / \mathrm{s}^{2}$	1	1	$5 \mathrm{~m} / \mathrm{s}^{2}$	$5 \mathrm{~m} / \mathrm{s}^{2}$	1
	Minimum bending radius	80 mm	80 mm	80 mm	60 mm	108 mm	108 mm	94 mm	65 mm	75 mm	90 mm	1
	Outer diameter	8 mm	8 mm	8 mm	6 mm	7 mm	7 mm	7 mm	6.5 mm	5 mm	6 mm	1
	End stripped	80 mm	1	1	1							
	Copper conductors IEC 60228	Class 5	Class 5	Class 6	Class 5	Class 5	Class 6	Class 5	Class 5	Class 6	Class 6	1



## Internal cable wiring



## Connector pin assignment

$2 \mathrm{NO}+2 \mathrm{NC}$	$1 \mathrm{NO}+2 \mathrm{NC}$	$1 \mathrm{NO}+1 \mathrm{NC}$	2 NC	$1 \mathrm{NO}+1 \mathrm{NC}$   change-over



[^13]| Contact type: |
| :--- |
| $\mathbf{R}=$ snap action |
| $\mathbf{L}=$ slow action |



Secured only by means of threaded head
With external rubber gasket

Cable and M12 connector
All values in the drawings are in mm


[^14]|  | With external rubber gasket | With external rubber gasket | With stainless steel roller on request | With stainless steel roller on request |
| :---: | :---: | :---: | :---: | :---: |
| Contact type: $\begin{array}{\|l\|} \hline \mathbf{R} \\ \hline \mathbf{L} \\ \text { = snap action } \\ \text { = slow action } \end{array}$ |  |  |  |  |
| B11 R | NA B110HE-DN2 1NO+1NC | NA B110HH-DN2 1NO+1NC | NA B112KA-DN2 $\Theta 1$ NO+1NC | NA B112KB-DN2 $\quad$ 1NO+1NC |
| B02 R | NA B020HE-DN2 2NC | NA B020HH-DN2 2NC | NA B022KA-DN2 $\Theta 2 N C$ | NA B022KB-DN2 $\Theta 2 N C$ |
| B12 R | NA B120HE-DN2 1NO+2NC | NA B120HH-DN2 1NO+2NC | NA B122KA-DN2 $\Theta 1$ NO+2NC | NA B122KB-DN2 $\Theta 1 \mathrm{NO}+2 \mathrm{NC}$ |
| B22 $\mathbf{R}$ | NA B220HE-DN2 $2 \mathrm{NO}+2 \mathrm{NC}$ | NA B220HH-DN2 $2 \mathrm{NO}+2 \mathrm{NC}$ | NA B222KA-DN2 $\Theta 2 \mathrm{NO}+2 \mathrm{NC}$ | NA B222KB-DN2 $\Theta 2 \mathrm{NO}+2 \mathrm{NC}$ |
| G11 L |  |  | NA G112KA-DN2 $\Theta 1$ NO+1NC | NA G112KB-DN2 $\Theta 1$ NO+1NC |
| G02 L | NA G020HE-DN2 2NC | NA G020HH-DN2 2NC | NA G022KA-DN2 $\Theta$ 2NC | NA G022KB-DN2 $\Theta$ 2NC |
| G12 L |  |  | NA G122KA-DN2 $\Theta 1$ NO+2NC | NA G122KB-DN2 $\Theta 1$ NO+2NC |
| G22 L |  |  | NA G222KA-DN2 $\Theta 2 \mathrm{NO}+2 \mathrm{NC}$ | NA G222KB-DN2 $\Theta 2 \mathrm{NO}+2 \mathrm{NC}$ |
| Max. speed | $1 \mathrm{~m} / \mathrm{s}$ | $1 \mathrm{~m} / \mathrm{s}$ | page 219 - type 1 | page 219 - type 1 |
| Actuating force | 0.07 Nm | 0.03 Nm | $0.07 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$ | 0.07 Nm (0.25 Nm $\Theta$ ) |
| Travel diagrams | page 220 - group 4 | page 220 - group 4 | page 220 - group 5 | page 220 - group 5 |





Cable and M12 connector
All values in the drawings are in mm

[^15]| Contact type: $\begin{array}{\|l\|l\|} \hline \mathbf{R} & \text { = snap action } \\ \mathbf{L} & \text { = slow action } \end{array}$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Contact block |  |  |  |
| B11 B | NA B110AB-DN2W5 $\Theta$ 1NO+1NC | NA B110BB-DN2H0W5 $\odot 1$ 1NO+1NC | NA B110BB-DN2W5 $\Theta$ 1NO+1NC |
| B02 $\quad$ R | NA B020AB-DN2W5 $\Theta$ 2NC | NA B020BB-DN2HOW5 $\Theta$ 2NC | NA B020BB-DN2W5 $\Theta$ 2nc |
| B12 B | NA B120AB-DN2W5 $\Theta 1$ NO+2NC | NA B120BB-DN2HOW 5 ¢ ${ }^{\text {1 }}$ O+2NC | NA B120BB-DN2W5 $\Theta$ 1NO+2NC |
| B22 B | NA B220AB-DN2W5 $\Theta 2 \mathrm{NO}+2 \mathrm{NC}$ | NA B220BB-DN2H0W5 $¢ 2$ 2NO+2NC | NA B220BB-DN2W5 $\Theta 2 \mathrm{NO}+2 \mathrm{NC}$ |
| G11 $\square$ | NA G110AB-DN2W5 $\Theta$ 1NO+1NC | NA G110BB-DN2H0W5 $\Theta$ 1 ${ }^{\text {NO}}+1$ 1NC | NA G110BB-DN2W5 $\Theta$ 1NO+1NC |
| G02 L | NA G020AB-DN2W5 $\Theta$ 2NC | NA G020BB-DN2HOW5 $\Theta$ 2NC | NA G020BB-DN2W5 $\Theta$ 2nc |
| G12 $\square$ | NA G120AB-DN2W5 $\Theta$ 1NO+2NC | NA G120BB-DN2HOW5 $¢$ 1 $\mathrm{NO}+2 \mathrm{NC}$ | NA G120BB-DN2W5 $\Theta$ 1NO+2NC |
| G22 $\square$ | NA G220AB-DN2W5 $\Theta 2 \mathrm{NO}+2 \mathrm{NC}$ | NA G220BB-DN2HOW5 $\Theta 2$ 2NO+2NC | NA G220BB-DN2W5 $\Theta$ 2NO+2NC |
| Max. speed | page 219 - type 4 | page 219 - type 2 | page 219 - type 2 |
| Actuating force | $9.5 \mathrm{~N}(25 \mathrm{~N} \oplus)$ | $9.5 \mathrm{~N}(25 \mathrm{~N} \oplus)$ | $9.5 \mathrm{~N}(25 \mathrm{~N} \Theta)$ |
| Travel diagrams | page 220 - group 1 | page 220 - group 1 | page 220 - group 1 |



## Accessories

Article	Description
VN DT1F	Spacer for NA and NF series
VF D16B	Spacer for NB series   By installing spacers   between two switches, it is   possible to have 2 or more   pre-wired switches, preven-   ting them from slipping.

M12 female connectors with cable

## Technical data:

- Polyurethane connector body
- Class 6 copper conductors acc. to IEC 60228 - mobile installation
- Gold-plated contacts (resistance $<5 \mathrm{~m} \Omega$ )
- Self-locking ring nut
- High flexibility cable with PVC sheath suitable to be used in drag chains, acc. to IEC 60332-3 and CEI 20-22II. With polyurethane sheath on request.


## Code structure

Attention! The feasibility of a code number does not mean the effective availability of a product. Please contact our sales office.

## VF CA4PD3M

No.	
$\mathbf{4}$	of poles
$\mathbf{5}$	poles
$\mathbf{8}$	$\mathbf{8}$ poles
$\mathbf{1 2}$	12 poles

Cable sheath
P PVC (standard)
U PUR

## Connector type

D straight (standard)
G angled

Stock items
VF CA4PD3M
VF CA4PD5M
VF CA4PD0M
VF CA5PD3M
VF CA5PD5M
VF CA5PD0M
VF CA8PD5M
VF CA8PD0M
VF CA12PD5M
VF CA12PD0M

Attention! No stock items, minimum order quantity 100 pcs.

## Field wireable M12 female connectors



## General data

Technopolymer connector body
Gold-plated contacts
Screw terminals for cable screw fittings
Max. operating voltages $250 \mathrm{Vac} / \mathrm{dc}$ (4 and 5-pole)
$30 \mathrm{Vac} / \mathrm{dc}$ (8-pole)
Maximum current 4 A
Protection degree IP67 acc. to EN 60529
Ambient temperature $\quad-25^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$
Wire cross-section $\quad 0.25 \mathrm{~mm}^{2}$ (24 AWG) $\ldots 0.5 \mathrm{~mm}^{2}$ (20 AWG)

| Article | Description | no. of poles |
| :---: | :--- | :--- | :--- |
| VF CBMP4DM04 | Field wireable M12 female connector, straight, for $\varnothing 4 \ldots 6.5 \mathrm{~mm}$ multipolar cables | 4 |
| VF CBMP5DM04 | Field wireable M12 female connector, straight, for $\varnothing 4 \ldots 6.5 \mathrm{~mm}$ multipolar cables | 5 |
| VF CBMP8DM04 | Field wireable M12 female connector, straight, for $\varnothing 4 \ldots 7 \mathrm{~mm}$ multipolar cables | 8 |

Selection diagram for item combinations of the NF series



NF B110AB-DN2 GR7T6W5

## Housing

NF technopolymer, hole spacing 20 mm

## Contact block

B11 1NO + 1NC, snap action (standard)
B02 2NC, snap action (standard)
B12 1NO + 2NC, snap action (standard)
B22 $2 \mathrm{NO}+2 \mathrm{NC}$, snap action (standard)
G11 1NO+1NC, slow action (standard)
G02 2NC, slow action (standard)
G12 1NO+2NC, slow action (standard)
G22 2NO+2NC, slow action
H11 1NO+1NC, slow action, make before break
H12 1NO+2NC, slow action, make before break
H22 2NO+2NC, slow action, make before break
L11 1NO + 1NC, slow action, close
L12 1NO+2NC, slow action, close
L22 $2 \mathrm{NO}+2 \mathrm{NC}$, slow action, close
Other contact blocks on request.

## Actuator heads

0 without head
2 head for swivelling lever actuators
Actuators
AA short plunger
AB plunger

Redirection
without redirection
W5 $90^{\circ}$ redirection

## Ambient temperature

$$
-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C} \text { (standard) }
$$

T6 $-40^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$

## Rollers

## standard roller

R30 stainless steel $\varnothing 10.6 \mathrm{~mm}$
R29 stainless steel $\varnothing 13 \mathrm{~mm}$
R18 technopolymer, $\varnothing 14 \mathrm{~mm}$
R23 stainless steel $\varnothing 14 \mathrm{~mm}$
R7 technopolymer, $\varnothing 18 \mathrm{~mm}$
R22 technopolymer, $\varnothing 20 \mathrm{~mm}$
R24 stainless steel $\varnothing 20 \mathrm{~mm}$
R19 technopolymer, $\varnothing 22 \mathrm{~mm}$
R25 technopolymer, $\varnothing 35 \mathrm{~mm}$

## Contact type

silver contacts (standard)
G silver contacts, $1 \mu \mathrm{~m}$ gold coating
Connection type
0.2 cable, length: 0.2 m with M12 connector (available for DMO. 2 versions only)
2 cable, length: 2 m (standard)
5 cable, length 5 m (other cable lengths available on request)
K integrated connector
Cable or connector type
N PVC cable IEC 60332-1 (standard)
G PVC cable CEI 20-22 II
H PUR cable, halogen free
M M12 connector
A AMP Superseal 1.5 connector


## Main features

- Technopolymer housing, right or bottom cable output
- Protection degrees IP67 and IP69K
- 2 types of integrated cable available
- Versions with M12 connector suitable for safety applications $\Theta$
- Versions with AMP connector
- 14 contact blocks available
- 37 actuators available

Quality marks:


## Technical data

Housing
Housing made of glass fibre reinforced technopolymer, self-extinguishing, shock-proof and with double insulation $\square$.
Versions with integrated cable, standard length 2 m . Other lengths $0.5 \ldots 10 \mathrm{~m}$ or special cables available on request.
Versions with integrated M12 connector.
Versions with 0.2 m cable length and M12 connector, other lengths $0.1 \ldots 3 \mathrm{~m}$
available on request
Protection degree:

Corrosion resistance in saline mist:
IP67 acc. to EN 60529
IP69K acc. to ISO 20653
(Protect the cables from direct high-pressure and high-temperature jets)
$\geq 300$ hours in NSS acc. to ISO 9227

## General data

Ambient temperature for switches without cable: $-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ (standard)
$-40^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ (extended T6)
See table on page 128
3600 operating cycles/hour
20 million operating cycles any
40,000,000 for NC contacts
type 1 acc. to EN ISO 14119
see page 211-222
Tightening torques for installation:

## Electrical data

Rated impulse withstand voltage ( $\mathrm{U}_{\mathrm{imp}}$ ):
Conditional short circuit current:
Pollution degree:

## 4 kV

1000 A acc. to EN 60947-5-1
3

In compliance with standards:
IEC 60947-5-1, EN 60947-5-1, IEC 60204-1, EN 60204-1, EN ISO 14119, EN ISO 12100, EN 60529, ISO 20653, UL 508, CSA 22.2 No. 14.

## Compliance with the requirements of:

Low Voltage Directive 2014/35/EU, EMC Directive 2014/30/EU.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.

## \ Installation for safety applications:

Use only switches marked with the symbol $\Theta$ next to the product code. Always connect the safety circuit to the NC contacts (normally closed contacts: see "Internal cable wiring" on page 128) as required by EN ISO 14119, paragraph 5.4 for specific interlock applications and EN ISO 13849-2 tables D3 (well-tried components) and D. 8 (failure exclusions) for safety applications in general. Actuate the switch at least up to the positive opening travel shown in the travel diagrams on page 220. Actuate the switch at least with the positive opening force, reported in brackets below each article, next to the actuating force value. All applicable standards must be respected too.

## § If not expressly indicated in this chapter, for correct installation and utilization of all articles see the instructions given on pages 211 to 222.

\$ Important: Switch off the circuit voltage before disconnecting the connector from the switch. The connector is not suitable for separation of electrical loads.

## Features approved by IMQ

Rat	250 Vac
Conventional free air thermal current	10 A (1-2 contacts) / 6 A (2-3 contacts) /
	4 A (4 contacts or 4-pole M12 connector)
Protection against short circuits	10 A (1-2 contacts) / 6 A ( $2-3$ contacts) /
(fuse):	4 A (4 contacts or 4-pole M12 connector) type gG
Rated impulse withstand voltage	4 kV
( $\mathrm{U}_{\text {imp }}$ ):	
Protection degree of the housing:	IP67
MA terminals (crimped terminals)	
Pollution degree:	
Utilization category:	AC15 / DC13 (with connector)
Operating voltage ( $\mathrm{U}_{\mathrm{e}}$ ):	$250 \mathrm{Vac}(50 \mathrm{~Hz}) / 24 \mathrm{Vdc}$ (with connector)
Operating current (1) ${ }_{\mathrm{e}}$ :	$3 \mathrm{~A} / 2 \mathrm{~A}$ (with connector)
Forms of the contact element: $\mathrm{X}, \mathrm{Y}$,	, ${ }_{+} Y, X+X, Y+Y, Y+Y+X, X+X+Y, X+X+Y+Y, Z b$
Positive opening of contacts on cont	act blocks B01, B11, B02, B12, B21, B22,
G01, G11, G02, G12, G21, G22, L01,	L11, L02, L12, L21, L22, H01, H11, H02,
H12, H21, H22	
In compliance with standards: EN 609	947-1, EN 60947-5-1 + A1:2009,
fundamental requirements of the Low	W Voltage Directive 2014/35/EU.

Conventional free air thermal current $10 \mathrm{~A}(1-2$ contacts) / $6 \mathrm{~A}(2-3$ contacts) /
$\left(I_{\text {tr }}\right)$ :
Protection against short circuits (fuse):
Rated impulse withstand voltage ( $U_{\text {imp }}$ ):

Prection degree of the housing MA terminals (crimped terminals)
Pollution degree:
Utilization category:
Operating current (1) e:
$4 \mathrm{~A}(4$ contacts or 4 -pole M12 connector)
4 A (4 contacts or 4-pole M12 connector) type gG
4 kV

IP67
3
AC15 / DC13 (with connector)
$3 \mathrm{~A} / 2 \mathrm{~A}$ (with connector)

Features approved by UL
Utilization categories R300 pilot duty (28 VA, 125-250 Vdc) B300 pilot duty ( $360 \mathrm{VA}, 120-240 \mathrm{Vac}$ ) (1-2-3 cont.) C300 pilot duty ( $180 \mathrm{VA}, 120-240 \mathrm{Vac}$ ) ( 4 cont.)

Housing features type 1, 4X "indoor use only", 12.
Housing features for the version with $1-2$ contacts and type N cable Type 1, 4 X "indoor use only"

In compliance with standard: UL 508, CSA 22.2 No. 14

Please contact our technical department for the list of approved products.

## Ambient temperatures for switches with cable and electrical data

	Connection type	Output with cable						Output with M12 connector		Output with AMP connector
	Contact block	2 contacts			3 contacts	4 contacts		2 contacts	3 or 4 contacts	2 contacts
	Cable or connector type	N	G	H	N	N	H	M12 connector, 5-pole	M12 connector, 8-pole	AMP Superseal 1.5 connector
	Conductors	$4 \times 0.75 \mathrm{~mm}^{2}$	$4 \times 0.75 \mathrm{~mm}^{2}$	$4 \times 0.75 \mathrm{~mm}^{2}$	$6 \times 0.5 \mathrm{~mm}^{2}$	$8 \times 0.34 \mathrm{~mm}^{2}$	$8 \times 0.34 \mathrm{~mm}^{2}$	$4 \times 0.25 \mathrm{~mm} 2$	$8 \times 0.25 \mathrm{~mm} 2$	
	Application field	General	General	General, mobile installation	General	General	General, mobile installation	General	General	General
	In compliance with standards	05VV-F	05VV-F	05EQ-H	03VV-F	03VV-F	03E7Q-H	03VV-H	03VV-H	1
	Sheath	PVC	PVC	PUR HALOGEN FREE	PVC	PVC	PUR HALOGEN FREE	PVC	PVC	1
	Self-extinguishing	$\begin{aligned} & \text { IEC 60332-1-2 } \\ & \text { IEC 60332-1-3 } \end{aligned}$	$\begin{aligned} & \text { IEC 60332-1-2 } \\ & \text { IEC 60332-1-3 } \\ & \text { IEC 60332-3 } \\ & \text { CEI 20-22 II } \end{aligned}$	$\begin{aligned} & \text { IEC60332-1-2 } \\ & \text { IEC60332-1-3 } \end{aligned}$	$\begin{aligned} & \text { IEC 60332-1-2 } \\ & \text { IEC 60332-1-3 } \end{aligned}$	$\begin{aligned} & \text { IEC 60332-1-2 } \\ & \text { IEC 60332-1-3 } \end{aligned}$	$\begin{aligned} & \text { IEC60332-1-2 } \\ & \text { IEC60332-1-3 } \end{aligned}$	$\begin{aligned} & \text { IEC60332-3 } \\ & \text { CEI 20-22 II } \end{aligned}$	$\begin{aligned} & \text { IEC60332-3 } \\ & \text { CEI 20-22 II } \end{aligned}$	1
	Oil resistant	1	1	UL 758	1	1	UL 758	ISO 6722-1	ISO 6722-1	1
	Max. speed	1	1	$300 \mathrm{~m} / \mathrm{min}$	1	1	$300 \mathrm{~m} / \mathrm{min}$	$50 \mathrm{~m} / \mathrm{min}$	$50 \mathrm{~m} / \mathrm{min}$	1
	Max. acceleration	1	1	$30 \mathrm{~m} / \mathrm{s}^{2}$	1	1	$30 \mathrm{~m} / \mathrm{s}^{2}$	$5 \mathrm{~m} / \mathrm{s}^{2}$	$5 \mathrm{~m} / \mathrm{s}^{2}$	1
	Minimum bending radius	70 mm	70 mm	70 mm	108 mm	94 mm	70 mm	75 mm	90 mm	1
	Outer diameter	7 mm	5 mm	5 mm	1					
	End stripped	80 mm	1	1	1					
	Copper conductors IEC 60228	Class 5	Class 5	Class 6	Class 5	Class 5	Class 6	Class 6	Class 6	1
	Cable, fixed installation	$-25^{\circ} \mathrm{C}+70^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}+70^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}+80^{\circ} \mathrm{C}$	1					
	Cable, flexible installation	$+5^{\circ} \mathrm{C}+70^{\circ} \mathrm{C}$	$+5^{\circ} \mathrm{C}+70^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}+80^{\circ} \mathrm{C}$	$-5^{\circ} \mathrm{C}+80^{\circ} \mathrm{C}$	$-5^{\circ} \mathrm{C}+80^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}+80^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}+80^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}+80^{\circ} \mathrm{C}$	/
	Cable, mobile installation	1	1	$-25^{\circ} \mathrm{C}+80^{\circ} \mathrm{C}$	1	1	$-25^{\circ} \mathrm{C}+80^{\circ} \mathrm{C}$	$-15^{\circ} \mathrm{C}+80^{\circ} \mathrm{C}$	$-15^{\circ} \mathrm{C}+80^{\circ} \mathrm{C}$	1
	Cable, fixed installation	/	/	$-40^{\circ} \mathrm{C}+80^{\circ} \mathrm{C}$	1	1	$-40^{\circ} \mathrm{C}+80^{\circ} \mathrm{C}$	/	1	/
	Cable, flexible installation	1	/	$-40^{\circ} \mathrm{C}+80^{\circ} \mathrm{C}$	1	1	$-40^{\circ} \mathrm{C}+80^{\circ} \mathrm{C}$	/	/	1
	Cable, mobile installation	/	1	$-40^{\circ} \mathrm{C}+80^{\circ} \mathrm{C}$	1	/	$-40^{\circ} \mathrm{C}+80^{\circ} \mathrm{C}$	1	1	1
	Thermal current lth	10 A	10 A	10 A	6 A	3 A	3 A	4 A	2 A	10 A
	Rated insulation voltage Ui	250 Vac   300 Vdc	30 Vac 36 Vdc	250 Vac   300 Vdc						
	Protection against short circuits (fuse)	10 A 500 V type gG	10 A 500 V type gG	10 A 500 V type gG	$\begin{gathered} 6 \text { A } 500 \mathrm{~V} \\ \text { type gG } \end{gathered}$	$\begin{aligned} & 3 \mathrm{~A} 500 \mathrm{~V} \\ & \text { type } \mathrm{gG} \end{aligned}$	$\begin{gathered} 3 \text { A } 500 \mathrm{~V} \\ \text { type gG } \end{gathered}$	$\begin{aligned} & 4 \mathrm{~A} 500 \mathrm{~V} \\ & \text { type gG } \end{aligned}$	2 A 500 V type gG	$\begin{gathered} 10 \text { A } 500 \mathrm{~V} \\ \text { type gG } \end{gathered}$
	ᄃぇ 24 V	2 A	2 A	2 A	2 A	2 A	2 A	2 A	2 A	2 A
		0.4 A	/	0.4 A						
	$\supset 250 \mathrm{~V}$	0.3 A	1	0.3 A						
	¢ 24 V	4 A	4 A	4 A	4 A	3 A	3 A	4 A	2 A	4 A
	N	4 A	4 A	4 A	4 A	3 A	3 A	4 A	/	4 A
	$\supset 250 \mathrm{~V}$	4 A	4 A	4 A	4 A	3 A	3 A	4 A	1	4 A
Approvals		CE cULus IMO EAC CCC	$\begin{gathered} \text { CE } \\ \text { EAC } C C C \end{gathered}$	$\begin{aligned} & \text { CE } \\ & \text { EAC } \end{aligned}$	CE cULus IMQ EAC CCC	CE cULus IMQ EAC CCC	CE EAC	CE cULus IMQ EAC CCC	CE cULus EAC CCC	$\begin{aligned} & \text { CE cULus EAC } \\ & \text { CCC } \end{aligned}$

## Internal cable wiring



## Connector pin assignment



Contact type:
$\mathbf{R}=$ snap action
$\mathbf{L}=$ slow action


		With external rubber gasket	With external rubber gasket	With stainless steel roller on request
Contact block				
B11 R	NF B110BB-DN2 $\quad 1$ NO+1NC	NF B110BE-DN2 $\Theta$ 1NO+1NC	NF B110BG-DN2 $\Theta$ 1NO+1NC	NF B110CB-DN2 $\Theta 1$ NO+1NC
B02 R	NF B020BB-DN2 $\Theta 2 N C$	NF B020BE-DN2 $\Theta 2 N C$	NF B020BG-DN2 $\Theta 2 N C$	NF B020CB-DN2 $\Theta 2 N C$
B12 R	NF B120BB-DN2 $\Theta 1$ NO+2NC	NF B120BE-DN2 $\Theta 1$ NO+2NC	NF B120BG-DN2 $\Theta 1$ NO+2NC	NF B120CB-DN2 $\Theta 1$ NO+2NC
B22 $\mathbf{R}$	NF B220BB-DN2 $\Theta 2 \mathrm{NO}+2 \mathrm{NC}$	NF B220BE-DN2 $\Theta 2 N \mathrm{C}+2 \mathrm{NC}$	NF B220BG-DN2 $\Theta 2$ NO+2NC	NF B220CB-DN2 $\Theta 2 \mathrm{NO}+2 \mathrm{NC}$
G11 L	NF G110BB-DN2 $\Theta 1$ NO+1NC	NF G110BE-DN2 $\Theta 1$ NO+1NC	NF G110BG-DN2 $\Theta 1$ NO+1NC	NF G110CB-DN2 $\Theta 1$ NO+1NC
G02 L	NF G020BB-DN2 $\Theta 2 N C$	NF G020BE-DN2 $\quad$ 2NC	NF G020BG-DN2 $\Theta 2$ 2NC	NF G020CB-DN2 $\Theta 2 N C$
G12 L	NF G120BB-DN2 $\Theta 1$ NO+2NC	NF G120BE-DN2 $\Theta 1$ NO+2NC	NF G120BG-DN2 $\Theta 1$ NO+2NC	NF G120CB-DN2 $\Theta 1$ NO+2NC
G22 L	NF G220BB-DN2 $\Theta 2 N \mathrm{O}+2 \mathrm{NC}$	NF G220BE-DN2 $\Theta 2 N O+2 N C$	NF G220BG-DN2 $\Theta 2$ NO+2NC	NF G220CB-DN2 $\Theta 2 N \mathrm{O}+2 \mathrm{NC}$
Max. speed	page 219 - type 2	page 219 - type 5	page 219 - type 5	page 219 - type 3
Actuating force	$7 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$7 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$7 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$5 \mathrm{~N}(25 \mathrm{~N} \Theta)$
Travel diagrams	page 220 - group 1	page 220 - group 1	page 220 - group 1	page 220 - group 2

M12 connector, right


M12 connector, bottom


AMP Superseal 1.5 connector


To order a product with M12 right connector,
replace DN2 with DMK in the codes shown above.
Example:
NF B110AA-DN2 $\rightarrow$ NF B110AA-DMK

To order a product with M12 bottom connector
replace DN2 with SMK in the codes shown above.
Example:
NF B110AA-DN2 $\rightarrow$ NF B110AA-SMK

To order a product with AMP connector,
replace DN2 with SAK in the codes shown above.
Example:
NF B110AA-DN2 $\rightarrow$ NF B110AA-SAK
All values in the drawings are in mm


Contact block	Secured only by means of threaded head With external rubber gasket	Secured only by means of threaded head	Plunger with $\varnothing 6 \mathrm{~mm}$ ball	With external rubber gasket
B11 R	NF B110EE-DN2 $\Theta 1$ NO+1NC	NF B110FB-DN2 $\quad$ 1NO+1NC	NF B110GB-DN2 $\quad$ (1NO+1NC	NF B110HB-DN2 1NO+1NC
B02 R	NF B020EE-DN2 $\Theta 2 N C$	NF B020FB-DN2 $\Theta 2 N C$	NF B020GB-DN2 $\Theta 2 N C$	NF B020HB-DN2 2 NC
B12 $\quad$ R	NF B120EE-DN2 $\Theta 1$ NO+2NC	NF B120FB-DN2 $\Theta 1$ NO+2NC	NF B120GB-DN2 $\Theta 1$ NO+2NC	NF B120HB-DN2 1NO+2NC
B22 R	NF B220EE-DN2 $\Theta 2 N O+2 N C$	NF B220FB-DN2 $\Theta 2 N O+2 N C$	NF B220GB-DN2 $\Theta 2 \mathrm{NO}+2 \mathrm{NC}$	NF B220HB-DN2 $2 \mathrm{NO}+2 \mathrm{NC}$
G11 L	NF G110EE-DN2 $\Theta 1$ NO+1NC	NF G110FB-DN2 $\quad$ 1NO+1NC	NF G110GB-DN2 $\quad \Theta 1$ OO+1NC	
G02 L	NF G020EE-DN2 $\Theta 2 N C$	NF G020FB-DN2 $\Theta 2 N C$	NF G020GB-DN2 $\Theta 2 N C$	NF G020HB-DN2 2NC
G12 L	NF G120EE-DN2 $\Theta$ 1NO+2NC	NF G120FB-DN2 $\Theta 1$ NO+2NC	NF G120GB-DN2 $\Theta 1$ NO+2NC	
G22 L	NF G220EE-DN2 $\quad \rightarrow 2 \mathrm{NO}+2 \mathrm{NC}$	NF G220FB-DN2 $\quad \rightarrow 2 \mathrm{NO}+2 \mathrm{NC}$	NF G220GB-DN2 $\Theta 2 N O+2 N C$	
Max. speed	page 219 - type 4	page 219 - type 2	page 219 - type 2	$1 \mathrm{~m} / \mathrm{s}$
Actuating force	$7 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$7 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$7 \mathrm{~N}(25 \mathrm{~N} \Theta)$	0.03 Nm
Travel diagrams	page 220 - group 1	page 220 - group 1	page 220 - group 1	page 220 - group 4

Cable and M12 connector
All values in the drawings are in mm


To order a product with cable and M12 connector:
replace DN2 with DM0. 2 in the codes shown above.
Example:
NF B110AA-DN2 $\rightarrow$ NF B110AA-DM0. 2


Contact block	With stainless steel roller on request			
B11 R	NF B112KC-DN2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	NF B112KD-DN2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	NF B112KE-DN2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	NF B112KF-DN2 $\quad$ - $1 \mathrm{NO}+1 \mathrm{NC}$
B02 R	NF B022KC-DN2 $\Theta 2 N C$	NF B022KD-DN2 $\quad$ 2NC	NF B022KE-DN2 $\Theta 2 N C$	NF B022KF-DN2 $\quad$ 2NC
B12 R	NF B122KC-DN2 $\quad$ 1NO+2NC	NF B122KD-DN2 $\quad$ 1NO+2NC	NF B122KE-DN2 $\Theta 1 \mathrm{NO}+2 \mathrm{NC}$	NF B122KF-DN2 $\Theta 1 \mathrm{NO}+2 \mathrm{NC}$
B22 R	NF B222KC-DN2 $\Theta 2 \mathrm{NO}+2 \mathrm{NC}$	NF B222KD-DN2 $\Theta 2 \mathrm{NO}+2 \mathrm{NC}$	NF B222KE-DN2 $\Theta 2 \mathrm{NO}+2 \mathrm{NC}$	NF B222KF-DN2 $\Theta 2 \mathrm{NO}+2 \mathrm{NC}$
G11 L	NF G112KC-DN2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	NF G112KD-DN2 $\quad$ 1NO+1NC	NF G112KE-DN2 $\Theta 1$ NO+1NC	NF G112KF-DN2 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$
G02 L	NF G022KC-DN2 $\Theta$ 2NC	NF G022KD-DN2 $\Theta 2 N C$	NF G022KE-DN2 $\Theta 2 N C$	NF G022KF-DN2 $\Theta$ 2NC
G12 L	NF G122KC-DN2 $\Theta 1 \mathrm{NO}+2 \mathrm{NC}$	NF G122KD-DN2 $\Theta 1$ NO+2NC	NF G122KE-DN2 $\Theta 1$ NO+2NC	NF G122KF-DN2 $\Theta 1$ NO+2NC
G22 L	NF G222KC-DN2 $\Theta 2 \mathrm{NO}+2 \mathrm{NC}$	NF G222KD-DN2 $\Theta 2 N O+2 N C$	NF G222KE-DN2 $\Theta 2 \mathrm{NO}+2 \mathrm{NC}$	NF G222KF-DN2 $\Theta 2 \mathrm{NO}+2 \mathrm{NC}$
Max. speed	page 219 - type 1			
Actuating force	$0.07 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$			
Travel diagrams	page 220 - group 5			



To order a product with M12 right connector
replace DN2 with DMK in the codes shown above
Example:
NF B110AA-DN2 $\rightarrow$ NF B110AA-DMK

M12 connector, bottom


AMP Superseal 1.5 connector


To order a product with M12 bottom connector
replace DN2 with SMK in the codes shown above Example:
NF B110AA-DN2 $\rightarrow$ NF B110AA-SMK

To order a product with AMP connector,
replace DN2 with SAK in the codes shown above.
Example:
NF B110AA-DN2 $\rightarrow$ NF B110AA-SAK
All values in the drawings are in mm

	With stainless steel roller on request	With stainless steel roller on request	With stainless steel roller on request	uare rod, 3
$\begin{array}{\|l\|} \hline \mathbf{R} \\ \hline \mathbf{L} \\ =\text { s snap action } \\ =\text { slow action } \end{array}$   Contact block				
B11 B	NF B112KG-DN2 $\Theta$ 1NO+1NC	NF B112KH-DN2 $\Theta$ 1NO+1NC	NF B112KP-DN2 $\Theta$ 1NO+1NC	NF B112LB-DN2 1NO+1NC
B02 R	NF B022KG-DN2 $\Theta$ 2NC	NF B022KH-DN2 $\Theta$ 2NC	NF B022KP-DN2 $\Theta 2$ 2NC	NF B022LB-DN2
B12 R	NF B122KG-DN2 $\Theta$ 1NO+2NC	NF B122KH-DN2 $\Theta$ 1NO+2NC	NF B122KP-DN2 $\Theta 1 \mathrm{NO}+2 \mathrm{NC}$	NF B122LB-DN2 1NO+2NC
B22 $\quad$ R	NF B222KG-DN2 $\Theta$ 2NO+2NC	NF B222KH-DN2 $\Theta 2 \mathrm{NO}+2 \mathrm{NC}$	NF B222KP-DN2 $\Theta 2 \mathrm{NO+2NC}$	NF B222LB-DN2 2NO+2NC
G11 $\square$	NF G112KG-DN2 $\bigodot$ 1NO+1NC	NF G112KH-DN2 $\Theta$ 1NO+1NC	NF G112KP-DN2 $\Theta$ 1NO+1NC	NF G112LB-DN2 1NO+1NC
G02 $\square$	NF G022KG-DN2 $\Theta$ 2NC	NF G022KH-DN2 $\Theta$ 2NC	NF G022KP-DN2 $\Theta 2$ 2NC	NF G022LB-DN2
G12 $\square$	NF G122KG-DN2 $\Theta$ 1NO+2NC	NF G122KH-DN2 $\bigodot$ 1NO+2NC	NF G122KP-DN2 $\ominus^{1 N \mathrm{~N}+2 \mathrm{NC}}$	NF G122LB-DN2 1NO+2NC
G22 $\square$	NF G222KG-DN2 $\Theta 2 \mathrm{NO}+2 \mathrm{NC}$	NF G222KH-DN2 $\Theta$ 2NO+2NC	NF G222KP-DN2 $\quad$ 2NO+2NC	NF G222LB-DN2 $2 \mathrm{NO}+2 \mathrm{NC}$
Max. speed	page 219 - type 1	page 219 - type 1	page 219 - type 1	$1.5 \mathrm{~m} / \mathrm{s}$
Actuating force	$0.07 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.07 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.07 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	0.07 Nm
Travel diagrams	page 220 - group 5			



Cable and M12 connector

To order a product with cable and M12 connector:
replace DN2 with DM0.2 in the codes shown above.
Example:
NF B110AA-DN2 $\rightarrow$ NF B110AA-DM0. 2

Contact type: $\begin{array}{\|l\|l} \hline \mathbf{R} & =\text { snap action } \\ \mathbf{L} & =\text { slow action } \end{array}$			
Contact block			
B11 R	NF B110AB-DN2W5 $\Theta$ - ${ }^{\text {NO }+1 N C}$	NF B110BB-DN2H0W5 $\odot$ 1NO+1NC	NF B110BB-DN2W5 $\Theta$ 1NO+1NC
B02 R	NF B020AB-DN2W5 $\Theta 2$ 2NC	NF B020BB-DN2H0W5 $\Theta$ 2NC	NF B020BB-DN2W5 $\Theta 2$ 2NC
B12 $\quad$ R	NF B120AB-DN2W5 $\Theta$ 1NO+2NC	NF B120BB-DN2HOW5 $\Theta$ 1NO+2NC	NF B120BB-DN2W5 $\Theta$ 1NO+2NC
B22 B	NF B220AB-DN2W5 $\Theta 2$ NO+2NC	NF B220BB-DN2H0W5 $\Theta 2$ 2NO+2NC	NF B220BB-DN2W5 $\Theta$ 2NO+2NC
G11 $\square$	NF G110AB-DN2W5 $\Theta$ 1NO+1NC	NF G110BB-DN2H0W5 $\Theta$ 1NO+1NC	NF G110BB-DN2W5 $\Theta$ 1NO+1NC
G02 $\square$	NF G020AB-DN2W5 $\Theta$ 2NC	NF G020BB-DN2HOW5 $\Theta$ 2NC	NF G020BB-DN2W5 $\Theta$ 2nc
G12 $\square$	NF G120AB-DN2W5 $\Theta$ 1NO+2NC	NF G120BB-DN2HOW5 $\Theta$ 1NO+2NC	NF G120BB-DN2W5 $\Theta$ 1NO+2NC
G22 $\square$	NF G220AB-DN2W5 $\Theta$ 2NO+2NC	NF G220BB-DN2HOW5 $\Theta$ 2NO+2NC	NF G220BB-DN2W5 $\Theta$ 2NO+2NC
Max. speed	page 219 - type 4	page 219 - type 2	page 219 - type 2
Actuating force	$9.5 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$9.5 \mathrm{~N}(25 \mathrm{~N} \Theta)$	$9.5 \mathrm{~N}(25 \mathrm{~N} \Theta)$
Travel diagrams	page 220 - group 1	page 220 - group 1	page 220 - group 1



M12 connector, right


M12 connector, bottom


AMP Superseal 1.5 connector


To order a product with M12 right connector, replace DN2 with DMK in the codes shown above.
Example:
NF B110AA-DN2 $\rightarrow$ NF B110AA-DMK

To order a product with M12 bottom connector, replace DN2 with SMK in the codes shown above Example:
NF B110AA-DN2 $\rightarrow$ NF B110AA-SMK

To order a product with AMP connector, replace DN2 with SAK in the codes shown above. Example: NF B110AA-DN2 $\rightarrow$ NF B110AA-SAK

All values in the drawings are in mm

## Accessories



M12 female connectors with cable

## Technical data:

- Polyurethane connector body
- Class 6 copper conductors acc. to IEC 60228 - mobile installation
- Gold-plated contacts (resistance $<5 \mathrm{~m} \Omega$ )
- Self-locking ring nut
- High flexibility cable with PVC sheath suitable to be used in drag chains, acc. to IEC 60332-3 and CEI 20-22II. With polyurethane sheath on request


## Code structure

Attention! The feasibility of a code number does not mean the effective availability of a product. Please contact our sales office.
VF CA4PD3M

No. of poles	
$\mathbf{4}$	4 poles
$\mathbf{5}$	5 poles
$\mathbf{8}$	8 poles
$\mathbf{1 2}$	12 poles

Cable sheath
P PVC (standard)
U PUR

## Connector type

D straight (standard)
G angled

Connection type						
		M12x1				
			No. of poles			
Cable length (L)			4	5		$8 \quad 12$
1		metre				
2		metres				
3		metres (standard)	-	-	-	
4		metres				
5		metres (standard)	-	-	-	-
...						
0		metres (standard)	-	-	-	-

Stock items
VF CA4PD3M
VF CA4PD5M
VF CA4PD0M
VF CA5PD3M
VF CA5PD5M
VF CA5PD0M
VF CA8PD5M
VF CA8PD0M
VF CA12PD5M
VF CA12PD0M

Attention! No stock items, minimum order quantity 100 pcs.

## Field wireable M12 female connectors



## General data

Technopolymer connector body
Gold-plated contacts
Screw terminals for cable screw fittings
Max. operating voltages $\quad 250 \mathrm{Vac} / \mathrm{dc}$ (4 and 5-pole)
$30 \mathrm{Vac} / \mathrm{dc}$ (8-pole)
Maximum current
Protection degree
4 A
-67 acc. to EN 60529
rature
$-25^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$
$0.25 \mathrm{~mm}^{2}$ (24 AWG) ... $0.5 \mathrm{~mm}^{2}$ (20 AWG)

| Article | Description | no. of poles |
| :---: | :--- | :--- | :--- |
| VF CBMP4DM04 | Field wireable M12 female connector, straight, for $\varnothing 4 \ldots 6.5 \mathrm{~mm}$ multipolar cables | 4 |
| VF CBMP5DM04 | Field wireable M12 female connector, straight, for $\varnothing 4 \ldots 6.5 \mathrm{~mm}$ multipolar cables | 5 |
| VF CBMP8DM04 | Field wireable M12 female connector, straight, for $\varnothing 4 \ldots 7 \mathrm{~mm}$ multipolar cables | 8 |

Selection diagram for item combinations of the NA - NB - NF series


## METAL housing,

 NA hole spacing 20 mmNA B11000 $\bigodot$ 1NO+1NC $\mathbf{R}$ NA G11000 $\odot 1$ NO+1NC $\square$ NA L11000 $\Theta 1$ NO +1 NC LA NA H11000 $\Theta 1$ NO +1 NC LO NA B02000 $\Theta$ 2NC $\quad \mathbf{R}$ NA G02000 $\Theta 2$ NC $\quad \square$ NA B20000 $\Theta 2$ 2NO $\quad \square$ NA G20000 $\oplus 2$ NO $\quad \mathrm{L}$ NA B12000 $\Theta 1$ NO +2 NC $-R$ NA G12000 $\odot 1 N O+2 N C L$ NA L12000 $\Theta 1$ NO +2 NC LA NA H12000 $\Theta 1$ NO +2 NC LO NA B22000 $\Theta 2 N \mathrm{O}+2 \mathrm{NC}[\mathbf{R}$ NA G22000 $\Theta 2 N O+2 N C L$ NA L22000 $\odot 2 N O+2 N C$ LA NA H22000 $\odot 2 N \mathrm{O}+2 \mathrm{NC}$ LO

To order a NB series housing, replace NA with NB in the codes shown above. Example:
NA B11000 $\rightarrow$ NB B11000



M12 or AMP connectors
\ Important: Always check that the applied electric load is within the voltage and current limits defined for the connectors. See tables on page 118 and 128.


technopolymer connectors for NF housings	
M12 connector, right	M12 connector, bottom
VN CP11DMK 1NO+1NC VN CP02DMK 2NC VN CP22DMK 2NO+2NC	VN CP11SMK 1NO+1NC VN CP02SMK 2NC VN CP22SMK 2NO+2NC
AMP superseal 1.5	with cable and M12 connector
VN CP11SAK 1NO+1NC	VN CP11DM0.2 1NO+1NC
VN CP02SAK 2NC	VN CP02DM0.2 2 NC
VN CP20SAK 2NO	VN CP22DM0.2 $2 \mathrm{NO}+2 \mathrm{NC}$


Actuators All values in the drawings are in mm					
$\stackrel{m}{\square}$	$\stackrel{\text { ¢ }}{+}$	合			
VN AAOAA $\Theta$	VN AAOAB $\Theta$	VN AAOAC $\Theta$	VN AAOAE $\Theta$	VN AAOBB $\Theta$	VN AAOBE $\Theta$
VN AAOCB $\odot$	VN AAOCH $\Theta$	VN AAOCP $\Theta$	VN AAOCV $\Theta$	VN AAOEB $\Theta$	VN AAOEE $\Theta$
	范 品				
VNAAOFB $\Theta$	VN AAOGB $\Theta$	VN AAOHB	VN AAOHE	VN AAOHH	

Levers All values in the drawings are in mm
ATTENTION：These separate actuators can be used only with items of the NA，NB and NF series．

VN A00KA $\Theta$	VN A00KB $\Theta$	VN A00KC $\Theta$	VN A00KD $\Theta$	VN A00KE $\Theta$	VN A00KF $\Theta$
VN A00KG $\Theta$	VN A00KH $\Theta$	VN A00KP $\Theta$	VN A00LB	VN A00LE	VN A00LH



Heads


$90^{\circ}$ redirection


## Description



The microswitches of MK series have been designed to add new features to traditional and tested microswitches by Pizzato Elettrica.
The shapes and mounting methods of these products are identical with their predecessor models, but have been provided with additional functions, wedining their application fields.

The absolute new feature of this series is the enhanced and state-of-the-art trigger mechanism, whose design features are of higher quality in comparison to other solutions available on the market.
Thanks to the double and redundant execution, the electrical contact of the new microswitch has been designed with a technology providing increased reliability, and is able to carry out switching operations with positive opening. Inside the housing of the new microswitch it is possibile to insert gaskets to protect the mechanism against fine dusts or liquids up to the protection degree IP65. Conductor fixing terminals are more practical, allowing for cables of different diameters to be fixed or the choice of different bends for the Faston contacts. For high-volume part orders, the microswitch can be also supplied with the NO or NC contact only, in order to reduce the costs.

## Contact reliability

In the following table a typical contact structure for a microswitch normally used in the industry (type A) is shown compared with the innovative solution implemented by Pizzato Elettrica in the new MK series microswitches: mobile contact with single interruption and double contacts (type B). As you can see from the table below, in the latter contact structure (type B) the contact resistance (R) is only half in comparison to the mobile contact with single interruption (type A), and presents a very low failure probability (fe) as well.
With a failure probability of $x$ for a single switching operation, the failure probability for type $A$ is $f e=x$, for type $B$ fe $=\cong x^{2}$. This means that if the probability of a switching failure is $x$ in a given situation, e.g., $1 \times 10^{-4}$, ( 1 switching failure in 10,000 ), the result is as follows:

- for type A one failed commutation every 10,000.
- for type B one failed commutation every 100,000,000.


Extended temperature range


The new MK series includes versions with extended temperature range available upon request. Compared to the standard MK microswitches with temperature ranges from $+85 \mathrm{C}^{\circ}$ to $-25 \mathrm{C}^{\circ}$, these special versions are suitable for environments with temperature ranges from $+85 \mathrm{C}^{\circ}$ to $-40^{\circ} \mathrm{C}$. They can therefore be installed inside cold stores, sterilizers or other equipment with very low ambient temperature. The special materials used to produce these versions retain their characteristics even under these conditions, thereby expanding the installation possibilities.

## Microswitches for safety applications



All microswitches showing the symbol $\Theta$ besides the product code are with positive opening and therefore suitable for safety applications. These microswitches are provided with a rigid connection between the plunger and the NC contacts, which are forcibly actuated by a internal sturdy safety lever.
The positive opening has been designed in compliance with the standard EN 60947-5-1, Annex K. Therefore, these microswitches are suitable for safety applications.

## Protection degree IP65

By installing microswitches MK ••2••• with terminal covers VF MKC•22 or terminal covers VF MKC•23, a microswitch fully protected against water and dust is obtained. Thanks to their special oil resistant rubber gaskets the protection degree IP65 is provided. For applications in very dirty environments there are also versions with integrated double gasket for the plunger (internal + external). e.g. MK $\bullet \bullet 2 \bullet 12$ or MK $\bullet \bullet 2 \bullet 13$.


## Clamping screw plates for cables of different diameters (MK V•)



The clamping screw plates are provided with a particular "roofing tile" structure and are loosely coupled to the clamping screw. The design causes connection wires of different diameter to be pulled towards the screw when tightening the screw (see figure), preventing the wires from escaping towards the outside

## Terminal covers with side-by-side strain relief cable gland

The new terminal covers are provided with strain relief cable gland and protection degree up to IP65. These are snapon terminal covers and have reduced dimensions contained in the profile of the microswitch so that these can be installed on microswitches fixed side by side as well.


## Actuators with variable orientation



Thanks to our new patented lateral fixing system, the roller of the microswitches MK


## $90^{\circ}$ steps.

The lateral fixing allows to disconnect the actuator from the switch body even when the actuator is already fixed to the support bracket. The flexibility of the product also allows for products to be unified in the warehouse for applications that require castors both in the longitudinal or transverse direction.




## Technical data

## Housing

Housing made of glass fibre reinforced technopolymer, self-extinguishing and shockproof.
Protection degree acc. to EN 60529: IPOO without terminal cover
IP20 (with terminal covers VF C01, VF C03)
IP40 (with terminal covers VF MKC•1•, VF C02)
IP65 (with terminal covers VF MKC•22 +
MK V•2••• or VF MKC $\bullet 23$ + MK H•2•••)

## General data

Ambient temperature: $\quad-25^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$
Max. actuation frequency:
3600 operating cycles/hour
Mechanical endurance:
10 million operating cycles
Safety parameter $\mathrm{B}_{100}$ :
20,000,000 for NC contacts
Tightening torques for installation:
see page 211-222

## Main features

- Technopolymer housing
- High reliability contacts
- Protection degree up to IP65
- 4 terminal types available
- 47 actuators available
- Versions with positive opening $\Theta$
- Versions with gold-plated silver contacts
- Terminal covers with strain relief cable gland


## Quality marks:

## 

IMQ approval:	
CA02.05772	
CCC approval:	
E131787	
EAC approval:	2013010305604291

## Cable cross section (flexible copper strands)

MK series: $\quad \min .1 \times 0.34 \mathrm{~mm}^{2} \quad(1 \times$ AWG 22)
$\max \quad 2 \times 1.5 \mathrm{~mm}^{2} \quad(2 \times$ AWG 16)

## In compliance with standards:

IEC 60947-5-1, EN 60947-5-1, IEC 60529, EN 60529, EN 60947-1, IEC 60947-1.
Approvals:
UL 508, CSA 22.2 No.14, EN 60947-1, EN 60947-5-1.

## Compliance with the requirements of:

Low Voltage Directive 2014/35/EU, EMC Directive 2014/30/EU.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.

## Installation for safety applications:

Use only microswitches marked with the symbol $\Theta$ next to the product code. Always connect the safety circuit to the NC contacts (normally closed contacts) as required by EN ISO 14119, paragraph 5.4 for specific interlock applications and EN ISO 13849-2 tables D3 (well-tried components) and D. 8 (failure exclusions) for safety applications in general. Actuate the switch at least up to the positive opening travel (CAP) reported next to the article code. Actuate the switch at least with the positive opening force (FAP) reported next to the article code.
$\widehat{4}$ If not expressly indicated in this chapter, for correct installation and utilization of all articles see the instructions given on pages 211 to 222.

Electrical data		Utilization category			
Thermal current ( $\left.l_{\text {th }}\right)$ :	16 A	Alternating current: AC15 (50 ... 60 Hz )			
Rated insulation voltage ( $\mathrm{U}_{\mathrm{i}}$ ):	250 Vac 300 Vdc				
Rated impulse withstand voltage ( $\mathrm{U}_{\text {imp }}$ ) :	4 kV	Ue (V)	120	250	
Conditional short circuit current: imp	1000 A acc. to EN 60947-5-1	le (A)	4	5	
Protection against short circuits:	type gG fuse 16 A 250 V	Direct current: DC13			
Pollution degree:	3	le (A)	5	0.6	0.3
Dielectric strength	$2000 \mathrm{Vac} / \mathrm{min}$.	(A)			

Characteristics approved by IMQ and CCC
Rated insulation voltage ( $U_{i}$ ):
Conventional free air thermal current $\left(l_{\mathrm{tn}}\right)$ :
Protection against short circuits:
Rated impulse withstand voltage ( $\mathrm{U}_{\mathrm{imp}}$ ):
Conditional short circuit current:
Protection degree of the housing:
Terminals: screw terminals / faston
Pollution degree:
Utilization category:
Operating voltage (Ue):
Operating current (le):
Forms of the contact element: $X ; Y ; C$
Positive opening of contacts on contact blocks: 1, 3

Features approved by UL
Utilization categories
Q300 (69 VA, 125-250 Vdc)
A300 (720 VA, 120-300 Vac)
In compliance with standard: UL 508, CSA 22.2 No. 14
Please contact our technical department for the list of approved products.

In compliance with standards: EN 60947-1, EN 60947-5-1+ A1:2009, fundamental requirements of the Low Voltage Directive 2014/35/EU
Please contact our technical department for the list of approved products.

16 A
type gG fuse 16 A 250 V
4 kV
1000 A
IP00

3
AC15
$250 \mathrm{Vac}(50 \mathrm{~Hz})$
5 A

## Circuit diagram

With direct actuation and direct actuation at the back (F, D)



With inverted actuation (R)


Actuation forces and travels


FS Trigger force
FR release force

FAP positive opening force
Microswitches with direct actuation

MK V11D03 $1 \mathrm{NO}+1 \mathrm{NC}$ PC $0,5 \mathrm{~mm}$ FS 4 N     OC 2 mm FR 3 N	MK V11D04	$1 \mathrm{NO}+1 \mathrm{NC}$ PC $0,5 \mathrm{~mm}$    OC 2 mm    CD $0,05 \mathrm{~mm}$	FS $4 N$   FR $3 N$
Maximum and minimum speed see page 221 - type 1	Maximum and minimum speed see page 221 - type 1		
Items with code on green background are stock items	Accessories See page 19	$\rightarrow$ The 2D and 3D files are available at www.pizzato.com	



Items with code on green background are stock items






MK V11D47 1NO +1 NC PC $4,2 \mathrm{~mm}$ FS $1,66 \mathrm{~N}$     OC $2,8 \mathrm{~mm}$ FR $1,28 \mathrm{~N}$	MK V11D49 1NO+1NC Hand operated
Maximum and minimum speed see page 221 - type 6	Maximum and minimum speed see page 221 - type 3



				$\stackrel{\underset{\sim}{6}}{\sqrt{1}}$						
MK V11R32	$1 \mathrm{NO}+1 \mathrm{NC}$	$\begin{aligned} & \hline \mathrm{PC} \\ & \mathrm{OC} \\ & \mathrm{CD} \end{aligned}$	$\begin{aligned} & 4,1 \mathrm{~mm} \\ & 11,2 \mathrm{~mm} \\ & 0,8 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \hline \text { FS } \\ & \text { FR } \end{aligned}$		MK V11R35	$1 \mathrm{NO}+1 \mathrm{NC}$	$\begin{aligned} & 13,4 \mathrm{~mm} \\ & 24,3 \mathrm{~mm} \\ & 2,1 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \hline \text { FS } \\ & \text { FR } \end{aligned}$	$\begin{aligned} & 0,3 \mathrm{~N} \\ & 0,2 \mathrm{~N} \end{aligned}$
Maximum and minimum speed see page 221 - type 4						Maximum and minimum speed see page 221 - type 7				




MK V11R59	$1 \mathrm{NO}+1 \mathrm{NC}$	$\begin{aligned} & \text { PC } \\ & \text { OC } \\ & C D \end{aligned}$	$\begin{aligned} & 1,5 \mathrm{~mm} \\ & 3,9 \mathrm{~mm} \\ & 0,2 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \hline \text { FS } \\ & \text { FR } \end{aligned}$	$\begin{aligned} & 2,4 \mathrm{~N} \\ & 1,3 \mathrm{~N} \end{aligned}$	MK V11R60	$1 \mathrm{NO}+1 \mathrm{NC}$	2,7 mm   $9,2 \mathrm{~mm}$   $0,5 \mathrm{~mm}$	$\begin{aligned} & \hline \text { FS } \\ & \text { FR } \end{aligned}$	$\begin{aligned} & 1,2 \mathrm{~N} \\ & 0,6 \mathrm{~N} \end{aligned}$
Maximum and minimum speed see page 221 - type 7							aximum and	um speed s	page 22	1 - type 4
Microswitches with direct actuation at the back										
MK V11F30	$1 \mathrm{NO}+1 \mathrm{NC}$	$\begin{aligned} & \text { PC } \\ & \text { OC } \\ & C D \end{aligned}$	$\begin{aligned} & \hline 3,2 \mathrm{~mm} \\ & 11,2 \mathrm{~mm} \\ & 0,35 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \hline \text { FS } \\ & \text { FR } \end{aligned}$	$\begin{aligned} & \hline 0,6 \mathrm{~N} \\ & 0,5 \mathrm{~N} \end{aligned}$	MK V11F3	$1 \mathrm{NO}+1 \mathrm{NC}$	$\begin{aligned} & 1,45 \mathrm{~mm} \\ & 5 \mathrm{~mm} \\ & 0,17 \mathrm{~mm} \\ & 5,72 \mathrm{~mm} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { FS } \\ & \text { FR } \\ & \text { FAP } \end{aligned}$	$\begin{aligned} & 1,5 \mathrm{~N} \\ & 0,92 \mathrm{~N} \\ & 5,78 \mathrm{~N} \end{aligned}$
Maximum and minimum speed see page 221 - type 5						Maximum and minimum speed see page 221 - type 5				




Terminal dimensions


Screw terminals $\mathbf{V}$ with plate


Faston terminals $\mathbf{H}$, vertical




Faston terminals $\mathbf{F}$, right angle


Faston terminals G, left angle (upon request)

Note: The vertical faston terminals H can be bent according to specific installation requirements.
We recommend to bend the faston with an angle not higher than $45^{\circ}$ and to carry out this operation no more than 5 times.


Protective terminal cover for screw terminals with strain relief cable gland and snap-in mounting. It allows to install mutiple switches side-by-side.

$\left.$| Article | Description |
| :---: | :--- | | Protection |
| :---: |
| degree | \right\rvert\, IP40



Article	Description	Protection   degree
VF C01	Protective terminal cover for screw   terminals	IP20



Protective terminal cover for vertical faston terminals with strain relief cable gland and snap-in mounting. It allows to install mutiple switches side-by-side.

Article	Description	Protection   degree
VF MKCH11	Protective terminal cover without gasket   for multipolar cables $\varnothing 5 \ldots 7.5 \mathrm{~mm}$	IP40
VF MKCH12	Protective terminal cover without gasket   for multipolar cables $\varnothing 4 \ldots 7.5 \mathrm{~mm}$	IP40
VF MKCH13	Protective terminal cover without gasket   for multipolar cables $\varnothing 2 \ldots 5.5 \mathrm{~mm}$	IP40
VF MKCH22	Protective terminal cover with gasket for   multipolar cables $\varnothing 4 \ldots 7.5 \mathrm{~mm}$	IP65
VF MKCH23	Protective terminal cover with gasket for   multipolar cables $\varnothing 2 \ldots 5.5 \mathrm{~mm}$	IP65




## Accessories

Packs of $\mathbf{1 0} \mathbf{~ p c s .}$


All values in the drawings are in mm


ATEX



Technical definitions


page 155

	Category	Zone	EPL	Approvals	Product code extension	ATEX/EPL category					
						M2/Mb	2G/Gb	2D/Db	3G/Gc	3D/Dc	
	3D	22	Dc	(Ex) \\| $13 \mathrm{DExtc} \mathrm{IIICT} 80^{\circ} \mathrm{CD}$	-EX4	-	-	-	-	$\square$	
	$\begin{aligned} & \text { 2G } \\ & \text { M2 } \end{aligned}$	$\begin{gathered} 1 \\ \text { M2 } \end{gathered}$	$\begin{aligned} & \text { Gb } \\ & \mathbf{M b} \end{aligned}$	(Ex) II 2G Ex ia IICT6 Gb   Ex I M2 Ex ial Mb	-EX7	$\square$	$\square$	-	$\square$	-	
	2D	21	Db	(Ex) II $2 \mathrm{DExtb} \mathrm{IIICT} 80^{\circ} \mathrm{CD}$	-EX8	-	-	$\square$	-	$\square$	

FL series position switches
page 161


FM series position switches
page 167


FA series pre-wired position switches
page 173

Category	Zone	EPL	Approvals	Product code extension	ATEX/EPL category				
					M2/Mb	G/G	2D/Db	3G/Gc	3D/Dc
$\begin{aligned} & \text { 3D } \\ & \text { 3G } \end{aligned}$	$\begin{gathered} 22 \\ 2 \end{gathered}$	$\begin{aligned} & \text { Dc } \\ & \text { Gc } \end{aligned}$	 	-EX5	-	-	-	$\square$	$\square$

Accessories
page 177


## ATEX Directive

The acronym ATEX ( Atmospheres Explosives) refers to two European directives concerning the risk of deflagration in potentially explosive atmospheres:

- ATEX 2014/34/EU: concerns the requirements for electrical and non-electrical equipment for use in potentially explosive environments. According to this directive, the manufacturer has to comply with the provided requirements and mark its articles according to specific categories.
ATEX 99/92/EC: lays down minimum requirements for the safety and health protection of workers potentially at risk from explosive atmospheres.
These directives define the requirements for the protection of safety and health of persons, domestic animals and property, as well as the conformity assessment procedures to prove that the devices comply with the directives' requirements.


## Classification of potentially explosive atmospheres

A potentially explosive atmosphere is an atmosphere which could become explosive due to local and/or operational conditions. These environments present a mixture with air under atmospheric conditions of flammable substances in the form of in the form of gases, vapours, mists or dusts.
The ATEX 99/92/EC Directive classifies two types of potentially explosive atmospheres, depending on presence of combustible gases or dusts in the zone. These two types of explosive atmospheres are in turn classified in three zones each, according to the frequency and duration of the explosive atmosphere. Areas in atmospheres with explosive gases are classified in zones 0,1 and 2 ; whereas in atmospheres with explosive dusts in zones 20, 21 and 22:

- Zone 0/20 : A place in which the presence of flammable gas or dust is continuously present. Constant danger. It requires at least Category 1 equipment.
- Zone 1/21 : A place in which the presence of flammable gas or dust is likely to occur in normal operation occasionally. Potential danger. It requires at least Category 2 equipment.
Zone 2/22 : A place in which the presence of flammable gas or dust is not likely to occur in normal operation or, if it does occur, will persist for a short period only. Or it occurs due to a failure. Lower danger. It requires at least Category 3 equipment.
The end user has the responsibility to identify and classify the different zones and to install appropriate equipment.


## Equipment categories acc. to ATEX directive and IEC standards

According to the ATEX Directive 2014/34/EU equipment is classified into two main groups:
Group I: equipment and systems for mining
Group II: equipment and systems for all other applications
Equipment of the group I is divided in two further categories according to the required protection level:
Category M1: Equipment designed to ensure a very high level of protection
Category M2: Equipment designed to ensure a high level of protection
Equipment of the group II is further subdivided into three categories according to the required protection level:
Category 1: Equipment designed to ensure a very high level of protection (for use in zone 0 and 20, 1 and 21, 2 and 22)
Category 2: Equipment designed to ensure a high level of protection (for use in zone 1 and 21, 2 and 22)
Category 3: Equipment designed to ensure a normal level of protection (for use in zone 2 and 22)
A comparison between the EPL (Equipment Protection Levels) defined by the IEC 60079-0 standard and the categories and applications of the ATEX Directive are shown in the table below.

Table 1 - Classification of environment and equipment according to ATEX directive and IEC 60079-0 standard

Environment features				Equipment features			
Field of application	Flammable substance	Potentially explosive atmosphere	Classification of potentially explosive atmospheres: ZONE	acc. to ATEX 2014/34/EU		$\begin{gathered} \text { acc. to } \\ \text { IEC 60079-0 } \end{gathered}$	
				Required marking of the device: CATEGORY	Required marking of the device: GROUP	EPL	Required protection level
Mining				M1	I	$\mathbf{M a}$	very high
				M2		Mb	high
Surface	Gases	It is present continuously, or for long periods or frequently	0	1G	II	Ga	very high
		It is likely to occur	1	2G		Gb	high
		It is not likely to occur but, if it does occur, will persist for a short period only	2	3G		Gc	normal
	Dusts	It is present continuously, or for long periods or frequently	20	1D		Da	very high
		It is likely to occur	21	2D		Db	high
		It is not likely to occur but, if it does occur, will persist for a short period only	22	3D		Dc	normal

## Protective measures

To avoid the risk of explosions caused by an electrical trigger in a potentially explosive atmosphere, different protective measures can be taken:

- Use of enclosures to encapsulate dangerous part in order to limit explosions to the inside of the housing itself.
- Avoid contact between hot spots and the potentially explosive atmosphere by interposing solid, liquid or gaseous bodies.
- Take measures to limit the generation of dangerous hot spots, eliminating the possibility of failures or limiting the system power so that it is insufficient to cause the ignition.
Various protective modes have been developed and standardised for each of these modes as listed in the following table:
Table 2 - Protective measures and applicable standards

Protective measure	Symbol	Engraving	Zone GAS	Zone DUSTS	IEC / EN standard
General requirements	1	/	0,1, 2	20, 21, 22	IEC 60079-0 EN 60079-0
Oil immersion	\% \% 제	Exo	1.2	1	IEC 60079-6 EN 60079-6
Pressurized enclosure	$71$	$\begin{aligned} & \text { Expx } \\ & \text { Expy } \\ & \text { Expz } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 21 \\ & 21 \\ & 22 \end{aligned}$	IEC 60079-2 EN 60079-2
Powder filling	\%	Exq	1.2	1	$\begin{aligned} & \text { IEC 60079-5 } \\ & \text { EN 60079-5 } \end{aligned}$
Flameproof enclosure		Exd	1.2	1	IEC 60079-1   EN 60079-1
Increased safety		Exe	1.2	1	IEC 60079-7   EN 60079-7
Intrinsic safety	$\square$	Ex ia Exib Ex ic	$\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 20 \\ & 21 \\ & 22 \end{aligned}$	$\begin{aligned} & \text { IEC 60079-11 } \\ & \text { EN 60079-11 } \end{aligned}$
Encapsulation	+	Ex ma   Ex mb   Ex mo	$\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 20 \\ & 21 \\ & 22 \end{aligned}$	IEC 60079-18   EN 60079-18
Non sparking	$X$	ExnA ExnC ExnR	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	/	IEC 60079-15   EN 60079-15
Protective housing		Exta Ex tb Extc	/	$\begin{aligned} & 20 \\ & 21 \\ & 22 \end{aligned}$	IEC 60079-31   EN 60079-31
Optical radiation	获	Ex op	0,1,2	/	IEC 60079-28   EN 60079-28

## Marking examples

Devices for places with presence of gas
[Ex II 2G
Ex ia IICT6 Gb
(1) (2) (3)
(4) (5) (6) (7) 8
(1) EU marking
(2) Equipment group (see table 1)
(3) Protection category (see table 1)
(4) Prefix for safety devices according to the IEC / EN standards
(5) Type of protection (see table 2)
(6) Classification of gases (see table 4)
(7) Temperature class (see table 3)
(8) EPL acc. to IEC 60079-0 (see table 1)

## Devices for places with presence of dusts

## Ex || 3D Ex tc IIIC T80º C Dc <br> (1) (2) (3) <br> (4) (5) <br> (6) <br> (8)

(1) EU marking
(2) Equipment group (see table 1)
(4) Prefix for safety devices according to the IEC / EN standards
(5) Type of protection (see table 2)
(6) Classification of dusts (see table 5)
(7) Maximum surface temperature of the equipment
(8) EPL acc. to IEC 60079-0 (see table 1)

## Temperature classes

Table 3

Class	T1	T2	T3	T4	T5	T6
Maximum surface   temperature of   the equipment	$450^{\circ} \mathrm{C}$	$300^{\circ} \mathrm{C}$	$200^{\circ} \mathrm{C}$	$135^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$

## Classification of gases




## Main features

- ATEX approval.
- Metal housing, one conduit entry
- Protection degree IP66
- Versions with gold-plated silver contacts

ATEX markings:

Product code
extension


Quality
mark


Certificate type and
notified body

-EX4
-EX8

## Technical data

## Housing

Metal housing, powder-coated
One threaded conduit entry:
Protection degree:

## General data

Ambient temperature (-EX7):
Ambient temperature (-EX4/-EX8):
Max. actuation frequency:
Mechanical endurance:
FD ••••-EX•
FD $\bullet \bullet 93-E X \bullet$, FD $\bullet \bullet 78-E X \bullet$, FD $\bullet \bullet 8 \bullet-E X \bullet$, FD $\bullet \bullet 95-E X \bullet$
FD $\bullet \bullet 99-E X \bullet$, FD $\bullet \bullet R 2-E X \bullet$
Mounting position:
Safety parameters $\mathrm{B}_{10 \mathrm{D}}$ (NC contacts):
FD ••••-EX•
FD $\bullet \bullet 93-E X \bullet$,FD $\bullet \bullet 78-E X \bullet$, FD $\bullet \bullet 8 \bullet-E X \bullet$
FD ••99-EX•, FD ••R2-EX•
FD ••95-EX•
Mechanical interlock, not coded:
Tightening torques for installation:

M20x1.5
IP66 acc. to EN 60529 with cable gland presenting same or higher protection degree

$$
-20^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}
$$

$-20^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
3600 operating cycles/hour
10 million operating cycles
500,000 operating cycles
250,000 operating cycles
any
20,000,000
1,000,000
500,000
2,500,00
type 1 acc. to EN ISO 14119
see page 211-222

Cable cross section (flexible copper strands)

Contact blocks 2, 20, 21, 22, 28, 29, 30, 33, 34:
Contact blocks $5,6,7,8,9,10,11,12,13,14,15,16,17,18$, 37, 66, 67:

## In compliance with standards:

IEC 60947-5-1, EN 60947-5-1, EN 60947-1, EN 50041, IEC 60204-1, EN 60204-1, EN ISO 14119, EN ISO 12100, IEC 60529, EN 60529, UL 508, CSA 22.2 No.14, IEC 60079-0, EN 60079-0, IEC 60079-11, EN 60079-11.

## Compliance with the requirements of:

ATEX Directive 2014/34/EU and EMC Directive 2014/30/EU
Positive contact opening in conformity with standards: IEC 60947-5-1, EN 60947-5-1.

Installation for safety applications:
Use only switches marked with the symbol $\Theta$ next to the product code. Always connect the safety circuit to the NC contacts (normally closed contacts: 11-12, 21-22 or 31-32) as required by EN ISO 14119, paragraph 5.4 for specific interlock applications and EN ISO 13849-2 tables D3 (well-tried components) and $\mathbf{D} .8$ (fault exclusions) for safety applications in general. Actuate the switch at least up to the positive opening travel shown in the travel diagrams on page 214. Actuate the switch at least with the positive opening force, reported in brackets below each article, next to the actuating force value.
§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see the instructions given on pages 211 to 222 and in the certificate.
$\widehat{\$}$ For the correct use of the switch, please use appropriate cable glands suitable for the zone in compliance with the ATEX directive, see Accessories on page 177

Product code extension -EX4	Category Zone EPL Approvals   3D $\mathbf{2 2}$ Dc Ex $\left\\|\\|3 \mathrm{DExtc}\\| \mathrm{II} T 80^{\circ} \mathrm{CDc}\right.$			
	Electrical data   Thermal current ( $l_{t \mathrm{t}}$ ):   Rated insulation voltage ( $U_{i}$ ):   Conditional short circuit current: Protection against short circuits: Pollution degree:	10 A   500 Vac 600 Vdc   400 Vac for contact blocks 20, 28 1000 A acc. to EN 60947-5-1 type aM fuse 10 A 500 V 3	Utilization category   Alternating current: A   Ue (V) 250400   le (A) 6   Direct current: DC13   Ue (V) $24 \quad 125$   le (A) 6	$\begin{aligned} & 5(50 \div 60 \mathrm{~Hz}) \\ & 500 \\ & 1 \\ & 250 \\ & 0.4 \end{aligned}$
Product code extension -EX7	Electrical data   Maximum current (ii):   Maximum voltage (Ui):   Conditional short circuit current:   Protection against short circuits:   Pollution degree:	© This switch type must be used only in intrinsic safety circuits in compliance with standard IEC 60079-11, EN 60079-11   2.5 A   30 Vdc   1000 A acc. to EN 60947-5-1   type gG fuse 4 A 250 V   3		
Product code extension -EX8	Category Zone EPL A   2 D 21 Db § $\\|\\| 2 \mathrm{DE}$   Electrical data   Thermal current ( $l_{\text {th }}$ ):   Rated insulation voltage ( $\mathrm{U}_{\mathrm{i}}$ ):   Conditional short circuit current:   Protection against short circuits:   Pollution degree:	6 A   $250 \mathrm{Vac} / \mathrm{Ndc}$   1000 A acc. to EN 60947-5-1 type aM fuse 6 A 500 V 3	Utilization category   Alternating current: A   Ue (V) 250   le (A) 6   Direct current: DC13   Ue (V) $24 \quad 125$   le (A) 6	$\begin{aligned} & 5(50 \div 60 \mathrm{~Hz}) \\ & \\ & \\ & 250 \\ & 0.4 \end{aligned}$

## Quality marks of the product

## © (1)w EH[

$\begin{array}{ll}\text { UL approval: } & \text { E131787 } \\ \text { EAC approval: } & \text { RU C-IT.АД35.В. } 00454\end{array}$

## Features approved by UL

Utilization category Q300 (69 VA, 125-250 Vdc)

$$
\text { A600 (720 VA, } 120-600 \mathrm{Vac})
$$

Housing features type 1, 4X, 12, 13
For all contact blocks except 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductors, rigid or flexible, wire size 12, 14 AWG. Tightening torque for terminal screws of 7.1 lb in ( 0.8 Nm ).
For contact blocks 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductors, rigid or flexible, wire size 14 AWG. Tightening torque for terminal screws of 12 lb in ( 1.4 Nm ).

In compliance with standard: UL 508, CSA 22.2 No. 14
Please contact our technical department for the list of approved products.

## Adjustable levers

For these switches the lever can be adjusted in $10^{\circ}$ steps over the entire $360^{\circ}$ range. The positive movement transmission

is always guaranteed thanks to the particular geometrical coupling between the lever and the revolving shaft as prescribed for safety applications by the German standard BG-GS-ET-15.

## Reversible levers

With these switches, the lever can be secured in either the normal or reverse position, whereby positive coupling is retained. In this way two different working planes of the lever are possible.


## Head with variable orientation

For all switches the head can be rotated in $90^{\circ}$ steps.


## Unidirectional heads

For switches with swivelling lever, the unidirectional operation can be set by removing the four head screws and rotating the internal plunger.


## Code structure

Housing
FD metal, one conduit entry

Contact block
5 1NO+1NC, snap action
6 2NC, snap action
7 2NO, snap action

ATEX approval
-EX4 〔Ex \| 3D Ex tc IIICT80 ${ }^{\circ} \mathrm{C}$ Dc
Ex $x_{x}$ II 2G Ex ia IICT6 Gb
$\varepsilon_{x} \mid M 2$ Ex ial Mb
-EX8 殴\| \| Ex tb IIIC T80 ${ }^{\circ} \mathrm{CD}$

Contact type
silver contacts (standard)
Actuators
01 short plunger
02 roller lever
silver contacts, $1 \mu \mathrm{~m}$ gold coating (not for contact block 2)
G1 silver contacts, $2.5 \mu \mathrm{~m}$ gold coating (not for contact block 20, 21, 22, 28, 29, 30)


Accessories See page 197
$\rightarrow$ The 2D and 3D files are available at www.pizzato.com

## Position switches with swivelling lever without actuator



IMPORTANT
For safety applications: join only switches and actuators marked with symbol $\Theta$ next to the product code.
For more information about safety applications see details on page 211.

## Separate actuators

IMPORTANT: These separate actuators can be used only with items of the FD series.

	Technopolymer roller $\varnothing 20 \mathrm{~mm}$	Adjustable round rod Ø $3 \times 125 \mathrm{~mm}$	Adjustable square rod, $3 \times 3 \times 125 \mathrm{~mm}$	Flexible rod with pointed end	Adjustable actuator with technopolymer roller	Adjustable glass fibre rod
Article	VF L31 $\Theta$	VF L32 ${ }^{(2)}$	VF L33 ${ }^{(2)}$	VF L34	VF L35 $\Theta{ }^{(1)(2)}$	VF L36 ${ }^{(2)}$
Max. speed	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at $30^{\circ}$ )	$1.5 \mathrm{~m} / \mathrm{s}$	$1.5 \mathrm{~m} / \mathrm{s}$	$1 \mathrm{~m} / \mathrm{s}$	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at $30^{\circ}$ )	$1.5 \mathrm{~m} / \mathrm{s}$
	Technopolymer roller $\varnothing 20 \mathrm{~mm}$	Technopolymer roller $\varnothing 20$ mm	Porcelain roller	Adjustable safety actuator with technopolymer roller	Technopolymer roller $\varnothing 20 \mathrm{~mm}$	
Article	VF L51 $\Theta$	VF L52 $\Theta$	VF L53 $\Theta$	VF L56 $\Theta^{(2)}$	VF L57 $\Theta$	
Max. speed	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at $30^{\circ}$ )	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at $30^{\circ}$ )	$0.5 \mathrm{~m} / \mathrm{s}$	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at $30^{\circ}$ )	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at $30^{\circ}$ )	
	Stainless steel roller	$\varnothing 20 \mathrm{~mm}$				
Article	VF L31-R24 $\Theta$	VF L35-R24 ${ }^{(1)}{ }^{(2)}$	VF L51-R24 $\Theta$	VF L52-R24 $\Theta$	VF L56-R24 $\Theta{ }^{(2)}$	VF L57-R24 $\Theta$
Max. speed	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at $30^{\circ}$ )	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at $30^{\circ}$ )	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at $30^{\circ}$ )	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at $30^{\circ}$ )	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at $30^{\circ}$ )	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at $30^{\circ}$ )

${ }^{(1)}$ Actuator VF L35 can only be used in safety applications if adjusted to its max. length, as shown in the figure to the right.
If an adjustable lever is required for safety applications, use the VF L56 adjustable safety lever.
${ }^{(2)}$ If installed with switch FD $\bullet 58-\mathrm{M} 2-\mathrm{EX}$ (e.g. FD 558-M2-EX $\bullet$, FD $658-\mathrm{M} 2-\mathrm{EX} \bullet \ldots$ ) the actuator may hit the housing of the switch upon actuation. This possible interference depends on the fixing position of actuator and switch head.

Safety switches with separate actuator


Actuators


IMPORTANT: These actuators can be used only with items of the FD series (e.g. FD 2093-M2-EX7).
Actuators with low level of coding acc. to EN ISO 14119.

Safety switches for hinges


## Safety rope switches with reset for emergency stops

Contact type:


FD 1883-M2-EX4 $\Theta$ 1N	$\Theta 1 \mathrm{NO}+1 \mathrm{NC}$
FD 2083-M2-EX4 $\Theta$ 1N	$\Theta 1 \mathrm{NO}+2 \mathrm{NC}$
FD 2083-M2-EX7 $\Theta$ 1N	(-1NO+2NC
FD 1883-M2-EX8 $\Theta$ 1N	$\Theta 1 \mathrm{NO}+1 \mathrm{NC}$
FD 2083-M2-EX8 $\Theta$ 1N	$\Theta 1 \mathrm{NO}+2 \mathrm{NC}$
initial 147 N ...final $235 \mathrm{~N}(25$	$\mathrm{N}(250 \mathrm{~N} \Theta)$
page 174-group 2	



## Accessories for rope installation



## Application examples and max. rope length




## Main features

- ATEX approval
- Metal housing, three conduit entries
- Protection degree IP66
- Versions with gold-plated silver contacts


## ATEX markings:

Product code Quality

Certificate type and notified body

## -EX4

C
EU declaration of conformity Pizzato Elettrica S.r.I.
-EX7


EC type examination certificate DEKRA EXAM Gmbh
-EX8 $\underset{0158}{(\underset{y y y}{c}}$

Technical data

## Housing

Metal housing, powder-coated
Three threaded conduit entries:
Protection degree:

## General data

Ambient temperature (-EX7):
Ambient temperature (-EX4/-EX8):
Max. actuation frequency:
Mechanical endurance:
FL••••-EX•
10 million operating cycles
Mounting position:
Safety parameters $\mathrm{B}_{100}$ (NC contacts):
FL ••••-EX•
FL ••93-EX•,FL ••78-EX•, FL ••8•EX•
FL ••95-EX•
Mechanical interlock, not coded:
Tightening torques for installation:

## Cable cross section (flexible copper strands)

Contact blocks 2, 20, 21, 22, 28, 29, 30, 33, 34:

Contact blocks 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,18 37, 66, 67:

M20×1.5
IP66 acc. to EN 60529 with cable gland presenting same or higher protection degree

## $-20^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$

$-20^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
3600 operating cycles/hour

500,000 operating cycles
any
20,000,000
1,000,000
2,500,00
type 1 acc. to EN ISO 14119
see page 211-222

## In compliance with standards:

IEC 60947-5-1, EN 60947-5-1, EN 60947-1, EN 50041, IEC 60204-1, EN 60204-1, EN ISO 14119, EN ISO 12100, IEC 60529, EN 60529, UL 508, CSA 22.2 No.14, IEC 60079-0, EN 60079-0, IEC 60079-11, EN 60079-11.

## Compliance with the requirements of:

ATEX Directive 2014/34/EU and EMC Directive 2014/30/EU
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.

## Installation for safety applications:

Use only switches marked with the symbol $\Theta$ next to the product code. Always connect the safety circuit to the NC contacts (normally closed contacts: 11-12, 21-22 or 31-32) as required by EN ISO 14119, paragraph 5.4 for specific interlock applications and EN ISO 13849-2 tables D3 (well-tried components) and $\mathbf{D} .8$ (fault exclusions) for safety applications in general. Actuate the switch at least up to the positive opening travel shown in the travel diagrams on page 214. Actuate the switch at least with the positive opening force, reported in brackets below each article, next to the actuating force value.
§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see the instructions given on pages 211 to 222 and in the certificate.
§. For the correct use of the switch, please use appropriate cable glands suitable for the zone in compliance with the ATEX directive, see Accessories on page 177

Product code extension -EX4	Category Zone EPL Approvals   3D $\mathbf{2 2}$ Dc $\left.\sum \sum x\right\rangle_{\\|}^{\\| 3 D}$ Extc $\\| I C T 80^{\circ} \mathrm{CDc}$					
	Electrical data   Thermal current ( $l_{\text {tn }}$ ):   Rated insulation voltage ( $\mathrm{U}_{\mathrm{i}}$ ):   Conditional short circuit current: Protection against short circuits: Pollution degree:	10 A   500 Vac 600 Vdc 400 Vac for contact blocks 20, 28 1000 A acc. to EN 60947-5-1 type aM fuse 10 A 500 V 3	Utiliza   Alterna $\mathrm{Ue}(\mathrm{V})$ le (A) Direct Ue (V) le (A)	$\begin{gathered} \text { on c } \\ \text { ng c } \\ 250 \\ 6 \\ \text { urren } \\ 24 \\ 6 \end{gathered}$	$\begin{gathered} \text { gory } \\ \text { ent: Al } \\ 400 \\ 4 \\ \text { C13 } \\ 125 \\ 1.1 \end{gathered}$	$\begin{aligned} & 5(50 \div 60 \mathrm{~Hz}) \\ & 500 \\ & 1 \\ & 250 \\ & 0.4 \end{aligned}$
Product code extension -EX7	Electrical data   Maximum current (ii):   Maximum voltage (Ui):   Conditional short circuit current:   Protection against short circuits:   Pollution degree:	© This switch type must be used only in intrinsic safety circuits in compliance with standard IEC 60079-11, EN 60079-11   2.5 A $30 \text { Vdc }$ $1000 \text { A acc. to EN 60947-5-1 }$   type gG fuse 4 A 250 V				
Product code extension -EX8	Electrical data   Thermal current ( $l_{\text {tn }}$ ):   Rated insulation voltage ( $U_{i}$ ):   Conditional short circuit current:   Protection against short circuits:   Pollution degree:	6 A $250 \mathrm{Vac} / \mathrm{Ndc}$ 1000 A acc. to EN 60947-5-1 type aM fuse 6 A 500 V 3	Utilization category   Alternating current: AC15 ( $50 \div 60 \mathrm{~Hz}$ )   Ue (V) 250   le (A) 6   Direct current: DC13   $\begin{array}{llll}\text { Ue (V) } & 24 & 125 & 250 \\ \text { le (A) } & 6 & 1.1 & 0.4\end{array}$			

## Quality marks of the product

## © (1)w EH[

$\begin{array}{ll}\text { UL approval: } & \text { E131787 } \\ \text { EAC approval: } & \text { RU C-IT.АД35.В. } 00454\end{array}$

## Features approved by UL

Utilization category Q300 (69 VA, 125-250 Vdc)

$$
\text { A600 (720 VA, } 120-600 \mathrm{Vac})
$$

Housing features type 1, 4X, 12, 13
For all contact blocks except 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductors, rigid or flexible, wire size 12, 14 AWG. Tightening torque for terminal screws of 7.1 lb in ( 0.8 Nm ).
For contact blocks 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductors, rigid or flexible, wire size 14 AWG. Tightening torque for terminal screws of 12 lb in ( 1.4 Nm ).

In compliance with standard: UL 508, CSA 22.2 No. 14
Please contact our technical department for the list of approved products.

## Adjustable levers

For switches with swivelling lever, the lever can be adjusted in $10^{\circ}$ steps over the entire $360^{\circ}$ range. The positive movement trans-
 mission is always guaranteed thanks to the particular geometrical coupling between the lever and the revolving shaft as prescribed for safety applications by the German standard BG-GS-ET-15.

## Reversible levers

For switches with swivelling lever, the lever can be fastened on straight or reverse side maintaining the positive coupling.
In this way two different working planes of the lever are possible.


## Head with variable orientation

For all switches the head can be rotated in


## Unidirectional heads

For switches with swivelling lever, the unidirectional operation can be set by removing the four head screws and rotating the internal plunger (except contact block 16)


(b)

(c)


## Code structure




Accessories See page 197
$\rightarrow$ The 2D and 3D files are available at www.pizzato.com

## Position switches with swivelling lever without actuator

Contact type:$\begin{aligned} & \mathbf{R}=\text { snap action } \\ & \mathbf{L}=\text { slow action } \end{aligned}$		Regular head	Compact head	
3D	$5 \quad \mathrm{R}$		FL 538-M2-EX4 $\Theta$ 1NO+1NC	FL 558-M2-EX4 $\Theta$ 1NO+1NC
	6 L	FL 638-M2-EX4 $\Theta$ 1NO+1NC	FL 658-M2-EX4 $\Theta$ 1NO+1NC	
	20 L	FL 2038-M2-EX4 $\Theta$ 1NO+2NC	FL 2058-M2-EX4 $\Theta$ 1NO+2NC	
	2 R	FL 238-M2-EX4 2x(1NO-1NC)	FL 258-M2-EX4 2x(1NO-1NC)	
$\begin{aligned} & \text { 2G } \\ & \text { M2 } \end{aligned}$	5 R	FL 538-M2-EX7 $\oplus$	FL 558-M2-EX7 $\Theta 1 \mathrm{NO}+1 \mathrm{~N}$	
	20 L	FL 2038-M2-EX7 $\Theta$ 1NO+2NC	FL 2058-M2-EX7 $\Theta$ 1NO+2NC	
2D	5 R	FL 538-M2-EX8 $\Theta$ 1NO+1NC	FL 558-M2-EX8 $\Theta$ 1NO+1NC	
		FL 2038-M2-EX8 $\Theta$ 1NO+2NC	FL 2058-M2-EX8 $\Theta$ 1NO+2NC	
Actuating force		$0,1 \mathrm{Nm}(0,25 \mathrm{Nm} \Theta)$	$0,06 \mathrm{Nm}(0,25 \mathrm{Nm} \Theta)$	
Travel diagrams		page 214 - group 4	page 214 - group 4	

## IMPORTANT

For safety applications: join only switches and actuators marked with symbol $\Theta$ next to the product code.
For more information about safety applications see details on page 211.

Separate actuators
IMPORTANT: These separate actuators can be used only with items of the FL series.

	Technopolymer roller $\varnothing 20$ mm	Adjustable round rod $\varnothing 3 \times 125 \mathrm{~mm}$	Adjustable square rod, $3 \times 3 \times 125 \mathrm{~mm}$	Flexible rod with pointed end	Adjustable actuator with technopolymer roller	Adjustable glass fibre rod
Article	VF L31 $\Theta$	VF L32 ${ }^{(2)}$	VF L33 ${ }^{(2)}$	VF L34	VF L35 $\Theta$ (1) (2)	VF L36 ${ }^{(2)}$
Max. speed	$1.5 \mathrm{~m} / \mathrm{s}\left(\mathrm{cam}\right.$ at $30^{\circ}$ )	$1.5 \mathrm{~m} / \mathrm{s}$	$1.5 \mathrm{~m} / \mathrm{s}$	$1 \mathrm{~m} / \mathrm{s}$	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at $30^{\circ}$ )	$1.5 \mathrm{~m} / \mathrm{s}$
	Technopolymer roller $\varnothing 20 \mathrm{~mm}$	Technopolymer roller $\varnothing 20$ mm	Porcelain roller	Adjustable safety actuator with technopolymer roller	Technopolymer roller $\varnothing 20$ mm	
Article	VF L51 $\Theta$	VF L52 $\Theta$	VF L53 $\Theta$	VF L56 ${ }^{\text {(2) }}$	VF L57 $\Theta$	
Max. speed	$1.5 \mathrm{~m} / \mathrm{s}\left(\mathrm{cam}\right.$ at $\left.30^{\circ}\right)$	$1.5 \mathrm{~m} / \mathrm{s}\left(\mathrm{cam}\right.$ at $30^{\circ}$ )	$0.5 \mathrm{~m} / \mathrm{s}$	$1.5 \mathrm{~m} / \mathrm{s}\left(\mathrm{cam}\right.$ at $\left.30^{\circ}\right)$	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at $30^{\circ}$ )	

Stainless steel rollers, Ø 20 mm

Article	VF L31-R24 $\Theta$	VF L35-R24 $\underbrace{(1)}{ }^{(2)}$	VF L51-R24 $\Theta$	VF L52-R24 $\Theta$	VF L56-R24 $\underbrace{(2)}$	VF L57-R24 $\Theta$
Max. speed	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at $30^{\circ}$ )	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at $30^{\circ}$ )	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at $30^{\circ}$ )	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at $30^{\circ}$ )	$1.5 \mathrm{~m} / \mathrm{s}\left(\mathrm{cam}\right.$ at $30^{\circ}$ )	$1.5 \mathrm{~m} / \mathrm{s}$ (cam at 30\%)

- ${ }^{(1)}$ Actuator VF L35 can only be used in safety applications if adjusted to its max. length, as shown in the figure to the right.

If an adjustable lever is required for safety applications, use the VF L56 adjustable safety lever.

- ${ }^{(2)}$ If installed with switch FL •58-M2-EX (e.g. FL 558-M2-EX•, FL 658-M2-EX•...) the actuator may hit the housing of the switch upon actuation. This possible interference depends on the fixing position of actuator and switch head.


Safety switches with separate actuator

Contact type:$\mathbf{L} \text { = slow action }$		Switches with separate actuator
		Switch without actuator
$\begin{aligned} & \lambda \\ & 0 \\ & \hline 0 \\ & \hline 0 \\ & 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { U v v } \\ & \text { TO U } \\ & \stackrel{0}{0} \text { O } \\ & 0 \end{aligned}$	
3D	$6 \quad$ L	FL 693-M2-EX4 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$
	$20 \quad \mathrm{~L}$	FL 2093-M2-EX4 $\Theta$ 1NO+2NC
$\begin{aligned} & 2 \mathrm{G} \\ & \mathrm{M} 2 \\ & \hline \end{aligned}$	$20 \quad$ L	FL 2093-M2-EX7 $\Theta 1 \mathrm{NO}+2 \mathrm{NC}$
2D	$20 \quad \mathrm{~L}$	FL 2093-M2-EX8 $\Theta 1 \mathrm{NO}+2 \mathrm{NC}$
Actuating force		$10 \mathrm{~N}(18 \mathrm{~N} \rightarrow$ )
Travel diagrams Gen. Cat. Safety		page 17

## Actuators



IMPORTANT: These actuators can be used only with items of the FL series (e.g. FL 2093-M2-EX7).
Actuators with low level of coding acc. to EN ISO 14119.

Safety switches for hinges

Contact type:$\mathbf{L}=\text { slow action }$		
3D	18 L	FL 1895-M2-EX4 $\Theta$ 1NO+1NC
	20 L	FL 2095-M2-EX4 $\Theta$ 1NO+2NC
$\begin{aligned} & 2 \mathrm{G} \\ & \mathrm{M} 2 \end{aligned}$	$20 \quad$ L	FL 2095-M2-EX7 $\Theta$ 1NO+2NC
2D	$20 \quad$ L	FL 2095-M2-EX8 $\Theta$ 1NO+2NC
Actuating force		$0,15 \mathrm{Nm}(0,4 \mathrm{Nm} \Theta)$
Travel diagrams Gen. Cat. Safety		page 71

## Safety rope switches with reset for emergency stops

Contact type:
$\mathbf{L}$ = slow action

$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$$
	18 L
3D	20 L
$\begin{aligned} & 2 \mathrm{G} \\ & \mathrm{M} 2 \end{aligned}$	$20 \square$
2D	18 L
	20 L
Actuating force	
Travel diagrams Gen. Cat. Safety	



FL 1878-M2-EX4
FL 2078-M2-EX4
FL 2078-M2-EX7
FL 1878-M2-EX8
FL 2078-M2-EX8


$\Theta 1 \mathrm{NO}+1 \mathrm{~N}$
$\Theta 1 \mathrm{~N}$
$\Theta 1 \mathrm{~N}$
$\Theta 1 \mathrm{~N}$
$\Theta 1 \mathrm{~N}$


FL 1883-M2-EX4
FL 2083-M2-EX4
FL 2083-M2-EX7
FL 1883-M2-EX8 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$
FL 2083-M2-EX8 $\Theta$ 1NO+2NC
initial $147 \mathrm{~N} . .$. final $235 \mathrm{~N}(250 \mathrm{~N} \Theta)$
page 174 - group 2

$\Theta 1 \mathrm{NO}+1 \mathrm{NC}$ $1 N O+1 N C$
$1 N O+2 N C$
$1 N O+2 N C$
$1 N O+1 N C$
$1 N O+2 N C$
$N(250 N \Theta)$
up 2

## Accessories for rope installation

$3$								
VF AF-TR5	VF AF-TR8	VF AF-MR5	VF AF-ME78	VF AF-ME80	VF F05-100	VF AF-IF1GR11	VF AF-CA5	VF AF-CA10
Adjustable stay bolt	Stay bolt	End clamp	Safety spring for longitudinal heads	Safety spring for transversal heads	Rope coil $\varnothing 5$ mm length 100 m	Rope function indicator.	Stainless steel pulley	Angular pulley, stainless steel

## Application examples and max. rope length




## Main features

- ATEX approval
- Metal housing, one conduit entry
- Protection degree IP67
- Versions with gold-plated silver contacts


## ATEX markings:

Product code Quality
extension mark
Certificate type and notified body
-EX7 EC type examination certificate DEKRA EXAM Gmbh

## Technical data

## Housing

Metal housing, powder-coated
One threaded conduit entry:
Protection degree:

## General data

Ambient temperature:
Max. actuation frequency:
Mechanical endurance:
FM ••••-EX•
FM $\bullet \bullet$ C•EX $\bullet$, FM $\bullet \bullet 96-E X \bullet$
Mounting position:
Safety parameters $\mathrm{B}_{10 \mathrm{D}}$ (NC contacts):
FM ••••-EX•
FM $\bullet \bullet C \bullet-E X \bullet$
FM •••96-EX•
Mechanical interlock, not coded:
Tightening torques for installation:

M20×1.5
IP67 acc. to EN 60529 with cable gland presenting same or higher protection degree

## $20^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$

3600 operating cycles/hour
10 million operating cycles
500,000 operating cycles
any
20,000,000
1,000,000
2,500,000
type 1 acc. to EN ISO 14119
see page 211-222

## Cable cross section (flexible copper strands)

Contact blocks $20,21,22,28,29,30,33,34$ :
Contact blocks $5,6,7,8,9,10,11,12,13,14,15,16$, 17, 18, 37, 66, 67:

## In compliance with standards:

IEC 60947-5-1, EN 60947-5-1, EN 60947-1, EN 50047, IEC 60204-1, EN 60204-1, EN ISO 14119, EN ISO 12100, IEC 60529, EN 60529, UL 508, CSA 22.2 No.14, IEC 60079-0, EN 60079-0, IEC 60079-11, EN 60079-11.

## Compliance with the requirements of:

ATEX Directive 2014/34/EU and EMC Directive 2014/30/EU
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.

## Installation for safety applications:

Use only switches marked with the symbol $\Theta$ next to the product code. Always connect the safety circuit to the NC contacts (normally closed contacts: 11-12, 21-22 or 31-32) as required by EN ISO 14119, paragraph 5.4 for specific interlock applications and EN ISO $13849-\mathbf{2}$ tables D3 (well-tried components) and D. 8 (fault exclusions) for safety applications in general. Actuate the switch at least up to the positive opening travel shown in the travel diagrams on page 216. Actuate the switch at least with the positive opening force, reported in brackets below each article, next to the actuating force value.
§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see the instructions given on pages 211 to 222 and in the certificate.


## Quality marks of the product



UL approval: E131787<br>EAC approval: RU C-IT.АД35.В. 00454

## Features approved by UL

Utilization category Q300 (69 VA, 125-250 Vdc)

$$
\text { A } 600 \text { ( } 720 \mathrm{VA}, 120-600 \mathrm{Vac} \text { ) }
$$

Housing features type 1, 4X, 12, 13
For all contact blocks except 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductors, rigid or flexible, wire size 12, 14 AWG. Tightening torque for terminal screws of 7.1 lb in ( 0.8 Nm ).
For contact blocks 2 and 3 use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductors, rigid or flexible, wire size 14 AWG. Tightening torque for terminal screws of 12 lb in ( 1.4 Nm ).

In compliance with standard: UL 508, CSA 22.2 No. 14
Please contact our technical department for the list of approved products.

## Adjustable levers

For these switches the lever can be adjusted in $10^{\circ}$ steps over the entire $360^{\circ}$ range. The positive movement transmission is always guar-
 anteed thanks to the particular geometrical coupling between the lever and the revolving shaft as prescribed for safety applications by the German standard BG-GS-ET-15.

## Reversible levers

With these switches, the lever can be secured in either the normal or reverse position, whereby positive coupling is retained. In this way two different working planes of the lever are possible.


## Head with variable orientation

For all switches the head can be rotated in $90^{\circ}$ steps.


## Code structure

## Housing

FM metal, one conduit entry

Contact block	
$\mathbf{5}$	1 NO +1NC, snap action
$\mathbf{1 1}$	2 NC , snap action
$\mathbf{1 2}$	2NO, snap action
$\mathbf{2 0}$	1NO+2NC, slow action
$\mathbf{2 1}$	3NC, slow action
$\mathbf{2 2}$	2NO+1NC, slow action

## Actuators

01 short plunger
02 roller lever

ATEX approval
-EX7 Ex II 2G Ex ia IICT6 Gb
Ex $/ \mathrm{M} 2 \mathrm{Ex}$ ia 1 Mb


	With external rubber gasket			
2G 5 ¢ $\quad$ R	FM 508-M2-EX7 $\Theta$ 1NO+1NC	FM 512-M2-EX7 $\Theta$ 1NO+1NC	FM 513-M2-EX7 $\Theta$ 1NO+1NC	FM 515-M2R28-EX7 $\Theta$ 1NO+1NC
M2 20 $\mathbf{L}$	FM 2008-M2-EX7 $¢ 1 \mathrm{NO}+2 \mathrm{NC}$	FM 2012-M2-EX7 $¢ 1$ NO+2NC	FM 2013-M2-EX7 $¢ 1 \mathrm{NO}+2 \mathrm{NC}$	FM 2015-M2R28-EX7 $\Theta$ 1NO+2NC
Max. speed	$0.5 \mathrm{~m} / \mathrm{s}$	$0.5 \mathrm{~m} / \mathrm{s}$	$0.5 \mathrm{~m} / \mathrm{s}$ with cam at $30^{\circ}$	$0.5 \mathrm{~m} / \mathrm{s}$ with cam at $30^{\circ}$
Actuating force	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$			
Travel diagrams	page 216 - group 1			


	With external rubber gasket	With external rubber gasket	With external rubber gasket	Rope switch for signalling
2G 5 5 $\quad$ R	FM 520-M2-EX7 1NO+1NC	FM 521-M2-EX7 1NO+1NC	FM 525-M2-EX7 1NO+1NC	FM 576-M2-EX7 1NO+1NC
M2 20 $\mathbf{L}$	FM 2020-M2-EX7 1NO+2NC	FM 2021-M2-EX7 1NO+2NC	FM 2025-M2-EX7 1NO+2NC	FM 2076-M2-EX7 2NO+1NC
Max. speed	$1 \mathrm{~m} / \mathrm{s}$	$1 \mathrm{~m} / \mathrm{s}$	$1 \mathrm{~m} / \mathrm{s}$	$0.5 \mathrm{~m} / \mathrm{s}$
Actuating force	0.06 Nm	0.04 Nm	0.11 Nm	initial 20 N - final 40 N
Travel diagrams	page 216 - group 4	page 216 - group 4	page 216 - group 4	page 216-group 7

All values in the drawings are in mm

Position switches with swivellin	
2G 5 -	FM 538-M2-EX7 $\Theta$ ¢ 1 NO+1NC
M2 $20 \quad \square$	FM 2038-M2-EX7 $¢$ 1 1 O+2NC
Actuating force	$0,06 \mathrm{Nm}(0,25 \mathrm{Nm} \oplus)$
Travel digarams	page 216 - group 5

IMPORTANT
For safety applications: join only switches and actuators marked with symbol $\Theta$ next to the product code.
For more information about safety applications see details on page 211.

Separate actuators
IMPORTANT: These separate actuators can be used only with items of the FM series.


[^16]Safety switches with slotted hole lever


## Application examples



## Safety switches for hinges



## Application examples



## Notes




## Main features

- ATEX approval
- Metal housing
- Protection degree IP67
- Cable, halogen-free polyurethane

ATEX markings:

Product code Quality extension mark
-EX5 (€

Certificate type and notified body

## Technical data

## Housing

Metal housing, powder-coated
with cable in halogen-free polyurethane, 2 m , other lengths on request
Protection degree:
IP67 acc. to EN 60529

## General data

Ambient temperature: $-20^{\circ} \mathrm{C} \ldots+60^{\circ} \mathrm{C}$
Max. actuation frequency:
Mechanical endurance:
Mounting position:
Safety parameters $B_{100}$ (NC contacts):
Mechanical interlock, not coded:
Tightening torques for installation:
3600 operating cycles/hour
10 million operating cycles
any
20,000,000
type 1 acc. to EN ISO 14119
see page 211-222

## In compliance with standards:

IEC 60947-5-1, EN 60947-5-1, EN 60947-1, IEC 60204-1, EN 60204-1, EN ISO 14119, EN ISO 12100, IEC 60529, EN 60529, UL 508, CSA 22.2 No.14, IEC 60079-0, EN 60079-0, IEC 60079-31, EN 60079-31, IEC 60079-15, EN 60079-15.

## Compliance with the requirements of:

ATEX Directive 2014/34/EU and EMC Directive 2014/30/EU
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.

## Installation for safety applications:

Use only switches marked with the symbol $\Theta$ next to the product code. Always connect the safety circuit to the NC contacts (normally closed contacts: see "Internal wiring") as required by EN ISO 14119, paragraph 5.4 for specific interlock applications and EN ISO 13849-2 tables D3 (well-tried components) and D. 8 (failure exclusions) for safety applications in general. Actuate the switch at least up to the positive opening travel shown in the travel diagrams on page 217. Actuate the switch at least with the positive opening force, reported in brackets below each article, next to the actuating force value.
§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see the instructions given on pages 211 to 222 and in the certificate.


## Adjustable levers

For these switches the lever can be adjusted in $10^{\circ}$ steps over the entire $360^{\circ}$ range. The positive movement transmission is always guaranteed thanks to the particular geometrical coupling between the lever and the revolving shaft as prescribed for safety applications by the German standard BG-GS-ET-15.

## Reversible levers

With these switches, the lever can be secured in either the normal or reverse position, whereby positive coupling is retained. In this way two different working planes of the lever are possible.


## Head with variable orientation

Depending on the model, it is possible to rotate the head in $90^{\circ}$ or $180^{\circ}$ steps.


## Internal wiring



## Code structure

## FA 4501-2SHG-EX5




	Secured only by means of threaded head	Secured only by means of threaded head	With external rubber gasket	Roller, $\varnothing 12 \mathrm{~mm}$, stainless steel
3D 45 R	FA 4511-2SH-EX5 $\Theta$ 1NO+1NC	FA 4512-2SH-EX5 $\Theta$ 1NO+1NC	FA 4513-2SH-EX5 $\Theta$ 1NO+1NC	FA 4515-2SH-EX5 $\Theta$ 1NO+1NC
$3 G$ 46 $L$	FA 4611-2SH-EX5 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FA 4612-2SH-EX5 $\Theta 1$ NO+1NC	FA 4613-2SH-EX5 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FA 4615-2SH-EX5 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$
Max. speed	$0.1 \mathrm{~m} / \mathrm{s}$ with cam at $30^{\circ}$	$0.1 \mathrm{~m} / \mathrm{s}$ with cam at $30^{\circ}$	$0.5 \mathrm{~m} / \mathrm{s}$	$0.1 \mathrm{~m} / \mathrm{s}$ with cam at $30^{\circ}$
Actuating force	$10 \mathrm{~N}(25 \mathrm{~N} \Theta)$			
Travel diagrams	page 217 - group 1			





		With stainless steel roller on request	With stainless steel roller on request	With stainless steel roller on request	Glass fibre rod	
3D	$45 \quad \mathbf{R}$		FA 4555-2SH-EX5 $\Theta^{(1)} 1 \mathrm{NO}+1 \mathrm{NC}$	FA 4556-2SH-EX5 $\Theta$ 1NO+1NC	FA 4557-2SH-EX5 $\Theta$ 1NO+1NC	FA 4569-2SH-EX5 1NO+1NC
3G		FA 4655-2SH-EX5 $\Theta^{(1)} 1 \mathrm{NO}+1 \mathrm{NC}$	FA 4656-2SH-EX5 $\Theta$ 1NO+1NC	FA 4657-2SH-EX5 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FA 4669-2SH-EX5 1NO+1NC	
Max. speed		$1.5 \mathrm{~m} / \mathrm{s}$ with cam at $30^{\circ}$	$1.5 \mathrm{~m} / \mathrm{s}$ with cam at $30^{\circ}$	$1.5 \mathrm{~m} / \mathrm{s}$ with cam at $30^{\circ}$	$1.5 \mathrm{~m} / \mathrm{s}$	
Actuating force		$0.03 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.03 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	$0.03 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$	0.03 Nm	
Travel diagrams		page 217 - group 4				

${ }^{(1)}$ Positive opening only with actuator set to max.

## ATEX cable gland, technopolymer



## ATEX cable gland, metal



Technical data:
ATEX marking:

Body and ring material:
Ambient temperature: Protection degree: Tightening torque:

Ex \| \| 2G Exell
Ex II 1D ExtD A20 IP68
Nickel-plated brass
$-20 \ldots+95^{\circ} \mathrm{C}$
IP68 ( $\leq 10$ bar)
3... 4 Nm


Article	Description	ATEX certificate number	$\square_{M}$	N	0	P
VF PBM20C6M-2GD	M20x1.5 brass cable gland for multipolar cables $\varnothing 6$... 12 mm	KEMA 99ATEX6971 X	24	9	24	M20x1.5

## Notes




## Main features

- Operating temperature up to $+180^{\circ} \mathrm{C}$
- Metal housing, one conduit entry
- Protection degree IP67


## Quality marks:

C E EHI
EAC approval:
RU C-IT.A 35. . 00454

## Technical data

## Housing

Metal housing, powder-coated
One threaded conduit entry:
Protection degree:

## M20× 1.5

IP67 acc. to EN 60529 with cable gland presenting same or higher protection degree

## General data

Ambient temperature:

Max. actuation frequency:
Mechanical endurance:
Mounting position:
Safety parameter $\mathrm{B}_{100}$ :
Mechanical interlock, not coded:
Tightening torques for installation:
Fixing screws for the housing:
$15^{\circ} \mathrm{C} \ldots+180^{\circ} \mathrm{C}$ for FD 2011-M2T2 and FD 2016-M2T2 articles
$-25^{\circ} \mathrm{C} \ldots+180^{\circ} \mathrm{C}$ for all other articles
3600 operating cycles'hour
1 million operating cycles
any
2,000,000 for NC contacts
type 1 acc. to EN ISO 14119
see page 211-222
M5 with spring washer

Cable cross section (flexible copper strands)

## Contact block 20:

## In compliance with standards:

IEC 60947-5-1, EN 60947-5-1, EN 60947-1, EN 50041, IEC 60204-1, EN 60204-1,
EN ISO 14119, EN ISO 12100, IEC 60529, EN 60529, UL 508, CSA 22.2 No. 14.

## Compliance with the requirements of:

Low Voltage Directive 2014/35/EU, EMC Directive 2014/30/EU.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.

## Installation for safety applications:

Use only switches marked with the symbol $\Theta$ next to the product code. Always connect the safety circuit to the NC contacts (normally closed contacts: 11-12, 21-22 or 31-32) as required by EN ISO 14119, paragraph 5.4 for specific interlock applications and EN ISO $\mathbf{1 3 8 4 9 - 2}$ tables D3 (well-tried components) and D. 8 (fault exclusions) for safety applications in general. Actuate the switch at least up to the positive opening travel shown in the travel diagrams on page 214. Actuate the switch at least with the positive opening force, reported in brackets below each article, next to the actuating force value.
§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see the instructions given on pages 211 to 222.

Electrical data			Utilization category			
	Thermal current ( $\left.l_{\text {th }}\right)$ :	4 A	Alternating current: AC15 ( $50 \div 60 \mathrm{~Hz}$ )			
	Rated insulation voltage ( $\mathrm{U}_{\mathrm{i}}$ ):	250 Vac 300 Vdc	Ue (V)	24	120	250
	Rated impulse withstand voltage ( $\mathrm{U}_{\text {imp }}$ ):	4 kV	le (A)	4	4	4
	Conditional short circuit current:	1000 A acc. to EN 60947-5-1	Direct current: DC13			
	Protection against short circuits:	type gG fuse 4 A 250 V	Ue (V)	24	125	250
	Pollution degree:	$3$	le (A)	4	1.1	0.4
			Alternating current: AC15 (50 $\div 60 \mathrm{~Hz}$ )			
	Thermal current ( $l_{\text {th }}$ ):	4 A	Ue (V)	24	120	250
	Rated insulation voltage ( $\mathrm{U}_{\mathrm{i}}$ ):	250 Vac 300 Vdc	le (A)	4	4	4
	Protection against short circuits:	type gG fuse 4 A 250 V	Direct current: DC13			
	Pollution degree:	3	Ue (V) le (A)			

## Adjustable levers

For switches with swivelling lever, the lever can be adjusted in $10^{\circ}$ steps over the entire $360^{\circ}$ range. The positive movement transmission is always guaranteed thanks to the particular geometrical coupling between the lever and the revolving shaft as prescribed for safety applications by the German standard BG-GS-ET-15.

## Reversible levers

Negli interruttori a leva girevole è possibile fissare la leva dritta o rovescia mantenendo I'accoppiamento positivo. In questo modo si possono avere due diversi piani di lavoro della leva.


Head with variable orientation
For all switches the head can be rotated in $90^{\circ}$ steps.



Special separate actuators All values in the drawings are in mm

$\begin{gathered} \text { Stainless steel roller } \\ \emptyset 20 \mathrm{~mm} \end{gathered}$	Adjustable round rod $\varnothing 3 \times 125 \mathrm{~mm}$ Ø $3 \times 125 \mathrm{~mm}$	Adjustable square rod, $3 \times 3 \times 125 \mathrm{~mm}$	Stainless steel roller $\varnothing 20$ mm	Stainless steel roller $\varnothing 20$ mm	Adjustable actuator with 020 mm stainless steel rollers	Stainless steel roller $\varnothing 20$ mm
VF L31-R24T2 $\Theta$	VF L32-T2	VF L33-T2	VF L51-R24T2 $\Theta$	VF L52-R24T2 $\Theta$	VF L56-R24T2 $\Theta$	VF L57-R24T2 $\Theta$

## MPORTANT

For safety applications: join only switches and actuators marked with symbol $\Theta$ next to the product code.


## Main features

- Operating temperature up to $+120^{\circ} \mathrm{C}$
- Technopolymer housing
- High reliability contacts
- 4 terminal types available
- 15 actuators available
- Versions with positive opening $\Theta$
- Versions with gold-plated silver contacts


## Quality marks:

## C $\in$ :(0): EH [

UL approval:	E131787
EAC approval:	RU C-IT.АД35.В. 00454

## Technical data

## Housing

Housing made of glass fibre reinforced technopolymer, self-extinguishing and shockproof.
Protection degree:

```
IP00 (terminals)
IP40 (electrical contacts)
acc. to EN 60529
```


## General data

Ambient temperature:
Max. actuation frequency:
Mechanical endurance:
Safety parameter $\mathrm{B}_{10 \mathrm{D}}$ :
Tightening torques for installation:

$$
\begin{aligned}
& -25^{\circ} \mathrm{C} \ldots+120^{\circ} \mathrm{C} \\
& 3600 \text { operating cycles/hour } \\
& 500,000 \text { operating cycles } \\
& 1,000,000 \text { for } \mathrm{NC} \text { contacts } \\
& \text { see page } 184
\end{aligned}
$$

Cable cross section (flexible copper strands)
MK series: $\quad \mathrm{min} . \quad 1 \times 0.34 \mathrm{~mm}^{2} \quad(1 \times$ AWG 22)
$\max \quad 2 \times 1.5 \mathrm{~mm}^{2} \quad(2 \times$ AWG 16)

## In compliance with standards:

IEC 60947-5-1, EN 60947-5-1, IEC 60529, EN 60529, EN 60947-1, IEC 60947-1

## Compliance with the requirements of:

Low Voltage Directive 2014/35/EU, EMC Directive 2014/30/EU.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.

## Installation for safety applications:

Use only microswitches marked with the symbol $\Theta$ next to the product code. Always connect the safety circuit to the NC contacts (normally closed contacts) as required by EN ISO 14119, paragraph 5.4 for specific interlock applications and EN ISO 13849-2 tables D3 (well-tried components) and D. 8 (failure exclusions) for safety applications in general. Actuate the switch at least up to the positive opening travel (CAP) reported next to the article code. Actuate the switch at least with the positive opening force (FAP) reported next to the article code.
§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see the instructions given on pages 211 to 222.



Screw terminals $\mathbf{V}$ with plate


Faston terminals $\mathbf{H}$, vertical



Faston terminals G, left angle (on request)

Note: The vertical faston terminals H can be bent according to specific installation requirements.
We recommend to bend the faston with an angle not higher than $45^{\circ}$ and to carry out this operation no more than 5 times

## Circuit diagram



Mobile contact with single interruption and double contacts

With direct actuation and direct actuation at the back (F, D)


## Actuation forces and travels



## Code structure

Attention! The feasibility of a code number does not mean the effective availability of a product. Please contact our sales office.


				$\frac{0.8}{8}$						0.8   M $10 \times 0.75$	
MK V11D05-T7	$\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	$\begin{aligned} & \hline \text { PC } \\ & \text { OC } \\ & \text { CD } \\ & \text { CAP } \end{aligned}$		$\begin{aligned} & \text { FS } \\ & \text { FR } \\ & \text { FAP } \end{aligned}$	$\begin{aligned} & 4 \mathrm{~N} \\ & 3 \mathrm{~N} \\ & 20 \mathrm{~N} \end{aligned}$	MK V11D06-T7	$1 \mathrm{NO}+1 \mathrm{NC}$	$\begin{aligned} & \text { PC } \\ & \text { OC } \\ & \text { CD } \\ & \text { CAP } \end{aligned}$		$\begin{aligned} & \hline \text { FS } \\ & \text { FR } \\ & \text { FAP } \end{aligned}$	$\begin{aligned} & 4 \mathrm{~N} \\ & 3 \mathrm{~N} \\ & 20 \mathrm{~N} \end{aligned}$
Maximum and minimum speed see page 221 - type 1						Maximum and minimum speed see page 221 - type 1					



Mounting only through threaded fitting

MK V11D15-T7 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$
(20)




MK V11F59-R16T7 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$ PC $0,8 \mathrm{~mm}$ FS $1,7 \mathrm{~N}$    OC $4,5 \mathrm{~mm}$ FR $1,3 \mathrm{~N}$    CD $0,08 \mathrm{~mm}$ FAP $8,9 \mathrm{~N}$    CAP $4,9 \mathrm{~mm}$           
Maximum and minimum speed see page 221 - type 8

## Tightening torques



Tighten the nuts 1 with a torque of $\mathbf{2} \ldots \mathbf{3} \mathrm{Nm}$
Tighten the head screws 2 with a torque of $\mathbf{0 . 4} \ldots \mathbf{0 . 5} \mathrm{Nm}$.
Tighten the screws ${ }^{3} \mathrm{M} 4$ with a torque of $\mathbf{0 , 8} \ldots \mathbf{1 , 2} \mathrm{Nm}$, placing a flat washer and a spring washer.
Attention: Using a tightening torque higher than 1.2 Nm could damage the microswitch. Mount on smooth surfaces only.


Tighten the terminal screws 4 with a torque of $\mathbf{0 , 6} \ldots \mathbf{0 , 8} \mathrm{Nm}$.

Accessories Packs of $\mathbf{1 0}$ pcs.
Description
Article

VF AC83 | Hex threaded nut for |
| :--- |
| microswitches with actuators |
| D06, D08, D09 |

VF AC72


## Main features

- Adjustable operating point
- Bounce-free output signals
- Two static outputs, 1NO and 1NC
- Reduced actuating force
- Signal LEDs for power supply and switching
- Minimum differential travel

Quality marks:
C $\in$ EHI
EAC approval: RU C-IT.АД35.В. 00454

## Compliance with the requirements of:

Low Voltage Directive 2014/35/EU,
EMC Directive 2014/30/EU.

## Description

E1 is an electronic contact block, designed to replace the traditional mechanical contact block installed inside Pizzato Elettrica's position switches. The combination provided by the union of the mechanical body and sensor head of the position switches and this electronic contact block forms a mechatronics device that increases the application range of position switches.

## General data

Ambient temperature:
Max. actuation frequency: Mechanical endurance:
Adjustable operating distance: Differential travel:
Tightening torques for installation:
$-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$
3600 operating cycles/hour
20 million operating cycles
$0.2 \ldots 2 \mathrm{~mm}$ or $2^{\circ} \ldots 30^{\circ}$
$<0.1 \mathrm{~mm} 0<1^{\circ}$
see page 211-222

## Electrical data

Rated operating voltage (Ue):	$10 \ldots 30 \mathrm{Vdc}$
Rated operating current (le):	200 mA
Utilization category:	$\mathrm{DC} 13,24 \mathrm{~V} 0,2 \mathrm{~A}$
Rated insulation voltage (Ui):	30 V
Pollution degree:	3
Conditional short circuit current:	100 A
Voltage drop (Ud):	2 V
Minimum operating current (Im):	0 mA
Current in locked state (Ir):	0.05 mA
Maximum residual ripple:	$10 \%$
Current consumption w/o load (lo):	$<10 \mathrm{~mA}$
Short-circuit protection:	yes
Reverse-polarity protection:	yes
Output type:	PNP
LED, power supply:	yes
LED, switching:	yes
Protection fuse:	315 mA, fast

Cable cross section (flexible copper strands)
Contact block E1:
min. $1 \times 0.5 \mathrm{~mm}^{2} \quad(1 \times$ AWG 20) $\max .1 \times 2.5 \mathrm{~mm}^{2} \quad(1 \times$ AWG 14)

## In compliance with standards:

IEC 60947-5-1, EN 60947-5-1, IEC 60529, EN 60529.
© If not expressly indicated in this chapter, for correct installation and utilization of all articles see the instructions given on pages 211 to 222.

## Parallel connection of several units E1 (OR)

For connecting the switches in parallel (OR) no particular protective measures are required. We recommend the installation of a commercially available diode for use with inductive loads (relays).


## Wiring diagram

The wires are connected via a terminal strip where the function of the individual poles is marked by silk screen printing. Furthermore there are two signal LEDs, one for power supply and one for switching state.


## Main features

The E1 contact block consists of an optical detection system for the position of the mechanical actuator with the following features:

1) Possibility of adjusting the switching point by means of a screw, directly on the contact block. The regulation screw is located on the contact unit cover so that the switching point can be set with the switch installed in its final position with open lid and without having to remove the contact block.
2) Differential travel below 0.1 mm , guaranteed over the entire operating temperature range
3) Reduced actuating force.
4) Two static outputs, $1 \mathrm{NO}+1 \mathrm{NC}$, simultaneous, PNP, short circuit protected.
5) Bounce-free output signal.
6) Wide operating temperature range.
7) Signal LEDs for power supply and switching

These features allow to resolve e.g. following issues:

1) Problems due to contact bounces or very low voltages when connecting position switches to PLCs.
2) Detection of light objects that require a contact block with high sensibility and reduced actuating forces.
3) When it is necessary to detect very small objects that require low differential travels.
4) When it is required to adjust the operating point. The internal LED precisely shows the switching point directly at the switch when you turn the adjusting screw.
5) In cases where the perfectly simultaneous switching of the two outputs is required.
6) Detection of transparent objects or in any case where there are difficulties with normal sensors, taking into account that specialised sensors typically cost much more than this mechatronics device.


## Recommended installation

These switches are protected against electric interference of industrial environment. When used under extreme conditions, as for example installed close to high surge voltages (electric motors, welding machines, etc.), it is advisable to adopt the following precautions:

- Eliminate disturbances at the source;
- Filter the DC power supply with adequate capacitor;
- Separate the power cables from the switch cables;
- Limit the cable length to max. 200 m.

It is equally important to take into account the voltage drops along the supply lines;
Reconnect and shield outgoing signal cables or use a shielded twi-sted-pair cable with suitable cross sections.

## Series connection of several E1 units (AND)

When connecting the switches in series (AND), following conditions must be fulfilled:
The output current of the first switch is the sum of the load current and the maximum currents absorbed by the other switches. Considering then the connection of the $n$ switches, the nominal operating current " $l e$ " becomes:
$l e=(200-20 \times n) m A$
Provided that le: rated operating current $n$ : number of switches connected in series

Example: with 3 switches it is possible to switch up to 140 mA .
Each switch causes a voltage drop in the connected-through state. The load must be suitable to operate at a voltage of:
$U_{c}=U a-2 \times n$
Provided that Uc: rated operating voltage of the load
Ua: used supply voltage
$n$ : number of switches connected in series
Example: with 3 switches powered at 24 Vdc , the load must be able to work at 18 Vdc .

The maximum number of switches that can be connected in series depends on the supply voltage used. In any case, the number should be lower than:
no. $_{\max .} \leq \frac{V_{a}-10}{2}+1$

Provided that no. max: max. number of switches for series connection Va: supply voltage used

Example: at 24 Vdc it is possible to connect up to 7 switches. At 30 Vdc it is possible to connect up to 11 switches

We recommend the installation of a commercially available diode for use with inductive loads (relays).


## Special loads

The switch is protected against overload and short-circuit, hence, it is required to limit possible load inrush currents. Typical examples are capacitors that require high current pulses during their charging and incandescent lamps whose resistance in cold state can be the tenth of the resistance in hot state. For capacitive loads, whenever necessary, connect a limiting resistance in series, while for lamps, whenever necessary, use a special preheating resistance.

## Limits of use

- Not suitable for installations for safety applications.
- Suitable for FD, FP, FL, FR, FM, FX and FZ series position switches only.



## Main features

- Technopolymer housing
- Protection degree IP20 (terminals), IP40 (contacts)
- 14 contact blocks available
- Actuators with plastic or metal button
- Contact block with positive opening $\Theta$
- For internal use in PA, PX, PC series foot switches


## Quality marks:

## 

UL approval:
CCC approval:
EAC approval:

E131787
CCC approval:
2013010305600704
RU C-IT.AД35.B. 00454

## Installation for safety applications:

Use only switches marked with the symbol $\Theta$ next to the product code. Always connect the safety circuit to the NC contacts (normally closed contacts: 11-12, 21-22 or 31-32) as required by EN ISO 14119, paragraph $\mathbf{5 . 4}$ for specific interlock applications and EN ISO $\mathbf{1 3 8 4 9 - 2}$ table D3 (well-tried components) and D. 8 (fault exclusions) for safety applications in general. Actuate the switch at least up to the positive opening travel reported in the travel diagrams. Actuate the switch at least up to the positive opening force, reported in brackets below each article, aside the minimum force value.
©If not expressly indicated in this chapter, for correct installation and utilization of all articles see the instructions given on pages 211 to 222.

Electrical data		Utilization category			
Thermal current ( $\mathrm{I}_{\text {th }}$ ):	10 A	Alternating current: AC15 ( $50 \div 60 \mathrm{~Hz}$ )			
Rated insulation voltage ( $\mathrm{U}_{\mathrm{i}}$ ):	500 Vac 600 Vdc	Ue (V)	250	400	500
Rated impulse withstand voltage ( $\mathrm{U}_{\text {imp }}$ ) :	6 kV	le (A)	6	4	1
Conditional short circuit current: imp	1000 A acc. to EN 60947-5-1	Direct	ent:		
Protection against short circuits:	type aM fuse 10 A 500 V	Ue (V)	24	125	250
Pollution degree:	3	le (A)	6	1.1	0.4

Features approved by UL

Utilization categories	Q300 (69 VA, 125-250 Vdc)
	A600 (720 VA, 120-600 Vac)
Housing data:	opEN type
For all contact blocks use 60 or $75^{\circ} \mathrm{C}$ copper ( Cu ) conductors, rigid or flexible, wire size AWG 12-14. Terminal tightening torque of 7.1 lb in ( 0.8 Nm ).	
In compliance with sta	508, CSA 22.2 No. 14

Please contact our technical department for the list of approved products.

## Description

Contact block with captive screws, finger protection and self-lifting clamping screw plates. Provided with positive opening NC contacts for safety applications. Provided with twin bridge contacts, they are particularly suitable for high-reliability applications. Suitable for installation inside PA, PX and PC series foot switches.

Dimensional drawings All measures in the drawings are in mm

	Technopolymer button	Metal button	
Contact type:   Contact block			Travel diagrams
$5 \quad \mathbf{R}$	VF B501 $\Theta$ 1NO+1NC	VF B502 $\Theta$ 1NO+1NC	
6 L	VF B601 $\Theta$ 1NO+1NC	VF B602 $\Theta$ 1NO+1NC	
7 L0	VF B701 $\Theta$ 1NO+1NC	VF B702 $\Theta$ 1NO+1NC	
9 L	VF B901 $\Theta 2 N C$	VF B902 $\Theta$ 2NC	$0 \quad 2.9 \oplus^{+4.46}$
10 L	VF B1001 2NO	VF B1002 2NO	
11 R	VF B1101 $\Theta$ 2NC	VF B1102 $\Theta$ 2NC	
12 R	VF B1201 2NO	VF B1202 2NO	
13 LV	VF B1301 $\Theta$ 2NC	VF B1302 $\Theta$ 2NC	
14 LS	VF B1401 $\Theta$ 2NC	VF B1402 $\Theta$ 2NC	
15 LS	VF B1501 2NO	VF B1502 2NO	$\stackrel{0}{0}_{1.4}^{1.4}$
18 LA	VF B1801 $\Theta$ 1NO+1NC	VF B1802 $\Theta$ 1NO+1NC	
37 L	VF B3701 $\Theta$ 1NO+1NC	VF B3702 $\Theta$ 1NO+1NC	
66 L	VF B6601 $\Theta$ 1NC	VF B6602 $\Theta$ 1NC	$0{ }^{0} 1.4 \oplus^{-1.9}$
67 L	VF B6701 1NO	VF B6702 1NO	$\xrightarrow{01.4}$
Max. speed	0,5 m/s	0,5 m/s	
Actuating force	$8 \mathrm{~N}(20 \mathrm{~N} \Theta)$	$8 \mathrm{~N}(20 \mathrm{~N} \Theta)$	

## Legend

Closed contact $\mid \rightleftharpoons$ Open contact $\mid \Theta$ Positive opening travel acc. to IEC 60947-5-1 $\mid>$ Pushing the switch / Releasing the switch

## Code structure



FR 573-M2 signal switches with persistent contact


The switch is operated by traction of a rope connected to it and retains its state after actuation.
This means that the first actuation closes the contacts, the next actuation opens them and so on.

This solution has been specifically designed to be applicable in all those situations where a floating switch is usually used to control a stepping relay, such as, for example, a device for switching on and off lights in rooms or for the opening / closing of gates.

Thanks to the retained actuation state, the first traction on the rope will enable, for example, the switching on of an illumination system, which can then be switched off by a subsequent traction.

The use of the switch alone makes the combinations of stepping relays and associated wiring unnecessary, greatly simplifying installation.
For more information see the General Catalogue Lifts by Pizzato Elettrica.

## FT series switches with electrical reset



The FT series safety switches with reset retain their switching state when operated: their reset occurs electrically through the integrated solenoid. Thanks to this special feature, the switch can be remotely reset without having to go physically near it.
Available with 3 supply voltages of the solenoid ( $24 \mathrm{Vdc}, 48 \mathrm{Vdc}, 230 \mathrm{Vac}$ ) and with multiple actuators, the FT series switches are able to adapt to a wide variety of applications, particularly in the area of lifts, speed limiters and, more generally, in the world of security. Some models may also be manually reset.
Pizzato Elettrica has also introduced a new adjustment system integrated into the switch. It is designed specifically for speed limiter applications and allows a very fine and sensitive setting of the switch position along its vertical axis.
For more information see the General Catalogue Lifts 2017-2018 by Pizzato Elettrica.


Switch in rest position
Actuation of the switch. Opening of the contacts

Release of the switch. The contacts remain open


Reset of the switch via
electric impulse

Switches for switching cabinets - FR 5F1-M2, FR 10F1-M2
The FR 5F1-M2, FR 10F1-M2 switches are applied on electrical panel doors and are used when
 opening the door to turn on any signalling devices (e.g. three-phase flashing, etc.). Maintenance personnel of the panel can simulate the closing of the door by pressing the blue button. When maintenance is performed by simply closing the switching cabinet door, the switch functionality will be automatically reset.

§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see the instructions given on pages 211 to 222.

## Switches for switching cabinets - FR 37F1-M2



The present switch and the one described above have a similar operation principle.
Pressing the switch button simulates the closing of the door powering the auxiliary circuit again while still leaving the light on that will only be turned off when the door is closed.


[^17][^18]
## Description



Pizzato Elettrica offers a wide range of products suitable for places where chemical and corrosive agents are used and for aseptic places where particular attention must be paid to cleanliness and hygiene.
The technopolymer housings and external metal parts in stainless steel allow these devices to be used for a variety of applications, ranging from the food and pharmaceutical sectors to the chemical and marine sectors.

## Main features:

- Technopolymer housings
- External metallic parts exclusively in stainless steel
- Protection degree IP67 (FR, FX, FK, FW, FP series switches)
- Protection degree IP67 and IP69K (SR, ST, HX series sensors)


## Resistance against corrosion

Substance	Stainless steel Technopolymer	Substance	Stainless steel Technopolymer
Acetylene	$\square \square$	Whisky malt	$\square \square$
Vinegar	$\square \square$	Molasses	$\square \square$
Acetone	$\square \square$	Nickel chloride	$\square \square$
Acetic acid	- $\square$	Aluminium nitrate	$\square \square$
Boric acid	$\square \square$	Combustible oils	$\square \square$
Citric acid	$\square \square$	Tanning oil	$\square$
Hydrochloric acid 100\%	$\square \quad \square$	Linseed oil	$\square \square$
Chromic acid 5\%	$\square \square \square$	Hydraulic oil (synthetic)	$\square \square$
Hydrofluoric acid 100\%	$\square \square \square$	Mineral Oil	$\square \square$
Formic acid	$\square \square$	Motor Oil	$\square \square$
Phosphoric acid (<40\%)	$\square \square$	Transformer oil	$\square \square$
Lactic acid	$\square \square$	Paraffin	$\square \square$
Nitric acid (concentrated)	$\square \square$	Potassium chloride	$\square$
Oleic acid	$\square \square$	Potassium hydroxide (caustic potash)	$\square \square$
Sulphuric acid (<10\%)	$\square \square$	Potassium sulphate	$\square \square$
Sulphuric acid (10-75\%)	$\square \quad \square$	Propane (liquid)	$\square \square$
Sulphuric acid (75-100\%)	$\square$	Copper sulphate $>5 \%$	$\square \square$
Stearic acid	$\square \square$	Liquid soaps	$\square \square$
Tartaric acid	$\square \square$	Chocolate syrup	$\square \square$
White water	$\square \square$	Milk whey	$\square$
Sea water	$\square \square$	Sodium bicarbonate	$\square \square$
Distilled water	$\square$	Sodium bisulphate	$\square \square$
White spirit	$\square \square$	Sodium carbonate	$\square \square$
Ethyl alcohol	$\square \square$	Sodium chloride	$\square \square$
Methyl alcohol	$\square \square$	Sodium hydroxide (80\%)	$\square \square$
Liquid ammonia	$\square \square$	Sodium hypochlorite (100\%)	$\square \quad \square$
Ammonium acetate	$\square \square$	Sodium nitrate	$\square \square$
Ammonium carbonate	$\square \square$	Sodium sulphate	$\square \square$
Ammonium sulfate	$\square$	Sodium sulphide	$\square \square$
Leaded petrol	$\square \square$	Aluminium sulphate	$\square \square$
Unleaded petrol	$\square \square$	Ferrous sulphate	$\square \square$
Benzol	$\square \square$	Calcium hydroxide	$\square \square$
Beer	$\square \square$	Potassium hydroxide	$\square \square$
Butane	$\square \square$	Sodium hydroxide	$\square$
Butanol	$\square \square$	Tanning solutions	$\square \square$
Quicklime	$\square$	Photographic solutions	$\square$
Calcium chloride	$\square \square$	Fruit juice	$\square \square$
Calcium hydroxide	$\square \square$	Vegetable juice	$\square \square$
Chloroform	$\square \square$	Toluene	$\square \square$
Aluminium chloride	$\square \square$	Transparent (paint)	$\square$
Ferrous chloride	$\square$	Trichloroethylene	$\square \square$
Chrome plating	$\square \square$	Whisky and wine	$\square \square$
Diesel	$\square \square$	Zinc plate	$\square \square$
Ether	$\square \square$	Zinc chloride	$\square \square$
Formaldehyde 100\%	$\square \square$	Zinc sulphate	$\square$
Furfural	$\square \square$	Sulphur chloride	$\square$
Gelatine	$\square \square$	Sugar (liquid)	$\square \square$
Glycerine	$\square \square$	Sugar beet	$\square \square$
Glucose	$\square \square$		
Shellac (orange)	$\square \square$		
Hydrogen (gas)	$\square \square$		
lodine	$\square \square$		
Milk	$\square \square$		
Magnesium chloride	$\square \square$	Resistance against corrosion	
Magnesium hydroxide	$\square \square$	Resistance against corrosion	
Magnesium sulphate (Epsom salt)	$\square \square$		
Mayonnaise	$\square \square$	- No corrosion   - Possible corrosion   $\square$ Corrosion   - Data not available	


Contact type:
R $=$ snap action   $\mathbf{L}=$ slow action



Contact block				
5 R	FR 531-XM2V38 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FR 551-XM2V38 $\Theta$ 1NO+1NC	FR 554-XM2V38 $\Theta$ 1NO+1NC	FR 556-XM2V38 $\rightarrow 1 \mathrm{NO}+1 \mathrm{NC}$
6 L	FR 631-XM2V38 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FR 651-XM2V38 $\leftrightarrow 1 \mathrm{NO}+1 \mathrm{NC}$	FR 654-XM2V38 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$	FR 656-XM2V38 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$
9 L	FR 931-XM2V38 $\Theta 2 N C$	FR 951-XM2V38 $\Theta 2 N C$	FR 954-XM2V38 $\Theta 2 N C$	FR 956-XM2V38 $\Theta 2 N C$
20 L	FR 2031-XM2V38 $\Theta 1 \mathrm{NO}+2 \mathrm{NC}$	FR 2051-XM2V38 $¢$ 1NO+2NC	FR 2054-XM2V38 $\Theta$ 1NO+2NC	FR 2056-XM2V38 $\Theta$ 1NO+2NC
2 R	FR 231-XM2V38 2x(1NO-1NC)	FR 251-XM2V38 2x(1NO-1NC)	FR 254-XM2V38 2x(1NO-1NC)	FR 256-XM2V38 2x(1NO-1NC)
Max. speed	page 215 - type 1			
Actuating force	$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$			
Travel diagrams	page 216 - group 5			

All values in the drawings are in mm
Accessories See page 197


		With external rubber gasket	With external rubber gasket	
5 R	FX 515-XM2 $\quad \Theta$ 1NO+1NC	FX 520-XM2 1NO+1NC	FX 525-XM2 1NO+1NC	FX 530-XM2V38 $\Theta$ 1NO+1NC
6 L	FX 615-XM2 $\quad \Theta 1 \mathrm{NO}+1 \mathrm{NC}$			FX 630-XM2V38 $\Theta$ 1NO+1NC
9 L	FX 915-XM2 $\quad \Theta$ 2NC			FX 930-XM2V38 $\Theta 2 N C$
20 L	FX 2015-XM2 $\Theta$ 1NO+2NC	FX 2020-XM2 1NO+2NC	FX 2025-XM2 1NO+2NC	FX 2030-XM2V38 $\Theta$ 1NO+2NC
2 L	FX 215-XM2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$	FX 220-XM2 $2 \times(1 \mathrm{NO}-1 \mathrm{NC)}$	FX 225-XM2 2x(1NO-1NC)	FX 230-XM2V38 2x(1NO-1NC)
Max. speed	page 215 - type 2	$1 \mathrm{~m} / \mathrm{s}$	$1 \mathrm{~m} / \mathrm{s}$	page 215 - type 1
Actuating force	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	0.07 Nm	0.12 Nm	$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \Theta)$
Travel diagrams	page 216 - group 1	page 216 - group 4	page 216 - group 4	page 216 - group 5



All values in the drawings are in mm

[^19]

Contact block		With external rubber gasket	With external rubber gasket	
3 R	FK 315-XM1 1NO+1NC	FK 320-XM1 1NO-1NC	FK 325-XM1 1NO-1NC	FK 330-XM1V38 1NO+1NC
33 L	FK 3315-XM1 $\quad \rightarrow$ 1NO+1NC	FK 3320-XM1 1NO+1NC	FK 3325-XM1 1NO+1NC	FK 3330-XM1V38 $\Theta 1 \mathrm{NO}+1 \mathrm{NC}$
34 L	FK 3415-XM1 $\Theta$ 2NC	FK 3420-XM1 2NC	FK 3425-XM1 2NC	FK 3430-XM1V38 $\Theta$ 2NC
Max. speed	page 215 - type 2	$1 \mathrm{~m} / \mathrm{s}$	$1 \mathrm{~m} / \mathrm{s}$	page 215 - type 1
Actuating force	$8 \mathrm{~N}(25 \mathrm{~N} \Theta)$	0.05 Nm	0.1 Nm	$0.06 \mathrm{Nm}(0.25 \mathrm{Nm} \oplus)$
Travel diagrams	page 216 - group 1	page 216 - group 4	page 216 - group 4	page 216 - group 5



All values in the drawings are in mm



## Safety switches for hinges

Contact type:
$\square$ = slow action

Contact block

18	$\mathbf{L}$
9	$\mathbf{L}$
20	$\mathbf{L}$
33	$\mathbf{L}$
34	$\mathbf{L}$
Actuating force	
Travel diagrams	



FR 1896-XM2 $\Theta$ 1NO+1NC	
FR 996-XM2 $\Theta$ 2NC	
FR 2096-XM2 $\Theta$	$1 \mathrm{NO}+2 \mathrm{NC}$
	1
	1
$0,15 \mathrm{Nm}(0,4 \mathrm{Nm} \Theta)$	
page 218-group 9	


§ If not expressly indicated in this chapter, for correct installation and utilization of all articles see the instructions given on pages
211 to 222 .

Low level of coding acc. to EN ISO 14119.


M12 male connectors


These standard M12 male connectors are ready for the installation on the switches.
Their wires have the right length for the connection to the contact blocks and are provided with wire-end sleeves. On request they can be delivered already wired to the switch. The connectors are used where a very short machine down time is required (e.g. in big plants). The connector-provided switch can be replaced very quickly with an identical one with no chance of incorrect wiring.

Technical data:
Max. operating voltage:
Max. operating current:

Protection degree:
Ambient temperature:
Tightening torque:
Wire cross-section:

Contact type:

250 Vac / 300 Vdc (4/5-pole)
30 Vac / 36 Vdc (8/12-pole)
4 A (4/5-pole)
2 A (8-pole)
1.5 A (12-pole)

IP67 acc. to EN 60529
IP69K acc. to ISO 20653
$-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$
1 ... 1.5 Nm
$0.5 \mathrm{~mm}^{2}$ (20 AWG) for 4/5-pole $0.25 \mathrm{~mm}^{2}$ (23 AWG) for 8-pole $0.14 \mathrm{~mm}^{2}$ (26 AWG) for 12-pole gold-plated


## Pin assignment



## Code structure

Attention! The feasibility of a code number does not mean the effective availability of a product. Please contact our sales office.


ATTENTION: always disconnect the power supply before removing the connector. The connector is not suitable for separation of electrical loads. Note: the 12-pole connector is only available in metal with $\mathrm{M} 20 \times 1.5$ thread and 16 cm cables.


## Technical data:

- Polyurethane connector body
- Class 6 copper conductors acc. to IEC 60228 - mobile installation
- Gold-plated contacts (resistance $<5 \mathrm{~m} \Omega$ )
- Self-locking ring nut
- High flexibility cable with PVC sheath suitable to be used in drag chains, acc. to IEC 60332-3 and CEI 20-22II. With polyurethane sheath on request

Technical data:
Max. operating voltage:

Max. operating current: Protection degree:

Ambient temperature:
Wire cross-section:

Minimum bending radius:

250 Vac / 300 Vdc (4/5-pole)
30 Vac / 36 Vdc (8/12-pole)
4 A (4-5-pole), 2 A (8-pole), 1.5 A (12-pole)
IP67 acc. to EN 60529
IP69K acc. to ISO 20653
Protect the cables from direct high-pressure and high-temperature jets)
$-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ for fixed installation
$-15^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ for mobile installation
$0.34 \mathrm{~mm}^{2}$ (22 AWG) for 4-pole
$0.25 \mathrm{~mm}^{2}$ (23 AWG) for 5/8-pole
$0.14 \mathrm{~mm}^{2}$ (26 AWG) for 12-pole
> cable diameter $\times 15$

## Pin assignment

4 poles	5 poles	8 poles	12 poles
$\underbrace{0}_{3} \begin{array}{l} 1 \\ 0 \\ 0 \end{array})^{1} 2$	${ }_{4} \underbrace{1}_{5} \begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned} 0_{2}^{2}$		


Pin	Colour	Pin	Colour	Pin	Colour	Pin	Colour
1	Brown	1	Brown	1	White	1	Brown
2	White	2	White	2	Brown	2	Blue
3	Blue	3	Blue	3	Green	3	White
4	Black	4	Black	4	Yellow	4	Green
		5	Grey	5	Grey	5	Pink
				6	Pink	6	Yellow
				7	Blue	7	Black
					Red	8	Grey
					9	Red	
					10	Purple	
					11	Grey-Pink	
						Red-Blue	

## Code structure

Attention! The feasibility of a code number does not mean the effective availability of a product. Please contact our sales office.
VF CA4PD3M

Stock items
VF CA4PD3M
VF CA4PD5M
VF CA4PD0M
VF CA5PD3M
VF CA5PD5M
VF CA5PDOM
VF CA8PD5M
VF CA8PD0M
VF CA12PD5M
VF CA12PD0M

Attention! No stock items, minimum order quantity 100 pcs.

ATTENTION: always disconnect the power supply before removing the connector. The connector is not suitable for separation of electrical loads.

## Technical data:

- Polyurethane connector body
- Class 6 copper conductors acc. to IEC 60228 - mobile installation
- Gold-plated contacts (resistance $<5 \mathrm{~m} \Omega$ )
- Self-locking ring nut
- High flexibility cable with PVC sheath suitable to be used in drag chains, acc. to IEC 60332-3 and CEI 20-22II. With polyurethane sheath on request

Technical data:
Max. operating voltage:

Max. operating current: Protection degree:

Ambient temperature:
Wire cross-section:
Minimum bending radius:

250 Vac / 300 Vdc (5-pole)
30 Vac / 36 Vdc (8-pole)
4 A (5-pole), 2 A (8-pole)
IP67 acc. to EN 60529
IP69K acc. to ISO 20653
(Protect the cables from direct high-pressure and high-temperature jets)
$-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ for fixed installation
$-15^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ for mobile installation
0.25 mm 2 (23 AWG)
> cable diameter $\times 15$

$\varnothing$ d: 5 mm for 5-pole 6 mm for 8 -pole

## Pin assignment

5 poles		8 poles	
Pin	Colour	Pin	Colour
1	Brown	1	White
2	White	2	Brown
3	Blue	3	Green
4	Black	4	Yellow
5	Grey	5	Grey
		6	Pink
		7	Blue
		8	Red

## Code structure

## VF CF5PD3M



## Articles <br> VF CF5PD3M <br> VF CF8PD3M

Attention! No stock items, minimum order quantity 100 pcs.

ATTENTION: always disconnect the power supply before removing the connector. The connector is not suitable for separation of electrical loads.

## Field wireable M12 female connectors



## General data

Technopolymer connector body
Gold-plated contacts
Screw terminals for cable screw fittings
Max. operating voltages $250 \mathrm{Vac} / \mathrm{dc}$ (4 and 5-pole)
Maximum $30 \mathrm{Vac} / \mathrm{dc}$ (8-pole)
Maximum current 4 A (4 and 5-pole)
2 A (8-pole)
Protection degree IP67 acc. to EN 60529


Ambient temperature
$-25^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$
Wire cross-section
$0.25 \mathrm{~mm}^{2}$ (23 AWG) ... $0.5 \mathrm{~mm}^{2}$ (20 AWG)

| Article | Description | no. of poles |
| :---: | :--- | :--- | :--- |
| VF CBMP4DM04 | Field wireable M12 female connector, straight, for $\varnothing 4 \ldots \varnothing 6.5 \mathrm{~mm}$ multipolar cables | 4 |
| VF CBMP5DM04 | Field wireable M12 female connector, straight, for $\varnothing 4 \ldots \varnothing 6.5 \mathrm{~mm}$ multipolar cables | 5 |
| VF CBMP8DM04 | Field wireable M12 female connector, straight, for $\varnothing 4 \ldots \varnothing 7 \mathrm{~mm}$ multipolar cables | 8 |

Field wireable M12 male connectors


General data
Technopolymer connector body
Gold-plated contacts
Screw terminals for cable screw fittings
Max. operating voltages
$250 \mathrm{Vac} / \mathrm{dc}$ (5-pole)
$30 \mathrm{Vac} / \mathrm{dc}$ (8-pole)
Maximum current
4 A (5-pole)
2 A (8-pole)


Protection degree
IP67 acc. to EN 60529
Ambient temperature
$-25^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$
$0.25 \mathrm{~mm}^{2}$ (23 AWG) ... $0.5 \mathrm{~mm}^{2}$ (20 AWG)

| Article | Description | no. of poles |
| :---: | :--- | :--- | :--- |
| VF CCMP5DM04 | Field wireable M12 male connector, straight, for $\varnothing 4 \ldots \varnothing 6.5 \mathrm{~mm}$ multipolar cables | 5 |
| VF CCMP8DM04 | Field wireable M12 male connector, straight, for $\varnothing 4 \ldots \varnothing 7 \mathrm{~mm}$ multipolar cables | 8 |

ATTENTION: always disconnect the power supply before removing the connector. The connector is not suitable for separation of electrical loads.

## Accessories

## Series connection with Y-shaped M12 connectors

To facilitate and simplify the series wiring of the safety devices, a variety of accessories designed specifically for this purpose are available. With the help of the proven M12 round connector and the connection of standard elements, safety equipment of Category 4, SIL3 and PL e with up to 32 elements connected in series is possible. All of which is possible without the risk of connection errors and with a high IP67 protection degree. The safety circuits consist of a 24 Vdc power supply unit, a number of extensions to the installed devices, $Y$ connectors for branching out from the chain to each individual device and a terminating plug.
In addition to the power supply unit, a suitable safety module is used to assess the state of the safety outputs within the safety chain.

## Devices suitable for series connection

The series may consist both of devices that are identical to one another (homogeneous series) or that belong to different series (mixed series).
Only the following Pizzato Elettrica devices may be connected in series using the Y connectors:
ST series safety sensors with RFID technology: ST $\mathrm{D} \bullet 31 \bullet \mathrm{M} \bullet$, ST D•71•M•
NG series safety switches with solenoid and RFID technology: Any item with an M12 connector for series connection with a " $Y$ " connector or with option: K950, K951, K952.
NS: Any item with an M12 connector for series connection with a "Y" connector or with the option "integrated cable or connector", letter "Q". HX series safety hinge switches: HX BEE1-••M.

## Electrical connection of the chain

Pin	Colour	Connection	
1	Brown	A1	Supply input +24 Vdc
2	White	OS1	Safety output
3	Blue	A2	Supply input 0V
4	Black	OS2	Safety output
5	Grey	14	Solenoid activation input

Note: By activating/deactivating input 14 , all switches of the NG and NS series in the chain simultaneously block/open all guards. Activation and deactivation of input 14 has no effect on the ST sensors and HX hinges in the chain.


Attention! For proper operation of the devices connected in series via cables, $Y$ connectors or junction boxes, it is necessary to pay particular attention to the voltage drop that occurs in the circuit. Pay particular attention to the flowing currents and cross-section/length of the used cables to ensure that the supply voltage of the components at the end of the series connection remains within the specified limit values during effective operation.


## Technical data:

Polyurethane connector body
Class 6 copper conductors acc. to IEC 60228
Gold-plated contacts (resistance $<5 \mathrm{~m} \Omega$ )
Self-locking ring nut
High flexibility cable with PVC sheath suitable to be used in drag chains, acc. to IEC 60332-3 and CEI 20-22II.

## Technical data:

Max. operating voltage:
Max. operating current: Protection degree:

Ambient temperature:
Wire cross-section:
Minimum bending radius:

250 Vac / 300 Vdc (5-pole) $30 \mathrm{Vac} / 36 \mathrm{Vdc}$ (8-pole) 4 A (5-pole), 2 A (8-pole)
IP67 acc. to EN 60529
IP69K acc. to ISO 2653
(Protect the cables from direct high-pressure and high-temperature jets)
$-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ for fixed installation
$-15^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ for mobile installation
$0.5 \mathrm{~mm}^{2}$ (20 AWG) (5-pole)
$0.25 \mathrm{~mm}^{2}$ (23 AWG) (8-pole)
> cable diameter x 15

Code structure

## VF CA5PD3M-MD

No. of poles	
$\mathbf{5}$	5 poles
$\mathbf{8}$	8 poles

Cable sheath
P PVC

## Connector type

D straight

$\varnothing$ d: 6.4 mm for 5-pole
6 mm for 8-pole

## Pin assignment



11 Stock items
VF CA5PD3M-MD VF CA5PD5M-MD VF CA5PDOM-MD
VF CA8PD3M-MD
VF CA8PD5M-MD
ATTENTION: always disconnect the power supply before removing the connector. The connector is not suitable for separation of electrical loads.

## M12 connectors, $Y$-shaped, for series connections



## Technical data:

Polyurethane connector body
Class 6 copper conductors acc. to IEC 60228
Gold-plated contacts (resistance $<5 \mathrm{~m} \Omega$ )
Self-locking ring nut
High flexibility cable with PVC sheath suitable to be used in drag chains, acc. to IEC 60332-3 and CEI 20-22II.

## Technical data:

Max. operating voltage: Max. operating current: Protection degree:

Ambient temperature:

Wire cross-section:
Minimum bending radius:

## $30 \mathrm{Vac} / 36 \mathrm{Vdc}$

4 A (5-pole), 2 A (8-pole)
IP67 acc. to EN 60529
IP69K acc. to ISO 2653
(Protect the cables from direct high-pressure and high-temperature jets)
$-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ for fixed installation
$-15^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ for mobile installation
$0.5 \mathrm{~mm}^{2}$ (20 AWG)
$>$ cable diameter $\times 15$
Internal block diagram, Y-shaped connector
8-pole M12 female connector



Pin assignment


Article	Description
VF CY201P0	M12 connectors, Y-shaped, for series connections

## M12 terminating plugs for series connections



## Technical data:

Polyurethane connector body
Gold-plated contacts (resistance $<5 \mathrm{~m} \Omega$ )
Self-locking ring nut
Protection degree:
Max. operating voltage
IP67 acc. to EN 60529

Max. operating current:
$250 \mathrm{Vac} / 300 \mathrm{Vdc}$
4 A


Pin assignment
Internal block diagram of the terminating plug


Article
VF CY100P0

Description
M12 terminating plugs for series connections, 4-pole

ATTENTION: always disconnect the power supply before removing the connector. The connector is not suitable for separation of electrical loads

## Accessories

Junction box for series connection of up to 4 devices
Technical data:

Material:

Material of the screws:
Protection degree:
Conduit entries:

Ambient temperature:
Tightening torque of the cover screws: Connection system:
Cross-section of rigid/flexible wires w. wire-end sleeve:
Wire cross-section with pre-insulated wire-end sleeve:
Cable stripping length $(x)$ :

Self-extinguishing shock-proof polycarbonate with double insulation, UV-resistant and glass fibre reinforced, high shock resistance.
stainless steel
IP67 acc. to EN 60529, IP69K acc. to ISO 20653, with
cable gland of equal or higher protection degree

- $2 x$ M20-1/2 NPT knock-out upper and lower entries
- 2x M20-1/2 NPT - M25 knock-out side entries
- $2 \times$ M16 knock-out base entries
$-40^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$
1 ... 1.4 Nm
PUSH-IN spring type
$\min .1 \times 0.34 \mathrm{~mm}^{2}(1 \times$ AWG 24)
max. $1 \times 1.5 \mathrm{~mm}^{2}(1 \times$ AWG 16)
$\min .1 \times 0.34 \mathrm{~mm}^{2}(1 \times$ AWG 24)
max. $1 \times 0.75 \mathrm{~mm}^{2}(1 \times$ AWG 18)
$\min$.: 8 mm
max.: 12 mm


Article	Description
VF CY302P0	Junction box for series connection of up to 4 devices

## Pin assignment



## Example of series connection of 4 NG series switches

Terminal box	Connection		Terminal box	Connection	
1A	A1	Supply input +24 Vdc	1 C	A1	Supply input +24 Vdc
2A	A2	Supply input 0 V	2 C	OS1	Safety output
3A	OS1	Safety output	3 C	A2	Supply input 0 V
4A	OS2	Safety output	4 C	IS1	Safety input
5A		Auxiliary connection		O3	Signalling output, actuator in
6 A		Auxiliary connection	5 C	O4	Signalling output, actuator in
7A	OAUX1	Auxiliary output Oaux1			and locked
8A	OAUX2	Auxiliary output Oaux2	6C	OS2	Safety output
9A	OAUX3	Auxiliary output Oaux3	7 C	IS2	Safety input
10A	OAUX4	Auxiliary output Oaux4	8C	14	Solenoid activation input
11A	14	Solenoid activation input			
Terminal box	Connection				
1B	A1	Supply input +24 Vdc			
2B	A2	Supply input 0 V			
3B	IS1	Safety input			
4B	IS2	Safety input			
5B		Auxiliary connection			
6B		Auxiliary connection			
7B	OAUX1	Auxiliary output Oaux1			
8B	OAUX2	Auxiliary output Oaux2			
9B	OAUX3	Auxiliary output Oaux3			
10B	OAUX4	Auxiliary output Oaux4			
11B	14	Solenoid activation input			



## M8 female connectors with cable



Technical data:
Polyurethane connector body
Class 6 copper conductors acc. to IEC 60228
Gold-plated contacts (resistance $<5 \mathrm{~m} \Omega$ )
Self-locking ring nut
High flexibility cable with PVC sheath suitable to be used in drag chains, acc. to IEC 60332-3 and CEI 20-22II. With polyurethane sheath on request.

Max. operating voltage: Max. operating current: Protection degree:

Ambient temperature:
Wire cross-section:
Minimum bending radius:

## $60 \mathrm{Vac} / 75 \mathrm{Vdc}$

4 A
IP67 acc. to EN 60529
IP69K acc. to ISO 20653
(Protect the cables from direct high-pressure and high-temperature jets)
$-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ for fixed installation
$-15^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ for mobile installation
0.25 mm 2 (23 AWG)
> cable diameter $\times 15$

## Pin assignment

4 poles


Pin	Colour
1	Brown
2	White
3	Blue
4	Black

## Code structure

## VF CA4PD3K

No. of poles		Connection type	
4	4 poles		M8x1
			length (L)
Cable sheath		1	1 metre
P	PVC (standard)	2	2 metres
U	PUR	3	3 metres (standard)
		4	4 metres
Connector type		5	5 metres (standard)
	D straight	...	
		0	10 metres

Attention! No stock items, minimum order quantity 100 pcs.

Field wireable M23 female connectors


## General data:

- Nickel-plated metal connector body
- Gold-plated contacts
-12-pole or 19-pole versions

Technical data:
Max. operating voltage:
Max. operating voltage:
Max. operating current:
Protection degree:
Ambient temperature:
Tightening torque:
Contact type:
Pollution degree:
Switching cycles:

250 Vac (12-pole)
100 Vac (19-pole)
8 A
IP67 / IP69K
$-40^{\circ} \mathrm{C} \ldots+125^{\circ} \mathrm{C}$
1 ... 1.5 Nm
gold-plated (resistance $<3 \mathrm{~m} \Omega$ )
3
> 1000


## Pin configuration

12 poles

clockwise numbering counterclockwise numbering
19-pole

clockwise numbering

Article	Description
VF AC2205	Mounting key.   Necessary for opening   and wiring the   connector.

## Code structure Attention! The feasibility of a code number does not mean the effective availability of a product. Please contact our sales office,

## VF CBSM12TC07

Connection type
S M23x1
Body material
M metal
No. of poles
1212 poles
19 19-pole

Cable diameter
$07 \varnothing 7 \ldots \varnothing 12$ mm
Pin connection type
C crimp connection (stan-
dard) $0.34 \ldots 1 \mathrm{~mm}^{2}$
solder connection
$0.34 \ldots 1 \mathrm{~mm}^{2}$

## Connector type

T clockwise numbering (standard)
D counterclockwise numbering
(11) Stock items VF CBSM12TC07 VF CBSM19TC07 VF CBSM12TS07

Note: For crimp connections, use, e.g., Knipex pliers, article number 975263.

## General data:

- Polyurethane connector body
- Class 5 copper conductors acc. to VDE 0295 (12-pole)
- Class 2 copper conductors acc. to VDE 0295 (19-pole)
- Gold-plated contacts (resistance $<5 \mathrm{~m} \Omega$ )
- Self-locking ring nut
- Cable with PVC sheath acc. to IEC 60332-3, CEI 20-22 II e CEI 20-35/1-2 (flame retarding)


## Technical data:

Max. operating voltage:
Max. operating current: Protection degree:

250 Vac (12-pole)
100 Vac (19-pole)
4 A
IP67 acc. to EN 60529
IP69K acc. to ISO 20653
Protect the cables from direct high-pressure and high-temperature jets)
Ambient temperature:
$-5^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
Wire cross-section:
$0.5 \mathrm{~mm}^{2}$ (20 AWG) (12-pole)
$0.34 \mathrm{~mm}^{2}$ (22 AWG) (19-pole)
Minimum bending radius:
> cable diameter $\times 15$

## Pin assignment

12-pole
19-pole

$\varnothing$ d: 8.2 mm for 12 -pole 8.6 mm for 19 poles

Pin	Colour	Pin	Colour
1	White	1	White
2	Brown	2	Brown
3	Green	3	Green
4	Yellow	4	Yellow
5	Grey	5	Grey
6	Pink	6	Pink
7	Blue	7	Blue
8	Red	8	Red
9	Black	9	Black
10	Purple	10	Purple
11	Grey-Pink	11	Grey-Pink
12	Red-Blue	12	Red-Blue
		13	White-Green
		14	Brown-Green
		15	White-Yellow
		16	Yellow-Brown
		17	White-Grey
		18	Grey-Brown
		19	White-Pink

## VF CA12PD20S

No. of poles	
$\mathbf{1 2}$	12 -pole
$\mathbf{1 9}$	19 -pole

P PVC (standard)

Connection type
s M23×1

Cable length (L)
0 10 metres
2020 metres
Other lengths on request

## Articles

> VF CA12PD0S
> VF CA12PD20S VF CA19PD0S VF CA19PD20S

Attention! No stock items, minimum order quantity 50 pcs.

ATTENTION: always disconnect the power supply before removing the connector. The connector is not suitable for separation of electrical loads.


This particular design ensures high resistance to traction of the cable glands. All cable glands are also suitable for a wide range of cable diameters.
Suitable for circular cross-section cables only.

## Technical data:

Body and ring material:
Protection degree:

> Tightening torque:
technopolymer without halogen IP67 acc. to EN 60529
$3 \ldots 4 \mathrm{Nm}$ (PG 13.5/M20)
2 ... 2.5 Nm (PG 11/M16)


	Article	Description	A	OM	N	0	P
$\begin{aligned} & 0 \frac{0}{0} \\ & \frac{0}{2} \\ & \sum \frac{\pi}{4} \\ & \hline \end{aligned}$	VF PAM25C7N	Cable gland $\mathrm{M} 25 \times 1.5$ for a cable from $\varnothing 10$ to Ø 17 mm	)	30	10	28	M $25 \times 1.5$
	VF PAM20C6N	$\mathrm{M} 20 \times 1.5$ cable gland for one cable $\varnothing 6 \ldots 12 \mathrm{~mm}$		24	9	24	M20x1.5
	VF PAM20C5N	$\mathrm{M} 20 \times 1.5$ cable gland for one cable $\varnothing 5 \ldots 10 \mathrm{~mm}$		24	9	24	M20x1.5
	VF PAM20C3N	$\mathrm{M} 20 \times 1.5$ cable gland for one cable $\varnothing 3 \ldots 7 \mathrm{~mm}$	-	24	9	24	M20x1.5
	VF PAM16C5N	M16x1.5 cable gland for one cable $\varnothing 5 \ldots 10 \mathrm{~mm}$	$\bigcirc$	22	7.5	23	M16x1.5
	VF PAM16C4N	M16x1.5 cable gland for one cable $\varnothing 4 \ldots 8 \mathrm{~mm}$	0	22	7.5	23	M16x1.5
	VF PAM16C3N	M16x1.5 cable gland for one cable $\varnothing 3 \ldots 7 \mathrm{~mm}$	c	22	7.5	23	M16x1.5
	VF PAM20CBN	$\mathrm{M} 20 \times 1.5$ multi-hole cable gland for 2 cables $\varnothing 3 \ldots 5 \mathrm{~mm}$	8	24	9	23	M20x1.5
	VF PAM20CDN	$\mathrm{M} 20 \times 1.5$ multi-hole cable gland for 3 cables Ø $\varnothing \ldots 4 \mathrm{~mm}$	8	24	9	23	M20x1.5
	VF PAM20CEN	$\mathrm{M} 20 \times 1.5$ multi-hole cable gland for 3 cables Ø $\varnothing$.. 5 mm	8	24	9	23	M20x1.5
	VF PAM20CFN	$\mathrm{M} 20 \times 1.5$ multi-hole cable gland for 4 cables $\varnothing 1 \ldots 4 \mathrm{~mm}$	8	22	9	23	M20x1.5
	VF PAP13C6N	PG 13.5 cable gland for one cable from $\varnothing 6 \ldots 12 \mathrm{~mm}$		24	9	24	PG 13.5
	VF PAP13C5N	PG 13.5 cable gland for one cable from $\varnothing 5 \ldots 10 \mathrm{~mm}$		24	9	24	PG 13.5
	VF PAP13C3N	PG 13.5 cable gland for one cable from $\emptyset 3 \ldots 7 \mathrm{~mm}$		24	9	24	PG 13.5
	VF PAP11C5N	PG 11 cable gland for one cable from $\varnothing 5 \ldots 10 \mathrm{~mm}$		22	7.5	23	PG 11
	VF PAP11C4N	PG 11 cable gland for one cable from $\varnothing 4 \ldots 8 \mathrm{~mm}$		22	7.5	23	PG 11
	VF PAP11C3N	PG 11 cable gland for one cable from $\varnothing 3 \ldots 7 \mathrm{~mm}$	-	22	7.5	23	PG 11

## Thread adapters

## Packs of $\mathbf{1 0 0}$ pcs.



Protection caps
Packs of $\mathbf{1 0} \mathbf{~ p c s .}$


		Technical data: Body material: Tightening torque:	technopolymer $1.2 \ldots 2 \mathrm{Nm}$	$\frac{P}{\text { P }}$	$\frac{\mathrm{S}}{\mathrm{~B}_{1}^{\prime}}$	
	Article	Description		S	CH	P
	VF DFPM25	Plastic nut, threaded, M		6	32	M $25 \times 1.5$
-	VF DFPM20	Plastic nut, threaded, M2		6	27	M20x1.5
$\frac{\pi}{\square}$	VF DFPM16	Plastic nut, threaded, M		5	22	M16x1.5
	VF DFPP13	Plastic nut, threaded, PG		6	27	PG 13.5
$\stackrel{\text { T }}{\substack{\text { ¢ }}}$	VF DFMM20	M20x1.5 threaded nut in	ted brass	3	23	M20x1.5

Chock plugs
Packs of $\mathbf{1 0 0} \mathbf{p c s}$.


## Technical data:

Body material:
Protection degree:
Tightening torque:
technopolymer
IP54 acc. to EN 60529 $0.8 \ldots 1 \mathrm{Nm}$


Notes: Use a socket wrench for tightening.

Article	Description	A
VF PFM20C8N	M20x1.5 chock plug for cables from $\varnothing 8 \ldots \varnothing 12 \mathrm{~mm}$	7.5
VF PFM20C4N	M20x1.5 chock plug for cables from $\varnothing 4 \ldots \varnothing 8 \mathrm{~mm}$	3.5

Torx safety screws
Packs of $\mathbf{1 0}$ pcs.


Pan head screws with Torx fitting and pin, stainless steel.
Use a thread locker where required for applications acc. to. EN ISO 14119.

Article
VF VAM4X10BX-X
VF VAM4X15BX-X
VF VAM4X20BX-X
VF VAM4X25BX-X
VF VAM4X30BX-X
VF VAM5X10BX-X
VF VAM5X15BX-X
VF VAM5X20BX-X
VF VAM5X25BX-X
VF VAM5X35BX-X
VF VAM5X45BX-X

## Description

M4x10 screw, with Torx T20 fitting, AISI 304 M4x15 screw, with Torx T20 fitting, AISI 304 M4×20 screw, with Torx T20 fitting, AISI 304 M4×25 screw, with Torx T20 fitting, AISI 304 M4×30 screw, with Torx T20 fitting, AISI 304 M5x10 screw, with Torx T25 fitting, AISI 304 M $5 \times 15$ screw, with Torx T25 fitting, AISI 304 M5×20 screw, with TorxT25 fitting, AISI 304 M5×25 screw, with Torx T25 fitting, AISI 304 M5x35 screw, with Torx T25 fitting, AISI 304 M5×45 screw, with Torx T25 fitting, AISI 304

## Bits for Torx safety screws

	Bits for Torx safety screws with pin,   with $1 / 44^{\prime \prime}$ hexagonal connection.
Article	Description
VF VAIT1T20	Bits for M4 screws with TorxT20 fitting
VF VAIT1T25	Bits for M5 screws with TorxT25 fitting
VF VAIT1T30	Bits for M6 screws with TorxT30 fitting

One-Way safety screws
Packs of $\mathbf{1 0}$ pcs.


Pan head screws with OneWay fitting in stainless steel.
This screw type cannot be removed or tampered with using common tools. Ideal for fixing safety device actuators in accordance with EN ISO 14119.

Article	Description
VF VAM4X10BW-X	M4×10 screw, with OneWay fitting, AISI 304
VF VAM4X15BW-X	$M 4 \times 15$ screw, with OneWay fitting, AISI 304
VF VAM4X20BW-X	$M 4 \times 20$ screw, with OneWay fitting, AISI 304
VF VAM4X25BW-X	$M 4 \times 25$ screw, with OneWay fitting, AISI 304
VF VAM5X10BW-X	$M 5 \times 10$ screw, with OneWay fitting, AISI 304
VF VAM5X15BW-X	$M 5 \times 15$ screw, with OneWay fitting, AISI 304
VF VAM5X20BW-X	$M 5 \times 20$ screw, with OneWay fitting, AISI 304
VF VAM5X25BW-X	M5 525 screw, with OneWay fitting, AISI 304

## Fixing plates



Metal fixing plate, for fixing rope switches on the ceiling.
The plate is provided with bore holes for fasting switches of the FD, FL, FC, FP, FR, FM, FZ, FX, FK series. It is supplied without screws.

Article	Description
VF SFP2	Ceiling fixing plate

## Fixing plates



Fixing plate (complete with fastening screws) provided with long slots for adjusting the operating point.
Each plate is provided with two pairs of fixing holes, one for standard switches and one for switches with reset device. The actuator thus always has the same actuating point.

Article	Description
VF SFP1	Fixing plate (FR series)
VF SFP3	Fixing plate (FX series)

## LED signalling lights



## Technical data:

Protection degree:
Ambient temperature:
Operating voltage $U_{n}$ :

Tolerance on the
supply voltages:
Operating current:
Connection system:
Cross-section of rigid/flexible wires w. wire-end sleeve:
Wire cross-section with pre-insulated wire-end sleeve:
Cable stripping length $(x)$ :

Tightening torque.

These signalling lights with high luminosity LEDs are used for signalling that an electric contact has changed its state inside the switch. They can be installed only on switches of the FL, FX, FZ, FW, FG, NG or FS series by screwing them on one of the conduit entries not used for electric cables. They can be used for many different purposes: for example, in combination with a rope switch (e.g. FL 1878-M2) they can be used to signal (even from a distance) if the switch has been actuated.
In combination with safety switches with separate actuator (e.g. FL 693-M2), they can instead be used to signal whether or not the protection is closed correctly. In combination with solenoid safety switches (FS, FG or NG series), they can signal if the protection is locked or unlocked. If they are combined with any switch of the FL, FX, FW or FZ series they can be used to calibrate the actuator. The inner part can rotate in such a way that it can be wired and screwed on the switch without any risk of twisting the wires.

IP67 acc. to EN 60529 and IP69K acc. to ISO 20653
$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
$24 \mathrm{Vac} / \mathrm{dc}$
120 Vac
230 Vac
$\pm 15 \%$ of $U_{n}$
10 mA
PUSH-IN spring type
min. $1 \times 0.34 \mathrm{~mm}^{2}(1 \times$ AWG 24)
max. $1 \times 1.5 \mathrm{~mm}^{2}(1 \times$ AWG 16)
min. $1 \times 0.34 \mathrm{~mm}^{2}(1 \times$ AWG 24)
max. $1 \times 0.75 \mathrm{~mm}^{2}(1 \times$ AWG 18)
min.: 8 mm
max.: 12 mm
$1.2 \ldots 2 \mathrm{Nm}$


## Code structure

## Operating voltage

$124 \mathrm{Vac} / \mathrm{dc}$
3120 Vac
4230 Vac

## Body design

Total height 40 mm ,
A spherical lens, threading M20×1.5mm

## Type of light source

A
standard LED with continuous light

## Stock items

## VF SL1A3PA1 VF SL1A5PA1

## Installation of single switches with safety functions

- Use only switches with the symbol $\Theta$ (see figure on the side).
- Connect the safety circuit to the NC normally closed contacts (11-12, 21-22 or 31-32).
- The NO normally open contacts (13-14, 23-24, 33-34) should be used only for signalling; these contacts are not to be connected with the safety circuit. However, if two or more switches are used on the same guard, a connection can be established between the NO contacts and the safety circuit.
In this case at least one of the two switches must have positive opening and a normally closed contact NC (11-12,
21-22 or 31-32) must be connected to the safety circuit.
- Actuate the switch at least up to the positive opening travel shown in the travel diagrams with symbol $\Theta$
- The actuation system must be able to exert a force that is greater than the positive opening force, as specified in brackets below each article, next to the minimum force value.
- The device must be affixed in compliance with EN ISO 14119.

Whenever the machine guard is opened and during the whole opening travel, the switch must be pressed directly (fig. 1) or through a rigid connection (fig. 2).
Only in this way the positive opening of the normally closed NC contacts (11-12, 21-22, 31-32) is guaranteed.


In safety applications with only one switch for each guard, the switches must never be activated by a release (fig. 3 and 4) or through a non rigid connection (i.e. by a spring).



Fig. 4

## Mechanical stop

Acc. to EN ISO 14119 paragraph 5.2 letter h) "the position sensors must not be used as mechanical stop".


The actuator must not strike directly against the magnetic sensor.

## Actuation modes

Recommended application

## Switches for heavy duty applications

Maximum and minimum actuation speed - FD-FL-FP-FC series

## Roller lever - Type 1



Roller lever - Type 3

$\mathbf{R}$ = snap action
Tightening torques FD-FL-FP-FC-FG-FS-NG series

Cover screws 1	0.8 ... 1.2 Nm
Head screws 2	$0.8 \ldots 1.2 \mathrm{Nm}$
Lever screw 3	$0.8 \ldots 1.2 \mathrm{Nm}$
Protection caps 4 (conduit entry M20/PG13.5) (conduit entry M16/PG11)	$\begin{gathered} 1.2 \ldots 1.6 \mathrm{Nm} \\ 1 \ldots 1.4 \mathrm{Nm} \end{gathered}$
Contact block screws 5	$0.6 \ldots 0.8 \mathrm{Nm}$
M5 fixing screws, body FD, FL, FP, FC, FG, FS,	NG
(with washer for FS series) 6	$2 \ldots 3 \mathrm{Nm}$
M5 fixing screws, body NS	
(with washer) $7 \quad 3 \mathrm{Nm}$	

Cover screws 1
.. 1.2 Nm
$0.8 \ldots 1.2 \mathrm{Nm}$
$1.2 \ldots 1.6 \mathrm{Nm}$ 1 ... 1.4 Nm $0.6 \ldots 0.8 \mathrm{Nm}$
M5 fixing screws, body FD, FL, FP, FC, FG, FS, NG
(with washer for FS series) 6
(with washer)
3 Nm


FD-FL-FC-FP
$2 \ldots 3$ Nm


FS

Roller plunger - Type 2

$\varphi$	Vmax   $(\mathbf{m} / \mathbf{s})$	Vmin   $(\mathbf{m m} / \mathbf{s})$   $\mathbf{L}$	Vmin   $(\mathbf{m m} / \mathbf{s})$
$\mathbf{R}$			



Plunger - Type 4

$\mathbf{V m a x}$		
$(\mathbf{m} / \mathbf{s})$	Vmin   $(\mathbf{m m / s})$   $\mathbf{L})$	Vmin   $(\mathbf{m m} / \mathbf{s})$   $\mathbf{R}$
0,5	1	0,01




NS

FD-FL-FP-FC series switches for heavy duty applications


Legend
Closed contact $\mid \rightleftharpoons$ Open contact $\mid \Theta$ Positive opening travel acc. to EN 60947-5-1 $\mid \downarrow$ Switch pressed / 4 Switch released

## Switches for normal duty applications

## Maximum and minimum actuation speed - FR-FM-FX-FZ-FK series

## Roller lever - Type 1

$\varphi$	Vmax   $(\mathrm{m} / \mathrm{s})$	Vmin   $(\mathrm{mm} / \mathrm{s})$   $\mathbf{L}$	Vmin   $(\mathrm{mm} / \mathrm{s})$   $\mathbf{R}$
$15^{\circ}$	2,5	9	
$30^{\circ}$	1,5	8	
$45^{\circ}$	1	7	0,07
$60^{\circ}$	0,75	7	



Roller lever - Type 3

$\varphi$	Vmax   $(\mathrm{m} / \mathrm{s})$	Vmin   $(\mathrm{mm} / \mathrm{s})$   $\boxed{\mathbf{L}}$	Vmin   $(\mathrm{mm} / \mathrm{s})$   $\mathbf{R}$
$15^{\circ}$	1	5	0,05
$30^{\circ}$	0,5	2,5	0,025
$45^{\circ}$	0,3	1,5	0,015

Contact type:
$\mathbf{R}$ = snap action

$\mathbf{R}$	= snap action
$\mathbf{L}$	$=$ slow action



Cover screws 1
Head screws 2
Lever screw 3
Protection caps 4
Contact block screws 5
M4 fixing screws, body
(with washer for FR-FK series) 6
M5 fixing screws, body
(with washer for FW series) 7
Actuator screws VF KEY ••8
$0.7 \ldots 0.9 \mathrm{Nm}$
$0.5 \ldots 0.7 \mathrm{Nm}$
$0.7 \ldots 0.9 \mathrm{Nm}$
$1.2 \ldots 1.6 \mathrm{Nm}$
$0.6 \ldots 0.8 \mathrm{Nm}$
$2 \ldots 2.5 \mathrm{Nm}$
$2 \ldots 2.5 \mathrm{Nm}$
1.2 ... 1.6 Nm


FR-FX-FK-FM-FZ

## Roller plunger - Type 5

$\varphi$	$\begin{aligned} & V \max \\ & (\mathrm{~m} / \mathrm{s}) \end{aligned}$	$\underset{(\mathrm{mm} / \mathrm{s})}{\mathrm{Vmin}}$ $\mathrm{L}$	Vmin ( $\mathrm{mm} / \mathrm{s}$ ) R
$15^{\circ}$	0,3	4	0,04
$30^{\circ}$	0,2	2	0,02



Tightening torques - FM and FZ series
Roller plunger - Type 2

$\varphi$	Vmax   $(\mathbf{m} / \mathbf{s})$	Vmin   $(\mathbf{m m} / \mathbf{s})$   $\mathbf{L}$	Vmin   $(\mathbf{m m} / \mathbf{s})$   $\mathbf{R}$
$15^{\circ}$	1	4	0,04
$30^{\circ}$	0,5	2	0,02
$45^{\circ}$	0,3	1	0,01



Plunger - Type 4

Vmax   $(\mathbf{m} / \mathbf{s})$	Vmin   $(\mathbf{m m} / \mathbf{s})$   $\mathbf{L}$	Vmin   $(\mathbf{m m} / \mathbf{s})$   $\mathbf{R}$
0,5	1	0,01



Cover screws 19
Head screws 2
Lever screw 3
Protection caps 4
Contact block screws 5
M4 fixing screws, body 6
$0.5 \ldots 0.7 \mathrm{Nm}$
$0.5 \ldots 0.7 \mathrm{Nm}$
$0.8 \ldots 1.2 \mathrm{Nm}$
$1.2 \ldots 1.6 \mathrm{Nm}$
$0.6 \ldots 0.8 \mathrm{Nm}$
$2 \ldots 3 \mathrm{Nm}$


FR-FM-FX-FZ-FK series switches for normal duty applications


Legend

## FR-FM-FX-FZ-FK series switches with W3 reset for normal duty applications

## Travel diagrams



Legend
Cegend contact $\mid \longleftarrow$ Open contact $\mid \Theta$ Positive opening travel acc. to EN 60947-5-1 | Switch pressed/ $\downarrow$ Switch released $\mid \mathrm{R}$ reset engagement travel

## FA series pre-wired switches

## Travel diagrams



Legend
Closed contact $\|$ Open contact $\mid ~ \Theta$ Positive opening travel acc. to EN 60947-5-1 \| Switch pressed / $\downarrow$ Switch released

FR-FM-FX-FZ-FK-FW series switches for safety applications

Travel diagrams


## NA-NB-NF series modular pre-wired switches

## Maximum and minimum actuation speed

## Roller lever - Type 1

$\varphi$	Vmax   $(\mathbf{m} / \mathbf{s})$	Vmin   $(\mathbf{m m} / \mathbf{s})$   $\mathbf{L}$	Vmin   $(\mathbf{m m} / \mathbf{s})$
$15^{\circ}$	2,5	9	
$30^{\circ}$	1,5	8	0,07
$45^{\circ}$	1	7	
$60^{\circ}$	0,75	7	



## Roller plunger - Type 2

$\varphi$	$\mathbf{V m a x}$   $(\mathbf{m} / \mathbf{s})$	$\mathbf{V m i n}$   $(\mathbf{m m} / \mathbf{s})$   $\mathbf{\mathbf { L }}$	$\mathbf{V m i n}$   $(\mathbf{m m} / \mathbf{s})$   $\mathbf{R}$
$15^{\circ}$	1	4	0,04
$30^{\circ}$	0,5	2	0,02
$45^{\circ}$	0,3	1	0,01



Vmax   $(\mathbf{m} / \mathbf{s})$	Vmin   $(\mathbf{m m} / \mathbf{s})$   $\mathrm{m} / \mathrm{L}$	Vmin   $(\mathbf{m m} / \mathbf{s})$
0,5	1	0,01



Roller plunger - Type 5


Contact type:

$\mathbf{R}$	$=$ snap action
$\mathbf{L}$	$=$ slow action

Screw tightening torques


For NA and NB series:
Head screws
$0.5 \ldots 0.7 \mathrm{Nm}$
Lever screws
Connector screw 3
M4 fixing screws, body

## For NF series:

Head screws 1	$\mathbf{0 . 3 \ldots \mathbf { 0 . 4 ~ N m }}$
Lever screws 2	$\mathbf{0 . 8} \ldots \mathbf{1 . 2 ~ N m}$
Connector screw ${ }^{3}$	$\mathbf{0 . 2 \ldots 0 . 3 ~ N m}$
M4 fixing screws, body 4	$\mathbf{2 \ldots 3 ~ N m}$

Lever screws
Connector screw 3
M4 fixing screws, body
$0.8 \ldots 1.2 \mathrm{Nm}$
$0.3 \ldots 0.6 \mathrm{Nm}$
2 ... 3 Nm

2 ... 3 Nm

NA-NB-NF series modular pre-wired switches
Travel diagrams


Legend
Closed contact $\mid \longleftarrow$ Open contact $\mid \Theta$ Positive opening travel acc. to EN 60947-5-1 $\mid$ Switch pressed $/$ Switch released

## MK series microswitches

## Maximum and minimum actuation speed

## Plunger - Type 1

Vmax   $(\mathbf{m} / \mathbf{s})$	Vmin   $(\mathbf{m m} / \mathbf{s})$   0,5
0,05	



## Lever with direct action (D) - Type 3

Vmax   $(\mathbf{m} / \mathbf{s})$	Vmin   $(\mathbf{m m} / \mathbf{s})$
$0,03 \times \mathrm{L}$	$0,0166 \times \mathrm{L}$



Roller lever with direct action (D) - Type 6

## Roller plunger - Type 2



Lever with inverted action (R) - Type 4
Lever with direct action, rear (F) - Type 5

Vmax   $(\mathbf{m} / \mathbf{s})$	Vmin   $(\mathbf{m m} / \mathbf{s})$
$0,015 \times L$	$0,0083 \times L$



Roller lever with direct action, rear (F) - Type 8


Tightening torques


Tighten the nuts 1 with a torque of $\mathbf{2} \ldots \mathbf{3} \mathrm{Nm}$. Tighten the head screws 2 with a torque of $0.3 \ldots 0.4 \mathrm{Nm}$.
Tighten the M4 screws 3 with a torque of $0.8 \ldots 1.2 \mathrm{Nm}$, insert washer.
Attention: A tightening torque higher than 1.2 Nm can cause the breaking of the microswitch.


Tighten the terminal screws ${ }^{4}$ with a torque of $\mathbf{0 . 6} \ldots \mathbf{0 . 8} \mathrm{Nm}$.

## General requirements

The device is designed to be installed on industrial machineries.
The installation must be performed only by qualified staff aware of the regulations in force in the country of installation.
The device must be used exactly as supplied, properly fixed to the machine and wired.
It is not allowed to disassemble the product and use only parts of the same, the device is designed to be used in its assembly as supplied. It is prohibited to modify the device, even slightly e.g.: replace parts of it, drill it, lubricate it, clean it with gasoline or gas oil or any aggressive chemical agents.
The protection degree of the device refers to the electrical contacts only. Carefully evaluate all the polluting agents present in the application before installing the device, since the IP protection degree refers exclusively to agents such as dust and water according to EN 60529. Thus the device may not be suitable for installation in environments with dust in high quantity, condensation, humidity, steam, corrosive and chemical agents, flammable or explosive gas, flammable or explosive dust or other polluting agents.
Some devices are provided with a housing with openings for connecting the electrical cables. To guarantee an adequate protection degree of the device, the opening that the wiring passes through must be protected against the penetration of harmful materials by means of an appropriate seal. Proper wiring therefore requires the use of cable glands, connectors or other devices with IP protection degree that is equal to or greater than that of the device.
Store the products in their original packaging, in a dry place with temperature between $-40^{\circ} \mathrm{C}$ and $+70^{\circ} \mathrm{C}$
Failure to comply with these requirements or incorrect use during operation can lead to the damage of the device and the loss of the function performed by the device itself. This will result in termination of the warranty on the item and will release the manufacturer from any liability.

## Using the devices

- Before use, check if the national rules provide for further requirements in addition to those given here.
- Before installation, make sure the device is not damaged in any part.
- All devices are designed for actuation by moving parts of industrial machines.
- Do not use the device as mechanical stop of the actuator.
- Do not apply excessive force to the device once it has reached the end of its actuation travel.
- Do not exceed the maximum actuation travel.
- Avoid contact of the device with corrosive fluids.
- Do not stress the device with bending and torsion.
- Do not disassemble or try to repair the device, in case of defect or fault replace the entire device.
- In case the device is deformed or damaged it must be entirely replaced. Correct operation cannot be guaranteed when the device is deformed or damaged.
- Always attach the following instructions to the manual of the machine in which the device is installed.
If specific operating instructions exist for a device (supplied or downloadable from www.pizzato.com), they must always be included with the machine manual and be available for the entire service life of the machine.
- These operating instructions must be kept available for consultation at any time and for the whole period of use of the device.


## Wiring and installation

- Installation must be carried out by qualified staff only.
- Use of the device is limited to function as a control switch.
- Observe minimum distances between devices (if provided).
- Comply with the tightening torques indicated in this catalogue.
- Keep the electrical load below the value specified by the respective utilization category.
- Disconnect the power before to work on the contacts, also during the wiring. - Do not paint or varnish the devices.
- Install the product on flat and clean surfaces only.
- Do not bend or deform the device during installation.
- Never use the device as support for other machine components (cable ducts, tubes, etc.)
- For installation on the machine, use the intended bore holes in the housing. The device must be fixed with screws of adequate length and resistance to the expected stress. At least two screws must be used to fix the housing to the machine.
- After and during installation, do not pull the electrical cables connected to the device. If excessive tension is applied to the cables (that is not supported by an appropriate cable gland), the contact block may be damaged.
- During wiring comply with the following requirements:
- For terminals (if present), comply with the minimum and maximum crosssections of the conductors.
- Tighten the electrical terminals with the torque indicated in this catalogue (if present).
- Do not introduce polluting agents into the device as: talc, lubricants for cable sliding, powder separating agents for multipolar cables, small strands of copper and other pollutants that could affect the proper functioning of the
device.
- Before closing the device cover (if present) verify the correct positioning of the gaskets.
- Verify that the electrical cables, wire-end sleeves, cable numbering systems and any other parts do not obstruct the cover from closing correctly or if pressed between them do not damage or compress the internal contact block.
For devices with integrated cable, the free end of the cable must be properly connected inside a protected housing. The electrical cable must be properly protected from cuts, impacts, abrasion, etc.
- After installation and before commissioning of the machine, verify:
- the correct operation of the device and all its parts;
- the correct wiring and tightening of all screws;
- the actuating travel of the actuator must be shorter than the maximum travel allowed by the device.
- After installation, periodically check for correct device operation.


## Do not use in following environments:

- Environments where dust and dirt can cover the device and by sedimentation stop its correct working.
- Environment where sudden temperature changes cause condensation.
- Environments where coatings of ice may form on the device.
- Environments where the application causes knocks or vibrations that could damage the device.
Environment with presence of explosive or flammable gas or dust.


## Limits of use

- Use the devices following the instructions, complying with their operation limits and the standards in force.
- The devices have specific application limits (min. and max. ambient temperature, mechanical endurance, protection degree, utilisation category, etc.) These limits are met by the different devices only if considered individually and not if combined with each other. For further information contact our technical department.
- The utilization implies knowledge of and compliance with following standards: EN 60204-1, EN 60947-5-1, ISO 12100, EN ISO 14119.
- Please contact our technical department for information and assistance (phone +39.0424.470.930 / fax +39.0424.470.955 / e-mail tech@pizzato. com) in the following cases:
- Cases not mentioned in the present utilization requirements.
- In nuclear power stations, trains, airplanes, cars, incinerators, medical devices or any application where the safety of two or more persons depend on the correct operation of the device.


## Additional requirements for safety applications

Provided that all previous requirements for the devices are fulfilled, for installations with operator protection function additional requirements must be observed:

- The utilization implies knowledge of and compliance with following standards: IEC 60204-1, IEC 60947-5-1, ISO 12100, EN ISO 14119, EN 62061, EN ISO 13849-1, EN ISO 13850.
- The protection fuse (or equivalent device) must be always connected in series with the NC contacts of the safety circuit.
- Periodically verify the correct working of the safety devices; the periodicity of this verification is settled by the machine manufacturer based on the machine danger degree and it does not have to be less than one a year.
After installation and before commissioning of the machine, verify:
- the correct operation of the device and all its parts;
- the correct wiring and tightening of all screws;
- the actuating travel of the actuator must be shorter than the maximum travel allowed by the device;
- the actuating travel of the actuator must be greater than the positive opening travel;
- the actuation system must be able to exert a force that is greater than the positive opening force.
- Devices with a safety function have a limited service life. Although still functioning, after 20 years from the date of manufacture the device must be replaced completely. The production date can be derived from the production batch on the item. Example: A10 FD7-411. The batch's first letter refers to the month of manufacture ( $\mathrm{A}=$ January, $\mathrm{B}=$ February, etc.). The second and third letters refer to the year $(10=2010,11=2011$, etc.).


## Features

The contact blocks developed by Pizzato Elettrica are the result of 30 years of development experience and millions of sold switches. The range of contact blocks presented in this chapter is one of the most extensive in the world in the sector of position switches.
This chapter introduces to some features of Pizzato Elettrica contact blocks, in order to give the final user a better understanding of the technologies behind that element simply named "contact".
We underline that contact blocks are not available for sale (to the public) separately from switches, both because some of them are mechanically connected to the switch and because some technical features may change in accordance with the switch and its function. The following data is only intended to serve as an aid for the initial selection of the contact block. It is not to be used for determining the characteristics of the switch that uses this contact block. For example, the use of a contact block with positive opening with a switch with flexible actuator results in the combination of the two devices not having positive opening.
In this chapter, the properties of the E1 electronic contact block are explained in detail. It is used with position switches with multiple monitoring tasks that would require extensive effort to realize with electronic sensors. There is no other electronic sensor on the market that can match this contact unit with respect to precision and repeatability, adjustment of the switching point, operating temperature and price.


## Description

1 Captive screws
2 Finger protection
3
Clamping screw plates for cables with various diameters

4 Self-lifting clamping screw plates
Material of the contacts: Silver alloy or gold-plated silver alloyContact technology and reliability: Single bridge, double bridgeOperating voltages and currents for reliable switching

## Captive screws

Switches with this characteristic have clamping screws that remain in place even if completely unscrewed. This feature reduces wiring time, since the operator does not have to be careful not to unscrew the screws completely and does not risk to lose them by mistake, which is very useful in case of wirings in uncomfortable position

## Finger protection

All terminals in the contact blocks have protection degree IP20 in accordance with EN 60529, they are therefore protected against access to dangerous parts with a diameter greater than 12 mm .

3 Clamping screw plates for cables with various diameters


The clamping screw plates are provided with a particular "roofing tile" structure and are loosely coupled to the clamping screw. The design causes connection wires of different diameter to be pulled towards the screw when tightening the screw (see figure), preventing the wires from escaping towards the outside.

## 5 Contact material: gold-plated silver alloy

The contact blocks can be supplied with silver electric contacts with a special gold-plated surface, with total gold thickness of one micron. This type of treatment can be useful in environments which are aggressive against silver (very humid or sulphurous atmospheres) and in case of very small electric loads, usually with low voltages and supply currents. This thickness of the gold coating permits several million switching cycles.


## 4 Self-lifting clamping screw plates

Switches with this feature are equipped with clamping screw plates that move up or down by turning the clamping screw; wiring is easier and faster as a result.

## 6 Contact technology and reliability

Very rarely, an electric contact does not function. A failed switching operation is a typical consequence of an exceptionally high contact resistance caused by dust, a thin layer of oxidation or other impurities that could penetrate the switch during wiring. Thus, the repeated occurrence of faulty switching depends not only on the sensor type, but also on its environmental conditions and the load that the switch drives. These effects are more evident with low electrical loads if the electric voltage cannot penetrate the thin layers of oxide or small grains of dust.
This type of malfunction can normally be tolerated with hand-operated devices, because repeating the operation is enough to restore the function. This is not the case with position switches, as severe machine damage could result if the end position is not ascertained.
In the following table we refer to two typical contact structures (type A and B) normally used in the industry and the ones which have been used by Pizzato Elettrica for several years in most switches: movable contacts with double interruption and twin bridge (type C)
As you can see from the table below, the last structure (type C) has the same contact resistance ( $\mathbf{R}$ ) as the simple mobile contact (type A), but with a much lower probability of failure ( $\mathbf{f e}$ ).
With a failure probability of $\mathbf{x}$ for a single switching operation, the failure probability for type $A$ is $\mathbf{f e}=\mathbf{x}$, for type $B \mathbf{f e} \cong \mathbf{2} \cdot \mathbf{x}$, whereas for type $C$ it is $\mathbf{f e} \mathbf{4} \cdot \mathbf{x}^{2}$


This means that if the probability of a switching failure is $x$ in a given situation, e.g., $1 \times 10-4$, ( 1 switching failure in 10,000 ), the result is as follows:

- for type A one failed commutation every 10,000.
- for type B one failed commutation every 5,000.
- for type C one failed commutation every 25,000,000.



## 7 Minimum operating voltages and currents for reliable switching

The reliability of an electric contact depends on several factors, whose influence varies depending on the type of load. For high power loads is necessary for the contact to be able to dissipate the heat generated during switching. For low power loads, instead, it is important that it oxides and other impurities do not obstruct the passing of the electric signal. As a result, the material chosen for the electric contacts is a compromise among different and sometimes contrasting needs. In position switches contacts are usually made of a silver that has proved to be suitable for the switching of loads in the range of approximately 1 kW to 0.1 W . However, at lower loads, the effects of the oxide, which silver naturally develops upon contact with air, may occur; additionally to be taken into account are possible contaminations or impurities in the contact switching chamber (for example the talc powder in the cable sheaths that an installer could accidentally insert in the switch may have a similar effect).

It is impossible to define a fix threshold above which the "missing switching phenomenon" does not appear, because there are a lot of mechanical end electric parameters that influence this value. For example, in laboratory environment a good twin bridge electric contact is able to switch loads in the $\mu \mathrm{W}$ range for dozens of millions of handling operations, without losing signals. However, this does not mean that the same contact will have the same performance when the switch operates in environments with sudden changes of temperature (condensation) or where few switching occur (oxidation).

In order to avoid this kind of problem, gold plated contacts are used for very low loads profiting from the non-oxidability of this material. The gold-plating layer should be thick enough to be mechanically resistant to switching as well as electrically resistant to possible sparks that may vaporize it. For this reason Pizzato Elettrica uses micron thickness gold plating suitable for millions of working cycles. Thinner gold plating layers have often a purely aesthetic function and are only suitable to protect the product against oxidation during long time storage.

The minimum current and voltage values recommended by Pizzato Elettrica are shown in the diagram below, that is divided into two areas defined by a steady power limit. These values identify voltage and current combinations with high commutation reliability in most industrial fields. The lower voltage and current limits shown in the diagram are typical minimum values for industrial applications. They may also be reduced in non typical conditions. It is recommended, however, to always evaluate that the signal power to be switched is at least one magnitude order higher than the noise produced in the electric circuit, in particular when circuit cables are long and pass through areas with high electromagnetic fields and especially for powers lower than 10 mW .

$\mathbf{1 0 0} \mathbf{~ m W}$ Suggested limit for general applications with snap action contact blocks with silver alloy contacts.
$\mathbf{2 0 0} \mathbf{~ m W}$ Recommended limit for general applications with slow action contact blocks with silver alloy contacts.

Classification of the contact block acc. to the EN 60947-5-1


## Electrically separated contacts

The "+" symbol between two designs (e.g., $\mathrm{X}+\mathrm{X}, \mathrm{Za}+\mathrm{Za}, \mathrm{X}+\mathrm{X}+\mathrm{Y}$, etc.) represents the combination of simple, electrically separated contact blocks.
The electrically separated contacts allow different voltages to be applied between the contacts and loads to be connected to different polarities (figure 1).

## Requirements and restrictions for Za contacts

Electrical loads must be connected to the same phase or polarity. The contacts are not electrically separated. As a result, different voltages may not be applied to the NC and NO contacts (figures 2 and 3).
According to EN 60947-5-1 section K.7.1.4.6.1., the following restrictions apply for positive opening contacts of design Za when used for safety applications:
"If the control switch has changeover contact element of design C or Za , only one contact element may be used (closure or interruption). For changeover contact elements of design Zb , both contacts may be used..."

## Contact design Za


figure 2: correct

figure 3: incorrect

9 Contact blocks with different operating principle: slow action and snap action

## Contact blocks with slow action: component where the speed

 of the contact movement (V1) depends on the speed of the switch actuation (V). The contact carrier moves at a rate proportional to the actuation speed.The slow action contact block is suitable for applications having low to medium currents and quick actuation movements. It has no differential travel.

$$
\mathrm{V}=\mathrm{V} 1
$$



Contact block with snap action: component where the speed of the contact movement (V1) doesn't depend on the speed of the switch actuation (V). Upon reaching a predetermined point in the actuation travel, the contact carrier triggers and switches the contacts.
The snap action contact block is suitable for applications having high currents and/or slow actuation movements. This kind of contact block has a differential travel.

## $\mathrm{V} \neq \mathrm{V} 1$



## 10 Contact blocks: diagrams of the force on the contacts

The following diagrams show the relationship between of the force exerted on the contacts (F) and the actuation travel to the end position.




## Contact block with slow action



Contact block with snap action and constant pressure: 5, 11, 12.
The pressure on the contacts remains constant as the switching point is approached


Contact block with snap action: 2, 3, 17
The pressure on the contacts decreases as the switching point is approached

Contact blocks of the FD-FP-FL-FC-FR-FM-FX-FZ-FK-FW-FS series

	act block	Contact diagram	Linear travel diagram	Contact design	Operation type	Positive opening	Contact type	Captive screws	Terminals with finger protection	Gold-plated contacts
2	2x(1NO-1NC)		$2 x \stackrel{0}{\underbrace{0.3}_{0.7}}$	Za+Za	snap action	no	Double interruption	no	no	Not available
3	1NO-1NC		$\stackrel{0}{\underbrace{1.3}_{0.8}}$	Za	snap action	no	Double interruption	no	no	Not available
5	$1 \mathrm{NO}+1 \mathrm{NC}$	$\vdash_{14}^{13}{\underset{-1}{1}}_{21}^{-1}$		Zb	snap action	yes	Double interruption, twin bridge	yes	yes	G / G1
6	$1 \mathrm{NO}+1 \mathrm{NC}$			Zb	slow action	yes	Double interruption, twin bridge	yes	yes	G / G1
7	1NO+1NC	$\stackrel{11}{11}_{4_{12}}^{-1}-f_{24}^{23}$		Zb	slow action	yes	Double interruption, twin bridge	yes	yes	G / G1
8	1NC	$\stackrel{11}{4_{12}^{2}-4_{22}^{21}}$		Y	slow action	yes	Double interruption, twin bridge	yes	yes	G / G1
9	2NC	${\underset{12}{11}}_{4}^{4}-7_{22}^{21}$	$\stackrel{2.9}{\sim}$	Y+Y	slow action	yes	Double interruption, twin bridge	yes	yes	G / G1
10	2NO			X+X	slow action	no	Double interruption, twin bridge	yes	yes	G / G1
11	2NC	$\stackrel{11}{11} \stackrel{7}{12}_{21}^{21}$	$4 \underbrace{0}_{0.6}$	Y+Y	snap action	yes	Double interruption, twin bridge	yes	yes	G / G1
12	2NO	$5_{14}^{1,3} f_{24}^{23}$		X+X	snap action	no	Double interruption, twin bridge	yes	yes	G / G1
13	2NC	${\underset{12}{11}}_{4}^{-21}$		Y+Y	slow action	yes	Double interruption, twin bridge	yes	yes	G / G1
14	2NC			Y+Y	slow action	yes	Double interruption, twin bridge	yes	yes	G / G1
15	2NO	$\vdash_{14}^{13} f_{24}^{23}$		X+X	slow action	no	Double interruption, twin bridge	yes	yes	G / G1
16	2NC	${\underset{12}{11}-f_{24}^{23}}_{1}^{23}$	$\overbrace{48^{\circ} \Theta 28^{\circ}}$	Y+Y	slow action	yes	Double interruption, twin bridge	yes	yes	G / G1
18	$1 \mathrm{NO}+1 \mathrm{NC}$	$\overbrace{12}^{11}-f_{24}^{23}$		Zb	slow action	yes	Double interruption, twin bridge	yes	yes	G / G1
20	1NO+2NC			$Y+Y+X$	slow action	yes	Double interruption, twin bridge	yes	yes	G
21	3NC	$\begin{array}{ccc} 11 \\ 4 & 21 & 31 \\ 12 & 22 & -4 \\ 32 \end{array}$		$Y+Y+Y$	slow action	yes	Double interruption, twin bridge	yes	yes	G
22	$2 \mathrm{NO}+1 \mathrm{NC}$	$\begin{array}{cccc} 11 \\ 4 & 23 & t_{1}^{13} & 7^{33} \\ 12 & 24 & 34 \end{array}$		Y $+\mathrm{X}+\mathrm{X}$	slow action	yes	Double interruption, twin bridge	yes	yes	G
28	1NO+2NC	$\begin{array}{ccc} 11 & 21 & 33 \\ 4_{12} & -7 & 22 \\ -1 & -1 \\ 34 \end{array}$		Y $+\mathrm{Y}+\mathrm{X}$	slow action	yes	Double interruption, twin bridge	yes	yes	G
29	3NC	$\begin{array}{ccc} 11 & 21 & 31 \\ 4 & 4 & -4 \\ 12 & 22 & 32 \end{array}$		$Y+Y+Y$	slow action	yes	Double interruption, twin bridge	yes	yes	G
30	3NC	$\begin{array}{cccc} 111 & 23 & 33 \\ -1 & y_{1}^{\prime} & 7^{\prime \prime} \\ 12 & 24 & 34 \end{array}$		$Y+Y+Y$	slow action	yes	Double interruption, twin bridge	yes	yes	G
33	1NO+1NC	$\vdash_{14}^{13}{\underset{21}{4}}_{21}^{4}$		Zb	slow action	yes	Double interruption, twin bridge	yes	yes	G
34	2NC	${\underset{12}{11}}_{4}^{4}-7_{22}^{21}$	$\overbrace{0}^{0} \underbrace{1.5 \oplus^{3}}$	Y+Y	slow action	yes	Double interruption, twin bridge	yes	yes	G
37	1NO+1NC			Zb	slow action	yes	Double interruption, twin bridge	yes	yes	G / G1
66	1NC	$\int_{12}^{11}$	$0{ }^{0} 1.4 \quad \oplus^{-2.9}{ }^{1}$	Y	slow action	yes	Double interruption, twin bridge	yes	yes	G / G1
67	1NO	$\left.\right\|_{14} ^{13}$	$0 \quad 1.4$	X	slow action	no	Double interruption, twin bridge	yes	yes	G / G1
E1	1NO-1NC	$-6$		PNP	electronic	no	electronic	no	no	/

Legend: G= gold plated $1 \mu \mathrm{~m} / \mathrm{G} 1=$ gold-plated $2.5 \mu \mathrm{~m}$

## Contact blocks - FG series

Contact block		Contact diagram	Linear travel diagram	Contact design	Operation type	Positive opening	Contact type	Captive screws	Terminals with finger protection	Gold-plated contacts
60•	Contact block with 4 poles and multiple contact designs. See page 93, General Catalogue Safety 2017-2018.				slow action	yes	Double interruption, twin bridge and double contact point	yes	yes	G

## Contact blocks－NA－NB－NF series

Contact block		Contact diagram	Linear travel diagram	Contact design	Operation type	Positive opening	Contact type	Captive screws	Terminals with finger protection	Gold－plated contacts
B11	1NO＋1NC	$⺊^{\prime}---4$	$4 \underbrace{0}_{0.9} \begin{aligned} & 1.5 \\ & \hline \end{aligned}$	Zb	snap action	yes	Double interruption	1	1	G
B02	2NC	$7--7$	$4 \underbrace{0.5 \Theta^{1.5} 5}_{0.9}$	Y＋Y	snap action	yes	Double interruption	1	1	G
B12	1NO＋2NC	F－F－		$X+Y+Y$	snap action	yes	Double interruption	1	1	G
B22	2NO＋2NC			$X+X+Y+Y$	snap action	yes	Double interruption	1	1	G
G11	1NO＋1NC	1－－－	$0$	Zb	slow action	yes	Double interruption	1	1	G
G02	2NC	7－－7	$\overbrace{1.4}^{0 . \oplus_{1}^{2.9}}$	Y＋Y	slow action	yes	Double interruption	1	1	G
G12	$1 \mathrm{NO}+2 \mathrm{NC}$	F－ $7-\chi^{\prime}$		$X+Y+Y$	slow action	yes	Double interruption	1	1	G
G22	2NO＋2NC	F－7－－ド－－		$X+X+Y+Y$	slow action	yes	Double interruption	1	1	G
H11	1NO＋1NC	F－－7	$\begin{aligned} & 0 \\ & \hline \\ & \hline \end{aligned}$	Zb	slow action	yes	Double interruption	1	1	G
H12	1NO＋2NC	$y_{1}^{\prime-y^{\prime}-\lambda^{\prime}}$		$X+Y+Y$	slow action	yes	Double interruption	1	1	G
H22	2NO＋2NC	F－年－－－		$X+X+Y+Y$	slow action	yes	Double interruption	1	1	G
L11	1NO＋1NC	$5_{1}^{\prime}--7$	$\begin{array}{llll} 0 & 1.4 & \Theta_{2.9} & 5 \\ \hline 1.8 & \end{array}$	Zb	slow action	yes	Double interruption	1	1	G
L12	1NO＋2NC	$y-y^{\prime}-y^{\prime}$		$X+Y+Y$	slow action	yes	Double interruption	1	1	G
L22	$2 \mathrm{NO}+2 \mathrm{NC}$	$y-y^{\prime}-y^{\prime}-y^{\prime}$		$X+X+Y+Y$	slow action	yes	Double interruption	1	1	G
BA1	$\begin{aligned} & \text { 1NO+1NC } \\ & \text { change-over } \end{aligned}$	17	$\stackrel{0}{0}$	C	snap action	yes	Double interruption	1	1	G

Contact blocks－HP series

Con	t block	Contact diagram	Linear travel diagram	Contact design	Operation type	Positive opening	Contact type	Captive screws	Terminals with finger protection	Gold－plated contacts
50C	1NO＋1NC	F－－		Zb	snap action	yes	Double interruption	1	1	G
50D	2NC	$7-7$	$\overbrace{1.5^{\circ}}^{4^{\circ} \ominus^{\circ} 8^{\circ}}$	Y＋Y	snap action	yes	Double interruption	1	1	G
50F	$1 \mathrm{NO}+2 \mathrm{NC}$	$\xi-F^{\prime}-\lambda^{\prime}$		$X+Y+Y$	snap action	yes	Double interruption	1	1	G
50M	2NO＋2NC	F－7－－－－－		$X+X+Y+Y$	snap action	yes	Double interruption	1	1	G
52C	1NO＋1NC	－＇－－		Zb	slow action	yes	Double interruption	1	1	G
52D	2NC	$7-7$	${\stackrel{30}{\circ} \stackrel{\oplus}{7^{\circ}} \quad 180^{\circ}}^{\square}$	Y＋Y	slow action	yes	Double interruption	1	1	G
52F	$1 \mathrm{NO}+2 \mathrm{NC}$	F－F－大		$X+Y+Y$	slow action	yes	Double interruption	1	1	G
52M	2NO＋2NC	F－7－－ト－－		$X+X+Y+Y$	slow action	yes	Double interruption	1	1	G
53C	1NO＋1NC	1－－	$0_{1^{\circ}}^{0}{\stackrel{30}{\circ} \quad 7^{\circ} \quad 180^{\circ}}^{\circ}$	Zb	slow action	yes	Double interruption	1	1	G
53F	1NO＋2NC	$7-F^{\prime}-t^{\prime}$		$X+Y+Y$	slow action	yes	Double interruption	1	1	G
53M	2NO＋2NC	$y^{\prime}-y^{-5-y^{\prime}-y^{\prime}}$		$X+X+Y+Y$	slow action	yes	Double interruption	1	1	G

## Wiring diagram for assembled connectors

For FD - FL - FM - FZ - FC series with metal housing


Contact block 28 Contact block 29 Contact block 30


M12 connector,
8-pole



M12 connector, 5-pole


For FS series with technopolymer housing

Contact block 18$1 \mathrm{NO}+1 \mathrm{NC}$		Contact block 20$2 \mathrm{NC}+1 \mathrm{NO}$		$\begin{gathered} \text { Contact block } 21 \\ \text { 3NC } \end{gathered}$		Contact block 28$2 \mathrm{NC}+1 \mathrm{NO}$		$\begin{gathered} \text { Contact block } 29 \\ \text { 3NC } \end{gathered}$		$\begin{gathered} \text { Contact block } 30 \\ \text { 3NC } \end{gathered}$	
M12 connector, 8-pole		M12 connector, 8 -pole		M12 connector, 8-pole							
Contacts   A1-A2	Pin no.   1-2	Contacts   A1-A2	Pin no.   1-2	Contacts   A1-A2	Pin no. 1-2						
NC	3-4		3-4		3-4	NC- -	3-4	NC - $\triangle$	3-4	NC- -	3-4
NO $=\triangle$	5-6	NC $-\triangle$	5-6		5-6	NC ¢f	5-6	NC $-\triangle$	5-6	NC ¢fa	5-6
		$\mathrm{NO}=\triangle$	7-8	NC $-\triangle$	7-8	NO $=\triangle$	7-8	NC『fr	7-8	NC ¢f	7-8

Wiring diagram for assembled connectors
For FP－FR－FX－FW series with technopolymer housing

$\begin{aligned} & \text { Contact block } 2 \\ & \text { 1NO-1NC+1NO-1NC } \end{aligned}$	$\begin{gathered} \text { Contact block } 5 \\ 1 \mathrm{NO}+1 \mathrm{NC} \end{gathered}$	$\begin{gathered} \text { Contact block } 6 \\ 1 \mathrm{NO}+1 \mathrm{NC} \end{gathered}$	$\begin{gathered} \text { Contact block } 7 \\ 1 \mathrm{NO}+1 \mathrm{NC} \end{gathered}$	Contact block 9 2NC	Contact block 10 2 NO	Contact block 11 2NC	Contact block 12 2NO	Contact block 13 2NC
M12 connector， 8 －pole	M12 connector， 4 －pole	M12 connector， 4－pole	M12 connector， 4 －pole	M12 connector， 4 －pole	M12 connector， 4－pole	M12 connector， 4 －pole	M12 connector， 4－pole	M12 connector， 4 －pole
Contacts Pin no．   NO 3－4	$\begin{array}{cc} \hline \text { Contacts } & \text { Pin no. } \\ \text { NC } & 1-2 \end{array}$	$\begin{array}{cc} \hline \text { Contacts } & \text { Pin no. } \\ \text { NC } & 1-2 \end{array}$	$\begin{array}{cc} \hline \text { Contacts } & \text { Pin no. } \\ \text { NC } & 1-2 \end{array}$	$\begin{array}{cc} \hline \text { Contacts } & \text { Pin no. } \\ \text { NC } & 1-2 \end{array}$	$\begin{array}{cc} \text { Contacts } & \text { Pin no. } \\ \text { NO } & 1-2 \end{array}$	$\begin{array}{cc} \hline \text { Contacts } & \text { Pin no. } \\ \text { NC } & 1-2 \end{array}$	$\begin{array}{cc} \text { Contacts } & \text { Pin no. } \\ \text { NO } & 1-2 \end{array}$	Contacts Pin no．   NC（19）1－2
NC 5－6	NO 3－4	NO 3－4	NO 3－4	NC 3－4	NO 3－4	NC 3－4	NO 3－4	NC（20） 3 －4
NC 7－8								
NO 1－2								
$\begin{aligned} & \text { Contact block } 14 \\ & 2 \mathrm{NC} \end{aligned}$	$\begin{aligned} & \text { Contact block } 15 \\ & 2 \mathrm{NO} \end{aligned}$	$\begin{gathered} \text { Contact block } 16 \\ \text { 2NC } \end{gathered}$	Contact block 18 $1 \mathrm{NO}+1 \mathrm{NC}$	$\begin{gathered} \text { Contact block } 20 \\ 2 N C+1 N O \end{gathered}$	$\begin{gathered} \text { Contact block } 21 \\ \text { 3NC } \end{gathered}$	Contact block 22 $1 \mathrm{NC}+2 \mathrm{NO}$	Contact block 33 1NC+1NO	$\begin{aligned} & \text { Contact block } 34 \\ & \text { 2NC } \end{aligned}$
M12 connector， 4－pole	M12 connector， 4－pole	M12 connector， 4－pole	M12 connector， 4－pole	M12 connector， 8 －pole	M12 connector， 8 －pole	M12 connector， 8 －pole	M12 connector， 4－pole	M12 connector， 4－pole
Contacts Pin no．   NC（19）1－2	Contacts Pin no． $\mathrm{NO}\left(1^{\circ}\right) \quad 1-2$	Contacts Pin no．   NC，lever to the right 1－2	Contacts Pin no．   NC $\quad 1-2$	Contacts Pin no．   NC $\quad 3-4$	Contacts Pin no．   NC $\quad 3-4$	$\begin{array}{cc}\text { Contacts } & \text { Pin no．} \\ \text { NC } & 3-4\end{array}$	Contacts Pin no．   NC 1－2	Contacts Pin no．   NC $\quad 1-2$
NC（20） 3 －4	NO（20） 3 －4	$N \mathrm{NC}$, ，lever to the left 3－4	NO 3－4	NC 5－6	NC 5－6	NO 5－6	NO 3－4	NC 3－4
				NO 7－8	NC 7－8	NO 7－8		


Contact block 28 $2 N C+1 N O$	$\text { Contact block } 29$ 3NC	$\begin{gathered} \text { Contact block } 30 \\ \text { 3NC } \end{gathered}$	Contact block E1 PNP
M12 connector， 8 －pole	M12 connector， 8 －pole	M12 connector， 8 －pole	M12 connector，4－pole
Contacts Pin no．   NC $\odot \quad$ 3－4	Contacts Pin no．   NC ¢ $\bigodot$ 3－4	Contacts Pin no．   NC C－3－4	Contacts Pin no．
NC 厄－fe 5－6	NC C－m 5－6	NC『• 5－6	3
NO ¢ 7－8	NC 厄ص¢		NC 2
			NO 4

## For FG series with metal housing and M23 connector

$\begin{gathered} \text { Contact block } \\ 60 \mathrm{~A} \\ 2 \mathrm{NO}+2 \mathrm{NC} \end{gathered}$		$\begin{gathered} \text { Contact block } \\ 60 \mathrm{~B} \\ 1 \mathrm{NO}+3 \mathrm{NC} \end{gathered}$		$\begin{aligned} & \text { Contact block } \\ & \text { 60C } \\ & \text { 4NC } \end{aligned}$		$\begin{gathered} \text { Contact block } \\ 60 \mathrm{D} \\ \text { 1NO }+3 N C \end{gathered}$		$\begin{gathered} \text { Contact block } \\ 60 \mathrm{E} \\ 1 \mathrm{NO}+3 \mathrm{NC} \end{gathered}$		$\begin{gathered} \text { Contact block } \\ 60 \mathrm{~F} \\ 2 \mathrm{NO}+2 \mathrm{NC} \end{gathered}$		$\begin{aligned} & \text { Contact block } \\ & \text { 60G } \\ & \text { 4NC } \end{aligned}$		$\begin{gathered} \text { Contact block } \\ 60 \mathrm{H} \\ 4 \mathrm{NC} \end{gathered}$		$\begin{gathered} \text { Contact block } \\ 601 \\ 1 \mathrm{NO}+3 \mathrm{NC} \end{gathered}$		$\begin{gathered} \text { Contact block } \\ 60 \mathrm{~L} \\ 2 \mathrm{NO}+2 \mathrm{NC} \end{gathered}$	
		$\left(\begin{array}{r} 8 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right.$		$\left(\begin{array}{r} 8 \\ 10 \\ 0 \\ 0 \end{array}\right.$	$\left.\begin{array}{l} 0_{2} \\ 0_{3} \end{array}\right)$	$\left(\begin{array}{r} 8 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right.$				$8 \%$ $10, ~$ 0 0 0		$\left(\begin{array}{c} 0_{0}^{0} c^{\circ} \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right.$			$\begin{aligned} & 0 \\ & 0 \\ & 0_{2} \\ & 0 \end{aligned}$	$\left(\begin{array}{r}8 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right.$			
$\begin{array}{r} \mathrm{M} 23 \mathrm{co} \\ \quad 12-\mathrm{H} \end{array}$	ctor,	$\begin{array}{r} \mathrm{M} 23 \mathrm{cc} \\ \quad 12 \\ \hline \end{array}$	ector,   e	$\begin{array}{r} \mathrm{M} 23 \mathrm{a} \\ \hline 12 \end{array}$	ector,	$\begin{array}{r} \mathrm{M} 23 \mathrm{o} \\ 12 \\ \hline \end{array}$	$\begin{aligned} & \text { nnector, } \\ & \text { pole } \end{aligned}$	$\begin{array}{r} \mathrm{M} 23 \\ 1 \\ \hline \end{array}$	ector,	$\begin{array}{r} M 23 \\ 12 \\ \hline \end{array}$	ector,	$\begin{array}{r} \mathrm{M} 23 \mathrm{c} \\ 12 \\ \hline \end{array}$	ector,	$\begin{array}{r} \text { M23 } \\ \hline \end{array}$	ector,   e	$\begin{array}{r} \text { M23 } \\ 1 \\ \hline \end{array}$	nector,   e	$\begin{array}{r} \mathrm{M} 23 \\ \quad 1 \\ \hline \end{array}$	hector,   e
Contacts   A1－A2	Pin no．   1－2	Contacts   A1－A2	Pin no．   1－2	Contacts   A1－A2	Pin no．   1－2	Contacts   A1－A2	Pin no．   1－2	Contacts A1-A2	Pin no．   1－2	Contacts   A1－A2	Pin no．   1－2	Contacts   A1－A2	Pin no．   1－2	Contacts   A1－A2	Pin no．   1－2	Contacts   A1－A2	Pin no．   1－2	Contacts   A1－A2	Pin no．   1－2
NC［efe	3－4	NC $=\triangle$	3－4	NC $=\triangle$	3－4	NO $=\triangle$	3－4	NC ¢．－阿	3－4										
NC $=\square$	5－6	NC $=\triangle$	5－6	NC $=\triangle$	5－6	NC $=\triangle$	5－6	NC $=\square$	5－6	NC $=\triangle$	5－6								
NO $=\square$	7－8	NC Frok	7－8	NC $=\square$	7－8	NC ¢ ¢	7－8	NC Fers	7－8	NO $=\triangle$	7－8	NC 厄®阝号	7－8	NC $=\square$	7－8	NC $=\square$	7－8	NO $=\square$	7－8
NO ¢fS	9－10	NO6．1s	9－10	NC．efers	9－10	NC．ers	9－10	NO $=\triangle$	9－10	NOEF｜ces	9－10	NC．e．fers	9－10	NC $=\square$	9－10	NO．efs	9－10	NO $=\triangle$	9－10
ground	11																		


$\begin{aligned} & \text { Contact block } \\ & 60 \mathrm{M} \\ & 3 \mathrm{NO}+1 \mathrm{NC} \end{aligned}$	$\begin{gathered} \text { Contact block } \\ 60 \mathrm{~N} \\ 3 \mathrm{NO}+1 \mathrm{NC} \end{gathered}$	$\begin{gathered} \text { Contact block } \\ 60 \mathrm{P} \\ 4 \mathrm{NC} \end{gathered}$	$\begin{gathered} \text { Contact block } \\ 60 \mathrm{R} \\ 2 N O+2 N C \end{gathered}$	$\begin{gathered} \text { Contact block } \\ 60 \mathrm{~S} \\ 2 N O+2 N C \end{gathered}$	$\begin{aligned} & \text { Contact block } \\ & 60 T \\ & 1 \mathrm{NO}+3 \mathrm{NC} \end{aligned}$	$\begin{aligned} & \text { Contact block } \\ & 60 \mathrm{U} \\ & \text { 4NC } \end{aligned}$	$\begin{gathered} \text { Contact block } \\ 60 \mathrm{~V} \\ 2 N O+2 N C \end{gathered}$	$\begin{gathered} \text { Contact block } \\ 60 X \\ 1 \mathrm{NO}+3 \mathrm{NC} \end{gathered}$	$\begin{gathered} \text { Contact block } \\ 60 \mathrm{Y} \\ 2 \mathrm{NO}+2 \mathrm{NC} \end{gathered}$
$\left(\begin{array}{ccc} 0 & 3 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$		$\left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$		$\left(\begin{array}{ccc} 0 & 0 \\ 0 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$	$\left(\begin{array}{cc} 0_{0} & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}\right)$	$\left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \\ 0 & 10 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}\right)$		$\left(\begin{array}{cc} 0_{0} & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}\right)$	$\left(\begin{array}{cc} 0_{0} & 0 \\ 0 & 0 \\ 0 & 0 \\ 10 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}\right)$


$\begin{aligned} & \text { M23 con } \\ & 12-\mathrm{po} \end{aligned}$	nnector, oole	M23 connector， 12－pole																	
Contacts   A1－A2	Pin no． $1-2$	Contacts   A1－A2	Pin no．   1－2	Contacts   A1－A2	Pin no．   1－2	Contacts A1-A2	Pin no． $1-2$	Contacts   A1－A2	Pin no．   1－2										
NO ¢ ． $\mathrm{P}^{\text {c }}$	3－4	NO $=\triangle$	3－4	NC E．e阿	3－4	NC $=\triangle$	3－4	NC $=\square$	3－4	NC $=\triangle$	3－4	NC．e．fe	3－4	NC $=\triangle$	3－4	NO $=\triangle$	3－4	NC．e．fe	3－4
NC $=\triangle$	5－6	NC $=\triangle$	5－6	NC．efe	5－6	NC $=\triangle$	5－6	NC［－Fs	5－6	NC［．ffer	5－6	NC Efor	5－6	NC $=\triangle$	5－6	NC．efer	5－6	NC．．．fer	5－6
NO $=\triangle$	7－8	NO㕩院	7－8	NC $=\square$	7－8	NO $=\square$	7－8	NO．efe	7－8	NC F．ofe	7－8	NC．efe	7－8	NO ¢f®	7－8	NC．．．fe	7－8	NOFFefer	7－8
NO $=\triangle$	9－10	NO．efe	9－10	NC．efe	9－10	$\mathrm{NO}=\triangle$	9－10	NO晁院	9－10	NO¢FE	9－10	NCEF阿	9－10	NOEfte	9－10	NC．eft	9－10	$\mathrm{NO}=\triangle$	9－10
ground	11																		


$\begin{gathered} \text { Contact block } \\ 61 \mathrm{~A} \\ 1 \mathrm{NO}+3 \mathrm{NC} \end{gathered}$	$\begin{gathered} \text { Contact block } \\ 61 \mathrm{~B} \\ 2 N O+2 N C \end{gathered}$	$\begin{aligned} & \text { Contact block } \\ & 61 \mathrm{C} \\ & 3 N O+1 N C \end{aligned}$	$\begin{aligned} & \text { Contact block } \\ & 61 D \\ & 3 N O+1 N C \end{aligned}$	$\begin{aligned} & \text { Contact block } \\ & 61 \mathrm{E} \\ & 3 \mathrm{NO}+1 \mathrm{NC} \end{aligned}$	$\begin{gathered} \text { Contact block } \\ 61 \mathrm{G} \\ 3 N O+1 \mathrm{NC} \end{gathered}$	$\begin{gathered} \text { Contact block } \\ 61 \mathrm{H} \\ 2 \mathrm{NO}+2 \mathrm{NC} \end{gathered}$	$\begin{aligned} & \text { Contact block } \\ & 61 \mathrm{M} \\ & 3 \mathrm{NO}+1 \mathrm{NC} \end{aligned}$	$\begin{gathered} \text { Contact block } \\ 61 R \\ 1 N O+3 N C \end{gathered}$	$\begin{aligned} & \text { Contact block } \\ & 61 S \\ & 3 N O+1 N C \end{aligned}$


$\left(\begin{array}{lll} 80 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}\right.$	$\left.\begin{array}{ccc} 10 & 0_{2} \\ 0 & 0 \\ 0 & 0 \end{array}\right)$	$\left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 10 \\ 0 & 0 & 02 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$		$\left(\begin{array}{ccc} 0_{0} & 0 & 0 \\ \hline 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$		$\left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 02 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 \end{array}\right)$		$\left(\begin{array}{rrr} 0_{1} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$		$\left(\begin{array}{ccc} 0_{1} & 0 & 0 \\ 0 & 0 & 10 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 \end{array}\right)$		$\left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}\right)$		$\left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 02 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$		$\left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$		$\left(\begin{array}{ccc} 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$	
M23 co		M23 12		$122$		$\begin{array}{r} 23 \text { con } \\ 12-\mathrm{pc} \\ \hline \end{array}$	nector， pole	$\begin{array}{r} 123 \text { conr } \\ 12-\mathrm{po} \\ \hline \end{array}$	nnector， pole	$\begin{array}{r} \text { M23 conr } \\ 12-\mathrm{po} \\ \hline \end{array}$		$\begin{aligned} & \mathrm{M} 23 \text { con } \\ & \quad 12-\mathrm{po} \\ & \hline \end{aligned}$					$\begin{aligned} & \text { ector, } \\ & \text { le } \end{aligned}$		nector,   le
Contacts   A1－A2	Pin no．   1－2	Contacts   A1－A2	Pin no．   1－2	Contacts   A1－A2	Pin no．   1－2	Contacts   A1－A2	Pin no．   1－2	Contacts   A1－A2	Pin no．   1－2	Contacts   A1－A2	Pin no．   1－2	Contacts   A1－A2	Pin no．   1－2	Contacts   A1－A2	Pin no．   1－2	Conta   A1－A2	Pin no．   1－2	Contacts   A1－A2	Pin no．   1－2
	3－4	NC ¢．$\beta^{\text {P }}$	3－4	NO ¢¢	3－4	NOEFS	3－4	No	3－4	NO ¢ ¢fe	3－4	NC ¢ ¢ ¢	3－4	NO $=\triangle$	3－4	NC $\triangle$	3－4	NO $=\square$	3－4
NC Fefor	5－6	NC $\mathrm{F}_{0}$	5－6	NC ¢ ¢ 阿	5－6	NC	5－6	NC．efs	5－6	NC．efs	5－6	NC．efers	5－6	NC［ofe	5－6	NC $=\triangle$	5－6	NC $=\triangle$	－6
NC Forcos	7－8	NO	7－8	NO ¢．0．es	7－8	NO ¢．0．er	7－8	NO GFers	7－8	NO $=\triangle$	7－8	NO $=$	7－8	NO	7－8	NC	7－8	NO	7－8
NO	9－10	NO¢0］	9－10	NO ¢．．f	9－10		9－10	NOEfers	9－10	NO $=\square$	9－10	NO	9－10	NO	9－10	NO	9－10	NO $=\square$	9－10
ground	11																		

## For FG series with metal housing and M12 connector

$\begin{aligned} & \text { Contact block } \\ & 60 \mathrm{~A} \\ & 2 \mathrm{NO}+2 \mathrm{NC} \end{aligned}$	$\begin{aligned} & \text { Contact block } \\ & 60 \mathrm{~B} \\ & 1 \mathrm{NO}+3 \mathrm{NC} \end{aligned}$	$\begin{gathered} \text { Contact block } \\ \text { 60C } \\ \text { 4NC } \end{gathered}$	$\begin{aligned} & \text { Contact block } \\ & 60 \mathrm{D} \\ & 1 \mathrm{NO}+3 \mathrm{NC} \end{aligned}$	$\begin{aligned} & \text { Contact block } \\ & 60 \mathrm{E} \\ & \text { 1NO }+3 \mathrm{NC} \end{aligned}$	$\begin{aligned} & \text { Contact block } \\ & 60 \mathrm{~F} \\ & 2 \mathrm{NO}+2 \mathrm{NC} \end{aligned}$	Contact block 60G 4NC	Contact block $60 \mathrm{H}$   4NC	$\begin{aligned} & \text { Contact block } \\ & 60 \mathrm{I} \\ & 1 \mathrm{NO}+3 \mathrm{NC} \end{aligned}$	$\begin{aligned} & \text { Contact block } \\ & 60 \mathrm{~L} \\ & 2 \mathrm{NO}+2 \mathrm{NC} \end{aligned}$
M12 connector， 12－pole									
Contacts Pin no．   A1－A2   1－2	Contacts Pin no． A1-A2 $1-2$	Contacts Pin no．   A1－A2   1－2	Contacts Pin no． A1－A2 1－2	Contacts Pin no．   A1－A2   1－2	Contacts Pin no． A1-A2 1-2	Contacts Pin no． A1-A2 $1-2$	Contacts Pin no．   A1－A2   1－2	Contacts Pin no． A1－A2 1－2	Contacts Pin no．   A1－A2   1－2
NC F－柯 3－4	NC－$\triangle$ 3－4	NC－$\triangle$ 3－4	NO $=\triangle$－${ }^{\text {－4 }}$	NC－$\triangle$ 3－4	NC＝$\triangle$ 3－4	NC－$\triangle$ 3－4	NC－$\triangle$ 3－4	NC－$\triangle$ 3－4	NC．F｜c 3－4
NC $=\triangle$－${ }^{\text {－6 }}$	NC $=\triangle$ 5－6	NC－$\triangle$－6－6	NC－$\triangle$－6－6	NC－$\triangle$－6	NC－$\triangle$－6－6	NC $=\triangle$ 5－6	NC $-\triangle$ 5－6	NC－$\triangle$－6－6	NC $-\triangle$－ 5 －6
NO－$\triangle$ 7－8	NC F－7－8	NC－$\triangle$ 7－8	NC F－fer 7－8	NC Frfer $7-8$	NO $=\triangle$ 7－8	NC F®® 7－8	NC $-\triangle$ 7－8	NC $-\triangle \quad 7-8$	NO $=\triangle \quad 7-8$
NO ¢－F｜c 9－10	NO－6．ar 9－10	NC．6．6 9－10	NC．「阿 9－10	NO $=\triangle$－-10		NC戶斤を $9-10$	NC $=\square$ 9－10	NO F－F｜cers 9－10	NO $=\triangle$－-10


$\begin{aligned} & \text { Contact block } \\ & 60 \mathrm{M} \\ & 3 \mathrm{NO}+1 \mathrm{NC} \end{aligned}$	$\begin{gathered} \text { Contact block } \\ 60 \mathrm{~N} \\ 3 \mathrm{NO}+1 \mathrm{NC} \end{gathered}$	Contact block 60P   4NC	$\begin{gathered} \text { Contact block } \\ 60 R \\ 2 N O+2 N C \end{gathered}$	$\begin{gathered} \text { Contact block } \\ 60 \mathrm{~S} \\ 2 \mathrm{NO}+2 \mathrm{NC} \end{gathered}$	$\begin{aligned} & \text { Contact block } \\ & 60 T \\ & 1 \mathrm{NO}+3 \mathrm{NC} \end{aligned}$	Contact block 60U 4NC	$\begin{gathered} \text { Contact block } \\ 60 \mathrm{~V} \\ 2 \mathrm{NO}+2 \mathrm{NC} \end{gathered}$	$\begin{aligned} & \text { Contact block } \\ & 60 X \\ & 1 \mathrm{NO}+3 \mathrm{NC} \end{aligned}$	$\begin{gathered} \text { Contact block } \\ 60 Y \\ 2 \mathrm{NO}+2 \mathrm{NC} \end{gathered}$
12－pole	12-pole	12－pole		12－pole	M12 connector， 12－pole	M12 connector， 12－pole	12－pole	M12 connector， 12－pole	M12 connector， 12－pole
Contacts Pin no． A1－A2 1－2	Contacts Pin no． A1－A2 1－2	Contacts Pin no．   A1－A2   1－2	Contacts Pin no． A1－A2 1－2	Contacts Pin no．   A1－A2   1－2	Contacts Pin no．   A1－A2 1-2	Contacts Pin no． A1-A2 $1-2$			
NO ¢refe 3－4	NO $=\triangle$ 3－4	NC．閶 3－4	NC＝$\triangle$ 3－4	NC＝$\triangle$ 3－4	NC－$\triangle$ 3－4	NC Fefe 3－4	NC $=\triangle$ 3－4	NO $=\triangle$ 3－4	NC F－0．ce 3－4
NC－$\triangle$－ 5 －6	NC－$\triangle$ 5－6	NC［－fa 5－6	NC＝$\triangle$ 5－6		NC．F｜c 5－6	NC．F沓 5－6	NC－$\triangle$－6		
NO－$\triangle$ 7－8	NO F阿 7－8	NC－$\triangle$ 7－8	NO $-\triangle$ 7－8	NO．Frers 7－8	NC Frere $7-8$	NC．F近 $7-8$	NO Fefe $7-8$	NC Fofer 7－8	NO Colce $7-8$
NO $=\triangle$ 9－10	NO Ffr 9－10	NC Fre 9－10	NO $-\triangle \quad 9-10$	NOFF｜c 9－10	NO F－fe 9－10	NC Ffe 9－10	NO Ffr 9－10	NC．efer 9－10	NO $=\triangle$ 9－10


$\begin{aligned} & \text { Contact block } \\ & 61 \mathrm{~A} \\ & 1 \mathrm{NO}+3 \mathrm{NC} \end{aligned}$	$\begin{gathered} \text { Contact block } \\ 61 \mathrm{~B} \\ 2 \mathrm{NO}+2 \mathrm{NC} \end{gathered}$	$\begin{aligned} & \text { Contact block } \\ & 61 \mathrm{C} \\ & 3 \mathrm{NO}+1 \mathrm{NC} \end{aligned}$	$\begin{aligned} & \text { Contact block } \\ & \text { 61D } \\ & 3 N O+1 N C \end{aligned}$	$\begin{aligned} & \text { Contact block } \\ & 61 \mathrm{E} \\ & 3 \mathrm{NO}+1 \mathrm{NC} \end{aligned}$	$\begin{gathered} \text { Contact block } \\ 61 \mathrm{G} \\ 3 \mathrm{NO}+1 \mathrm{NC} \end{gathered}$	$\begin{gathered} \text { Contact block } \\ 61 \mathrm{H} \\ 2 \mathrm{NO}+2 \mathrm{NC} \end{gathered}$	$\begin{gathered} \text { Contact block } \\ 61 \mathrm{M} \\ 3 \mathrm{NO}+1 \mathrm{NC} \end{gathered}$	$\begin{gathered} \text { Contact block } \\ 61 \mathrm{R} \\ 1 \mathrm{NO}+3 \mathrm{NC} \end{gathered}$	$\begin{gathered} \text { Contact block } \\ 61 \mathrm{~S} \\ 3 \mathrm{NO}+1 \mathrm{NC} \end{gathered}$
12－pole	12－pole	12－pole	12－pole	12－pole	12－pole	12-pole	－pole	onnector， －pole	M12 connector， 12－pole
Contacts Pin no． A1－A2 1－2	Contacts Pin no． A1－A2 1－2	Contacts Pin no． A1-A2 1-2	Contacts Pin no． A1-A2 $1-2$	Contacts Pin no．   A1－A2 1－2	Contacts Pin no．   A1－A2 1－2	Contacts Pin no． A1－A2 1－2	Contacts Pin no． A1-A2 1-2	Contacts Pin no．   A1－A2 1-2	Contacts Pin no． A1-A2 $1-2$
NC．Ffe 3－4	NC．．efe 3－4	NO	NO•阶近 $3-4$	NO $=\triangle \quad 3-4$	NO ¢fe 3－4	NC Frer 3－4	NO $=\triangle \quad 3-4$	NC $=\triangle$ 3－4	NO $=\triangle$ 3－4
NC．efe 5－6	NC．6近 5－6	NC F－0．E 5－6	NC－$\triangle$ 5－6	NC．efe $5-6$			NC 厄fars 5－6	NC－$\triangle$ 5－6	NC $=\triangle$ 5－6
NC Ffer 7－8	NO ¢fe $7-8$	NO F－6 $7-8$	NO ¢fer 7－8	NO厄゙C 7－8	NO－$\triangle$ 7－8	NO－$\triangle$ 7－8	NO－$\triangle$ 7－8	NC－$\triangle$ 7－8	NO－$\triangle$ 7－8
NO F－F｜c 9－10			NOEf（ 9－10	NO曲殹 9－10	NO $=\square \quad 9-10$	NO $=\triangle \quad 9-10$	NO $=\triangle \quad 9-10$	$\mathrm{NO}=\triangle \quad 9-10$	NO $=\triangle \quad 9-10$

Note：the wires connected to pins 11 and 12 of the M12 connector can be used to activate the LEDs in FG series configurations with freely connectable LEDs．


FD - FP - FL - FC - FR - FM - FX - FZ - FW - FS - FG - NG series


FG - NG series

## Minimum distances required for insertion of the connectors

Switch with M12 connector, at bottom


Sensor with M8 connector
Sensor with M12 connector



NS series

Switch with M23 connector at the right or left


## 1- Introduction

The purpose of this section is to provide the machine manufacturer with a quick overview of a number of standards related to machine safety, to clarify some basic terms and to provide some application examples. This brief guide only covers aspects related to the functional safety of the machine, i.e., all measures that must be taken to protect the operating personnel from the hazards arising from the operation of the machine, as well as the project planning and selection of the appropriate interlocking devices for the given guard.
The machine designer himself must identify risks that are posed by other hazards, such as live parts, pressurised containers, explosive atmospheres, etc. These risks are not dealt with in this guideline.
Pizzato Elettrica prepared this document to the best of its knowledge, taking into consideration the standards, interpretations and existing technologies. The examples provided here must always be considered by the end customer with respect to the latest state of technology and standardisation. Pizzato Elettrica accepts no responsibility for the examples provided here and does not exclude the possibility of unintentional errors or inaccuracies.

## 2 -Design in safety. Structure of the European standards.

To freely market any type of device or machine in the countries of the European Community, they must comply with the provisions of the EU directives. They establish the general principles for ensuring that manufacturers place products on the market that are not hazardous to the operating personnel. The vast range of products pose many different hazards and, over time, has led to the release of various directives. As an example, consider the Low Voltage Directive 2014/35/EU, the Equipment for Explosive Atmospheres (ATEX) Directive 2014/34/EU, the Electromagnetic Compatibility Directive 2014/30/EU, etc. The hazards that arise from the operation of machinery are described in the Machinery Directive 2006/42/EC.
Conformity with the directives is certified by the Declaration of Conformity issued by the manufacturer and by the application of the CE marking on the machine.

For the assessment of risks posed by a machine and for the realisation of the safety systems for protecting the operating personnel from those risks, the European standardisation organisations CEN and CENELEC have issued a series of standards which translate the contents of the directives into technical requirements. The standards published in the Official Journal of the European Union are harmonised. The manufacturer is to verify conformity with the applied and listed standards.

The machine safety standards are divided into three types: A, B and C.
Type A standards: Standards that cover basic concepts and general principles for design in order to achieve safety in the design of machinery.
Type B standards: Standards that deal with one or more safety aspects and are divided into the following standards:
B1: Standards on particular safety aspects (e.g. safety distances, temperature, noise, etc.)
B2: Standards on safeguards (e.g. two-hand controls, interlocking devices, guards, etc.)
Type C standards: Standards that deal with detailed safety requirements for a particular group of machines (e.g. hydraulic presses, injection moulding machines, etc.)

The system or machine manufacturer must therefore determine whether the product is covered by a type C standard. If this is the case, this standard specifies the safety requirements; otherwise, the type B standards shall apply for any specific aspect or device of the product. In the absence of specifications, the manufacturer shall follow the general guidelines stated in the type A standards.

## TYPE A STANDARDS <br> For example:

EN ISO 12100. Safety of machinery - General principles for design - Risk assessment and risk reduction.

## TYPE B1 STANDARDS

## For example:

EN 62061. Safety of machinery - Functional safety of safety-related electrical, electronic and programmable electronic control systems
EN ISO 13849-1 e-2. Safety-related parts of control systems

## TYPE B2 STANDARDS

For example:
EN 574. Two-hand control devices
EN ISO 13850. Emergency stop
EN ISO 14119. Interlocking devices associated with guards EN 60204-1. Electrical equipment of machines EN 60947-5-1. Electromechanical control circuit devices

## TYPE C STANDARDS

For example:
EN 201. Plastics and rubber machines - Injection moulding machines
EN 415-1. Safety of packaging machines
EN 692. Mechanical presses
EN 693. Hydraulic presses
EN 848-1. Safety of wood-working machines - One side moulding machines with rotating tool - Part 1: Single spindle vertical moulding machines

## 3 - Designing safe machines. Risk analysis.

The first step in producing a safe machine is to identify the possible hazards to which the operators of a machine are exposed. The identification and classification of the hazards allows the risk for the operator or the combination of the probability of a hazard and the possible injury to be determined.

The methodology for risk analysis and evaluation and the procedure for the elimination/reduction of risks is defined by standard EN ISO 12100. This standard introduces a cyclic analysis model: starting with the initial objectives, the risk analysis and the various possibilities for reducing these risks are repeatedly evaluated until the initial objective is met.

The model introduced in this standard specifies that one proceed as follows after performing a risk analysis to reduce or eliminate risks:

1) Elimination of risks at their source through the use of intrinsically safe design principles and the structural set-up of the systems
2) Risk reduction through safeguarding and monitoring systems
3) Identification of residual risks though signalling and by informing the operating personnel.

Since every machine has hazards and because it is not possible to eliminate all possible risks, the objective is to reduce the residual risks to an acceptable level.

If a risk is reduced by means of a monitoring system, standard EN ISO 13849-1, which provides an evaluation model for the quality of this system, comes into play. If a given level is specified for a risk, it is possible to use a safety function of equal or higher level.


Note: This diagram was created by combining figures 1 and 3 of standard EN 13849-1. The texts in the diagram are not identical to those in the standard.

## 4- Design and selection of interlocking devices associated with guards (standard EN ISO 14119)

The new European standard EN ISO 14119 "Interlocking devices associated with guards - Principles for design and selection" came into force on October 2, 2013, and superseded EN 1088/ISO 14119:1998 as of May 2015.


The standard is intended for manufacturers of interlocking devices as well as machine manufacturers (and integrators) and describes the requirements on the devices and their correct installation.
The new standard provides clarification to a number of questions that are not always clear cut and considers the latest technologies used in the design of interlocking devices, defines a number of parameters (actuator type and level of coding) and describes the procedure for correct installation with the goal of minimizing the defeat possibilities of the interlocking devices.
The standard also considers other aspects related to interlocking devices (e.g. guard locking principles, electromagnetic guard locking, auxiliary release, escape and emergency release, etc.) which are not described here.

## Coding level of the actuators

An important new addition to the standard is the definition of a coded actuator and the classification of the coding levels:

- coded actuator - actuator which was specially designed for use with a specific interlocking device;
- low level coded actuator - coded actuator for which 1 to 9 variations in code are available
(e.g. the SR magnetic switch series or the safety switches with separate actuator and mechanical detection FS, FG, FR, FD...);
- medium level coded actuator - coded actuator for which 10 to 1000 variations in code are available;
- high level coded actuator - coded actuator for which more than 1000 variations are available.
(e.g. the ST series sensors with RFID technology or the interlocking devices of the NG series with RFID technology and guard locking).


## Types of interlocking devices

Standard EN ISO 14119 defines different types of interlocking devices:

- Type 1 interlocking device - interlocking device that is mechanically actuated by an uncoded actuator (e.g. HP series hinged interlocking devices)
- Type 2 interlocking device - interlocking device that is mechanically actuated by a coded actuator (e.g. safety switches with separate actuator of the FR, FS, FG, ... series)
- Type 3 interlocking device - interlocking device that is contactlessly actuated by an uncoded actuator
- Type 4 interlocking device - interlocking device that is contactlessly actuated by a coded actuator
(e.g. ST series safety sensors with RFID technology and NG and NS series safety switches with RFID technology)

Examples of actuation principles		Actuator examples		Type
Mechanical	Direct contact/force		Rotary cam	
		Uncoded	Linear cam	Type 1
			Hinge	
			Key-actuated	
		Coded	Trapped key	2
Non-contact	Inductive	Uncoded	Ferromagnetic material	Type 3
	Magnetic		Magnet, solenoid	
	Capacitive		Any suitable object	
	Ultrasonic		Any suitable object	
	Optic		Any suitable object	
	Magnetic	Coded	Coded magnet	Type 4
	RFID		Coded RFID tag	
	Optic		Optically coded tag	

Excerpt from EN ISO 14119 - Table 1

Requirements for the design and the installation of interlocking devices according to EN ISO 14119 to reduce defeating of guards.

Principles and measures against defeating	Type 1 devices		Type 2 and type 4 devices (low level coded actuators)	Type 2 and type 4 devices (high level coded actuators)
	Cam safety switches rotary or linear cam	Hinged safety switches		
Installation out of reach (1)				
Barriers or shielding (2)				
Installation in hidden position (3)	X		X	
Testing by means of control circuit (4)				
Non-detachable fixing of position switch and cam				
Non-detachable fixing of position switch		M		
Non-detachable fixing of the actuation element or cam		M	M	M
Additional position sensing and plausibility check	R		R	

X: mandatory to apply at least one of the measures listed in the "Principles and measures" column Excerpt from EN ISO 14119 -Table 3 M : mandatory measure
R: recommended measure
It is clear that the use of devices with RFID technology, high coding level and hinged switches is the easiest way to meet the requirements of EN ISO 14119, as it is only necessary to fulfil a few requirements in order to prevent defeating of guards.
Devices with low or medium coding level require additional measures to ensure a tamperproof application.

(4) - Status monitoring or periodic testing can, for example, be performed on a machine with a simple operating cycle so as to verify that the guards are actually open at the end of or during specific operating phases (e.g. to remove the processed material or to perform quality controls). If status monitoring does not detect opening of the guard, an alarm is generated and the machine is stopped.

## Guard locking devices and holding force

The manufacturer of the interlocking device with guard locking must ensure that the device can withstand at least the measured holding force FZh while the interlock is engaged. This holding force must not exceed the maximum holding force divided by a safety coefficient equal to 1.3.
Example: A device with maximum holding force of $\mathrm{FZh}=2000 \mathrm{~N}$ must pass a test with a maximum holding force equal to F1max $=2600 \mathrm{~N}$.
An interlocking device with guard locking can both monitor the position of the guard (open/closed) as well as lock the guard (locked/unlocked). Each of the two functions may require a different PL safety level (acc. to EN ISO 13849-1). The guard locking function generally requires a lower PL than the position monitoring function. (See paragraph 8.4, note 2 of EN ISO 14119).
To identify whether an interlocking device also performs status monitoring, the standard specifies that the product label includes the symbol shown to the side here.

$$
F_{Z h}=\frac{F_{1 \max }}{1,3}
$$

## 5 - Current status of the standards. Reason for changes, new standards and some overlapping

The "traditional" standards for functional safety, such as EN 954-1, played a large part in formalising some of the basic principles for the analysis of safety circuits on the basis of deterministic principles. On the other hand, they make no mention of the topic of programmable electronic control systems and are not generally in line with the current state of technology. To take programmable electronic control systems into account in the analysis of safety circuits, the approach taken by current standards is fundamentally probabilistic and introduces new statistical variables.

This approach is based on IEC 61508, which deals with the safety of complex programmable electronic systems and is very extensive (divided into 8 sections with nearly 500 pages). It is also used in a diverse range of application fields (chemical industry, machine construction, nuclear plants) and is therefore classified as a type A standard (not harmonised). This standard introduces the SIL concept (Safety Integrity Level), a probabilistic indication of a system's residual risk.

From IEC 61508 comes EN 62061, which covers the functional safety of the complex electronic or programmable control systems in industrial applications. The concepts introduced here permit general use for any safety-related electrical, electronic and programmable electronic control systems (systems with non-electrical technologies are not covered)

EN ISO 13849-1, developed by CEN under the aegis of ISO, is also based on this probabilistic approach. This standard, however, attempts to structure the transition to the concepts in a less problematic way for the manufacturer, who is accustomed to the concepts of EN 954-1. The standard covers electromechanical, hydraulic, "non-complex" electronic systems and some programmable electronic systems with predefined structures. EN ISO 13849-1 is a type B1 standard and introduces the PL concept (Performance Level); as with SIL, the concept provides a probabilistic indication of a machine's residual risk. This standard points out a correlation between SIL and PL; concepts borrowed by EN 61508 - such as DC and CCF - are used and a connection to the safety categories of EN 954-1 is established.

In the area of functional safety for the safety of control circuits, there are thus two standards presently in force:
EN ISO 13849-1. Standard type B1, which uses the PL concept.
EN 62061. Standard type B1, which uses the SIL concept.

## Important note

EN 13849-1 is a type B1 standard; if a type C standard is already applied for a machine, the type C standard is to be used. All type C standards previously developed are based on the concepts of EN 954-1. For manufacturers of machines that are covered by a type C standard, the introduction time of the new standards depends on how quickly the various technical committees update the C standards.

There is clear overlapping of the two standards EN 62061 and EN ISO 13849-1 concerning their application field and many aspects are similar; there is also a link between the two symbol names (SIL and PL), which indicate the result of the analyses according to the two standards.

PL   EN ISO 13849-1	a	b	C	d	e
SIL   EN 62061 - IEC 61508	-	1	1	2	3
$\mathrm{PFH}_{\mathrm{D}}$	from $10^{-4}$ to $10^{-5}$	from $10^{-5}$ to $3 \times 10^{-6}$	from $3 \times 10^{-6}$ to $10^{-6}$	from $10^{-6}$ to $10^{-7}$	from $10^{-7}$ to $10^{-8}$
A hazardous failure every n years	from $\sim 1$ to $\sim 10$	from $\sim 10$ to $\sim 40$	from $\sim 40$ to $\sim 100$	$\begin{gathered} \text { from } \sim 100 \text { to } \\ \sim 1000 \end{gathered}$	$\begin{gathered} \text { from } \sim 1000 \text { to } \\ \sim 10000 \end{gathered}$

The choice of the standard to be applied is left to the manufacturer according to the technology that is used. We believe that standard EN ISO 13849-1 is easier to use thanks to its mediatory approach and the re-utilisation of the concepts already introduced on the market.

## 6- Standard EN ISO 13849-1 and the new parameters: PL, MTTF ${ }_{\text {D }}$, DC, CCF

Standard EN ISO 13849-1 offers the manufacturer an iterative method for assessing whether the hazards posed by a machine can be reduced to an acceptable residual level through the use of appropriate safety functions. The applied method specifies a hypothesis-anal-ysis-validation cycle for each risk. Once completed, it must be possible to demonstrate that every selected safety function is appropriate for the respective risk
The first step involves the determination of the required performance level, which is required of each safety function. Like EN 954-1, EN ISO 13849-1 also uses a risk graph for the risk analysis of a machine function (figure A.1). Instead of a safety category, however, this graph is used to determine - as a function of the risk - a Required Performance Level or PLr for the safety function which protects the respective part of the machine.
Starting with point 1 of the graph, the machine manufacturer answers questions $S, F$ and $P$ and can then determine the PLr for the safety function being examined. He must then develop a system with a performance level PL that is equal to or greater than that which is required to protect the operating personnel.

Risk graph for determining the required $\mathrm{PL}_{r}$ for the safety function (excerpt from EN ISO 13849-1, figure A.1)


## Key

1 Starting point for the evaluation of the safety function's contribution to risk reduction
L Low contribution to risk reduction
H High contribution to risk reduction
PL r Required performance level

* F1 should be selected if the total duration of the exposure to the hazard does not exceed $1 / 20$ of the total work time and the frequency of exposure to the hazard does not exceed once every 15 minutes
** If there are no other reasons, F2 should be selected if the frequency of exposure to the hazard is greater than once every 15 minutes

Risk parameters

## S Severity of injury

S1 Slight (normally reversible injury)
S2 Serious (normally irreversible injury or death)
F Frequency and/or exposure to hazard
*F1 Seldom-to-less-often and/or exposure time is short
**F2 Frequent-to-continuous and/or exposure time is long
P Possibility of avoiding hazard or limiting harm
P1 Possible under certain conditions
P2 Scarcely possible

Note: For a machine manufacturer, it may be of interest forego repeating the risk analysis of the machine and to instead to try and reuse the data already derived from the EN 954-1 risk analysis
This is not generally possible, since the risk graph changed with the new standard (see previous figure) and, as a result, the required performance level of the safety function may have changed with identical risks. The German Institute for Occupational Safety and Health (BGIA), in its report 2008/2 on EN ISO 13849-1, recommends the following: assuming the "worst case", implementation can occur according to the following table. For further information, refer to the mentioned report.
\(\left.$$
\begin{array}{lll}\begin{array}{l}\text { Category required } \\
\text { by EN 954-1 }\end{array} & & \begin{array}{l}\text { Required performance } \\
\text { level (PLr) and category }\end{array}
$$ <br>

acc. to\end{array}\right]\)	EN ISO 13849-1

There are five performance levels, from PL a to PL e, with increasing risk; each represents a numerical range for the average probability of a dangerous failure per hour. For example, PL d specifies that the average probability of dangerous failures per hour is between $1 \times 10-6$ and $1 \times 10-7$, i.e., about 1 dangerous failure every 100-1000 years.

PL	Average probability of dangerous   failures per hour PFHd $(1 / \mathrm{h})$		
a	$\geq 10^{-5}$	e	$<10^{-4}$
b	$\geq 3 \times 10^{-6}$	e	$<10^{-5}$
c	$\geq 10^{-6}$	e	$<3 \times 10^{-6}$
d	$\geq 10^{-7}$	e	$<10^{-6}$
e	$\geq 10^{-8}$	e	$<10^{-7}$

Several parameters are needed to determine the PL of a control system:

1. The safety category of the system, which is dependent on the architecture (structure) of the control system and its behaviour in the event of damage
2. MTTF $_{d}$ of the components
3. DC or Diagnostic Coverage of the system.

4. CCF or Common Cause Failures.

## Safety category.

## Most control circuits normally used can be represented with the following logic components:

- Input or signal input
- Logic or signal processing logic
- Output or output of the monitoring signal

These are connected to one another differently depending on the structure of the control circuit.

EN ISO 13849-1 allows for five different basic circuit structures, referred to as the designated architectures of the system. As shown in the following table, the architectures - combined with the requirements on the system behaviour in the event of failure and the minimum values of MTTFd, DC and CCF - give the safety category of the system control. Thus, the safety categories of EN ISO 13849-1 are not the equivalent, but rather extend the concept of the safety category introduced by the previous standard EN 954-1.

Category	Summary of the requirements S	System behaviour	Safety principles	MTTF of each channel	$D C_{\text {avg }}$	CCF
B	Safety-related parts of monitoring systems and/or their protective equipment, as well as their accessories, must be designed, constructed, selected, assembled and combined in accordance with the relevant standards so that they can withstand the expected influences. Fundamental safety principles must be used.   Architecture:	The occurrence of a fault can lead to the loss of the safety function.	Mainly determined by the selection of components	Low to medium	None	Not relevant
1	In addition to the requirements of Category B, proven components and safety principles must be used.   Architecture:	The occurrence of a fault can lead to the loss of the safety function; the probability of fault occurrence is, however, lower than for Category B.	Mainly determined by the selection of components	High	None	Not relevant
2	Requirements of Category B and proven The safety principles must be used. The safety function must be checked at appropriate intervals by the control system.   Architecture:	The occurrence of a fault between two checks can lead to the loss of the safety function. The loss of the safety function is detected through the check.	Determined mainly by the structure	Low to high	Low to medium	See Annex F
3	Requirements of Category B and proven safety principles must be used. Important safety-related parts must be designed so that: - A single fault in any of these parts does not lead to the loss of the safety function. - Where reasonably practicable, the single fault is detected.	If a single fault occurs, the safety function is always performed.   Some, but not all faults are detected. Accumulation of undetected faults can lead to the loss of the safety function.	Determined mainly by the structure	Low to high	Low to medium	See Annex F
4	Requirements of Category B and proven safety principles must be used. Important safety-related parts must be designed, so that:   - a single fault in any of these parts does not lead to the loss of the safety function, and   - a single fault during or before the next request for the safety function is detected. If this is not possible, the accumulation of undetected faults must not lead to the loss of the safety function.   Architecture:	If a single fault occurs, the safety function is always performed. The detection of accumulated faults reduces the probability of the loss of the safety function (high DC).   The faults are detected in time to prevent the loss of the safety function.	Determined mainly by the structure	High	High (including accumulation of faults)	See Annex F

## MTTF $_{\mathrm{D}}$ ("Mean Time To Dangerous Failure").

This parameter is used to determine the functional system quality over the mean lifetime in years before a dangerous failure occurs (other failures are not considered). The calculation of the MTTF $_{d}$ is based on numerical values supplied by the manufacturers of the individual components of the system. In the absence of this data, the values can be taken from the tables with guide values included in the standard (EN ISO 13849-1 Annex C). The evaluation results in a numerical value, divided into three categories: High, Medium or Low.

Classification	Values
Not acceptable	MTTF $_{D}<3$ years
Low	3 years $\leq M T T F_{D}<10$ years
Medium	10 years $\leq M T T F_{D}<30$ years
High	$\left(30\right.$ years $\leq M T T F_{D} \leq 100$ years

For components that are susceptible to high wear (typical for mechanical and hydraulic devices), the manufacturer supplies the value $\mathrm{B}_{100}$ for the component, i.e., the number of component operations within which $10 \%$ of the samples failed dangerously, instead of the MTTF $\mathrm{F}_{\mathrm{d}}$ of the component. The $B_{10 D}$ value of the component must be converted to $M T T F_{d}$ by the machine manufacturer using the following formula:

$$
M T T F_{D}=\frac{B_{10_{D}}}{0,1 \cdot n_{o p}}
$$

Where $n_{\text {op }}=$ means number of annual operations for the component.
By assuming the daily operating frequency and the daily operating hours for the machine, $\mathrm{n}_{\text {op }}$ can be calculated as follows:
$n_{o p}=\frac{d_{o p} \cdot h_{o p} \cdot 3600 s / h}{t_{\text {ciclo }}}$
where
$d_{\text {op }}=$ work days per year
$h_{\text {op }}=$ operating hours per day
$\mathrm{t}_{\text {cycle }}=$ cycle time (s)
For components that are susceptible to wear, note that parameter $\mathrm{MTF}_{\mathrm{d}}$ is dependent not only on the component itself but also on the application. An electromechanical device with low frequency of use, e.g. a remote switch that is only used for emergency stops, has a high MTTF ${ }_{d}$; if the same device is used for normal processes in the operating cycle, the MTTF ${ }_{d}$ of the same remote switch could drop dramatically.

All elements of the circuit contribute to the calculation of the MTTF ${ }_{d}$ depending on their structure. In control systems with single-channel architecture (as is the case in categories B, 1 and 2), the contribution of each components is linear and the MTTF ${ }_{d}$ of the channel is calculated as follows:

$$
\frac{1}{M T T F_{D}}=\sum_{i=1}^{N} \frac{1}{M T T F_{D} i}
$$

To avoid overly optimistic designs, the maximum value of the $M T T F_{d}$ of each channel is limited to 100 years (for categories B, 1, 2 and 3) or 2500 years (category 4). Channels with an MTTF ${ }_{d}$ of less than 3 years are not allowed.

For two-channel systems (categories 3 and 4), the $M T T F_{d}$ of the circuit is calculated by averaging the MTTF of the two channels using the following formula:
$M T T F_{D}=\frac{2}{3}\left[M T T F_{D C 1}+M T T F_{D C 2}-\frac{1}{\frac{1}{M T T F_{D C 1}}+\frac{1}{M T T F_{D C 2}}}\right]$

## DC ("Diagnostic Coverage").

This parameter provides information on the effectiveness of a system's ability to self-detect any possible failures within the system. Using the percentage of the detectable dangerous failures, one obtains a diagnostic coverage of better or worse quality. The numerical DC parameter is a percentage value which is calculated using values taken from a table (EN ISO 13849-1 Annex E). Depending on the measures for failure detection taken by the manufacturer, example values are provided there. Because multiple measures are normally taken to rectify different anomalies in the same circuit, an average value or a $\mathrm{DC}_{\mathrm{avg}}$ is calculated and can be assigned four levels:
High $\quad \mathrm{DC}_{\text {avg }} \geq 99 \%$
Medium $90 \% \leq \mathrm{DC}_{\text {avg }}<99 \%$
Low $\quad 60 \% \leq D_{\text {avg }}^{\text {avg }}<90 \%$
None $\quad D_{\text {avg }}<60 \%$
A diagnostic coverage of none is only permissible for systems of category B or 1 .

## CCF ("Common Cause Failures")

For the calculation of the PL for systems of category 2,3 or 4 , it is also necessary to evaluate possible common cause failures or CCF, which may compromise the redundancy of the system. The evaluation is performed using a checklist (Annex F of EN ISO 13849-1); on the basis of the measures taken against common cause failures, points from 0 to 100 are assigned. The minimum permissible value for categories 2,3 and 4 is 65 points.

## PL ("Performance Level")

After determining this data, EN ISO 13849-1 gives the PL of the system using an assignment table (EN ISO 13849-1) or, alternatively, using a simplified graphic (EN ISO 13849-1, paragraph 4.5) as shown in the following.


This figure is very useful, as it can be read from multiple points of view. For a given PLr, it shows all possible solutions with which this PL can be achieved, i.e., the possible circuit structures that provide the same PL.

Considering the figure more closely, it is seen that the following possibilities exist for a system with PL equal to "c":

1. Category 3 system with less reliable components ( $M T T F_{D}=l o w$ ) and medium $D C$.
2. Category 3 system with reliable components $\left(M T T F_{D}=\right.$ medium $)$ and low DC.
3. Category 2 system with reliable components $\left(M T T F_{D}=\right.$ medium $)$ and medium $D C$.
4. Category 2 system with reliable components $\left(M T T F_{D}=\right.$ medium $)$ and low DC.
5. Category 1 system with very reliable components (MTTF $=$ high).


Considering a given circuit structure, in this figure one can also identify the maximum $P L$ that can be reached depending on the average diagnostic coverage and the MTTF ${ }_{D}$ of the components.
Thus, the manufacturer can exclude a number of circuit structures in advance, as they do not meet the required $\mathrm{PL}_{\mathrm{r}}$.

However, the figure is not usually used to determine the PL of the system since the graphic areas overlap the boundaries of the different PL levels in many cases. Instead, the table in Annex K of standard EN ISO 13849-1 is used to precisely determine the PL of the circuit.


## Notes


## Table of safety parameters

The $\mathrm{B}_{100}$ data in the table refers to the mechanical life of the device contacts under normal ambient conditions. The NO contacts may only be used in the safety circuits in combination with an NC contact and must be monitored (e.g. using a module or a safety PLC). The value of $\mathrm{B}_{100}$ for NC and NO contacts refers to a maximum electrical load of $10 \%$ of the current value specified in the utilisation category. Mission time (for all articles listed below): 20 years.

Electromechanical control devices				
Series	Article description	$\mathrm{B}_{100}(\mathrm{NO})$	$\mathrm{B}_{100}(\mathrm{NC})$	$\mathrm{B}_{10} / \mathrm{B}_{10 \mathrm{D}}$
F•••••	Position switches	1,000,000	40,000,000	50\%
$\begin{aligned} & \text { F•••93 } \\ & \text { F•••92 } \end{aligned}$	Safety switches with separate actuator	1,000,000	2,000,000	50\%
$\begin{aligned} & \text { F•••99 } \\ & \text { F•••R2 } \end{aligned}$	Safety switches with separate actuator with lock	1,000,000	1,000,000	50\%
FG	Safety switches with separate actuator with solenoid interlock	1,000,000	5,000,000	20\%
FS	Safety switches with separate actuator with solenoid interlock	1,000,000	4,000,000	20\%
$\begin{aligned} & \text { F•••96 } \\ & \text { F•••95 } \end{aligned}$	Safety switch with hinge pin	1,000,000	5,000,000	20\%
$\mathrm{F} \cdot \bullet \cdot \mathrm{C}$	Switches with slotted hole lever for hinged guards	1,000,000	2,000,000	50\%
F* ....	Rope switches for emergency stop	1,000,000	2,000,000	50\%
HP - HX B•22-•••	Safety hinges	1,000,000	5,000,000	20\%
SR	Magnetic safety sensors (with compatible Pizzato Elettrica safety modules)	20,000,000	20,000,000	50\%
SR	Magnetic safety sensors (with max load: DC12 24V 250mA)	400,000	400,000	100\%
PX, PA	Foot switches	1,000,000	20,000,000	50\%
MK	Micro position switches	1,000,000	20,000,000	50\%
NA, NB, NF	Modular pre-wired position switches	1,000,000	40,000,000	50\%
E2 C•••••••	Contact blocks	1,000,000	40,000,000	50\%


Series	Article description		$\mathrm{B}_{100}(\mathrm{NC})$	$\mathrm{B}_{10} / \mathrm{B}_{10 \mathrm{D}}$
E2•PU1••••••, E2 •PL1••••••	Single buttons, maintained		2,000,000	50\%
$\begin{aligned} & \text { E2 •PU2••••••, } \\ & \text { E2 •PL2•••••• } \end{aligned}$	Single buttons, spring-return		30,000,000	50\%
	Double and triple buttons		2,000,000	50\%
E2 •PE•••••	Emergency buttons		600,000	50\%
E2 •SE•••••, E2 •SL•••••	Selector switches with and without illumination		2,000,000	50\%
E2 •SC••••••	Key selector switches		600,000	50\%
E2 •PQ•••••	Quadruple buttons		2,000,000	50\%
E2 •MA••••••	Joystick		2,000,000	50\%
ATEX series	Article description	$\mathrm{B}_{100}(\mathrm{NO})$	$\mathrm{B}_{100}(\mathrm{NC})$	$\mathrm{B}_{10} / \mathrm{B}_{10 \mathrm{D}}$
F•••••EX•	Position switches	500,000	20,000,000	50\%
$\begin{aligned} & \text { F• ••93-EX• } \\ & \text { F•••92-EX• } \end{aligned}$	Safety switches with separate actuator	500,000	1,000,000	50\%
$\begin{aligned} & \text { F•••99-EX• } \\ & \text { F•••R2-EX• } \end{aligned}$	Safety switches with separate actuator with lock	500,000	500,000	50\%
$\begin{aligned} & \text { F• ••96-EX• } \\ & \text { F•••95-EX } \end{aligned}$	Safety switch with hinge pin	500,000	2,500,000	20\%
$F \cdot \bullet \cdot C-E X \bullet$	Switches with slotted hole lever for hinged guards	500,000	1,000,000	50\%
F•••••EX•	Rope switches for emergency stop	500,000	1,000,000	50\%

Electronic devices

Code	Article description	MTTF ${ }_{\text {D }}$	DC	PFH ${ }_{\text {D }}$	SIL CL	PL	Cat
HX BEE1-*•	Safety hinge with electronic unit	2413	H	1.24E-09	3	e	4
ST	Safety sensors with RFID technology	4077	H	1.20E-11	3	e	4
NG	RFID safety switches with lock	1883	H	8.07E-10	3	e	4
NS	RFID safety switch with lock	1671	H	$1.24 \mathrm{E}-09$	3	e	4
CS AM-01	Safety module for standstill monitoring	218	M	8.70E-09	2	d	3
CS AR-01, CS AR-02	Safety module for monitoring guards and emergency stops	227	H	1.18E-10	3	e	4
CS AR-04	Safety module for monitoring guards and emergency stops	152	H	$1.84 \mathrm{E}-10$	3	e	4
CS AR-05, CS AR-06	Safety module for monitoring guards, emergency stops and light barriers	152	H	$1.84 \mathrm{E}-10$	3	e	4
CS AR-07	Safety module for monitoring guards and emergency stops	111	H	7.56E-10	3	e	4
CS AR-08	Safety module for monitoring guards, emergency stops and light barriers	1547	H	$9.73 \mathrm{E}-11$	3	e	4
CS AR-20, CS AR-21	Safety module for monitoring guards and emergency stops	225	H	$4.18 \mathrm{E}-10$	3	e	3
CS AR-22, CS AR-23	Safety module for monitoring guards and emergency stops	151	H	$5.28 \mathrm{E}-10$	3	e	3
CS AR-24, CS AR-25	Safety module for monitoring guards and emergency stops	113	H	6.62E-10	3	e	3
CS AR-40, CS AR-41	Safety module for monitoring guards and emergency stops	225	H	$4.18 \mathrm{E}-10$	2	d	2
CS AR-46	Safety module for monitoring guards and emergency stops	435	-	$3.32 \mathrm{E}-08$	1	c	1
CS AR-51	Safety module for monitoring safety mats and safety bumpers	212	H	3.65E-09	3	e	4

$\mathrm{B}_{100}$ : Number of operations after which $10 \%$ of the components have failed dangerously
$\mathrm{B}_{1} / \mathrm{B}_{100}$ : ratio of total failures to dangerous failures.
$\mathrm{B}_{1} \mathrm{~B}_{100}$ : ${ }^{\text {ratio }}$ : Mean Time To Dangerous Failure
DC: Diagnostic Coverage
$\mathrm{PFH}_{\mathrm{D}}$ : Probability of Dangerous Failure per hour

Electronic devices							
Code	Article description	MTTF ${ }_{\text {D }}$	DC	$\mathrm{PFH}_{\text {o }}$	SIL CL	PL	Cat
CS AR-90	Safety module for monitoring floor leveling in lifts	382	H	5.03E-10	3	e	4
CS AR-91	Safety module for monitoring floor leveling in lifts	227	H	1.18E-10	3	e	4
CS AR-93	Safety module for monitoring floor leveling in lifts	227	H	$1.34 \mathrm{E}-10$	3	e	4
CS AR-94	Safety module for monitoring floor leveling in lifts	213	H	5.62E-09	3	e	4
CS AR-94•U12	Safety module for monitoring floor leveling in lifts	227	H	$1.13 \mathrm{E}-10$	3	e	4
CS AR-95	Safety module for monitoring floor leveling in lifts	213	H	$5.42 \mathrm{E}-09$	3	e	4
CS AT-0•, CS AT-1•	Safety module with timer for monitoring guards and emergency stops	88	H	$1.23 \mathrm{E}-08$	3	e	4
CS AT-3•	Safety module with timer for monitoring guards and emergency stops	135	H	$1.95 \mathrm{E}-09$	3	e	4
CS DM-01	Safety module for monitoring two-hand controls	142	H	$2.99 \mathrm{E}-08$	3	e	4
CS DM-02	Safety module for monitoring two-hand controls	206	H	$2.98 \mathrm{E}-08$	3	e	4
CS DM-20	Safety module for monitoring two-hand controls	42	-	1.32E-06	1	c	1
CS FS-1•	Safety timer module	404	H	$5.06 \mathrm{E}-10$	3	e	4
CS FS-2•, CS FS-3•	Safety timer module	205	H	1.10E-08	2	d	3
CS FS-5	Safety timer module	379	M	1.31E-09	2	d	3
CS ME-01	Contact expansion module	91	H	$5.26 \mathrm{E}-10$	(1)	(1)	(1)
CS ME-02	Contact expansion module	114	H	$4.17 \mathrm{E}-10$	(1)	(1)	(1)
CS ME-03	Contact expansion module	152	H	$3.09 \mathrm{E}-10$	(1)	(1)	(1)
CS ME-20	Contact expansion module	114	H	$6.14 \mathrm{E}-10$	(1)	(1)	(1)
CS ME-3-	Contact expansion module	110	H	$4.07 \mathrm{E}-09$	(1)	(1)	(1)
CS M•201	Multifunction safety modules	135	H	$1.44 \mathrm{E}-09$	3	e	4
CS M•202	Multifunction safety modules	614	H	1.32E-09	3	e	4
CS M•203	Multifunction safety modules	103	H	$1.61 \mathrm{E}-09$	3	e	4
CS M•204	Multifunction safety modules	134	H	1.52E-09	3	e	4
CS M•205	Multifunction safety modules	373	H	$2.19 \mathrm{E}-09$	3	e	4
CS M•206	Multifunction safety modules	3314	H	1.09E-09	3	e	4
CS M•207	Multifunction safety modules	431	H	$7.08 \mathrm{E}-09$	3	e	4
CS M•208	Multifunction safety modules	633	H	$7.02 \mathrm{E}-09$	3	e	4
CS M•301	Multifunction safety modules	128	H	$1.88 \mathrm{E}-09$	3	e	4
CS M•302	Multifunction safety modules	535	H	1.57E-09	3	e	4
CS M•303	Multifunction safety modules	485	H	$1.76 \mathrm{E}-09$	3	e	4
CS M•304	Multifunction safety modules	98	H	$2.05 \mathrm{E}-09$	3	e	4
CS M•305	Multifunction safety modules	535	H	1.57E-09	3	e	4
CS M•306	Multifunction safety modules	100	H	1.86E-09	3	e	4
CS M•307	Multifunction safety modules	289	H	$8.38 \mathrm{E}-09$	3	e	4
CS M•308	Multifunction safety modules	548	H	$7.27 \mathrm{E}-09$	3	e	4
CS M•309	Multifunction safety modules	496	H	$7.46 \mathrm{E}-09$	3	e	4
CS M•401	Multifunction safety modules	434	H	$1.73 \mathrm{E}-09$	3	e	4
CS M•402	Multifunction safety modules	478	H	$7.24 \mathrm{E}-09$	3	e	4
CS M•403	Multifunction safety modules	438	H	7.42E-09	3	e	4

$\mathrm{B}_{100}$ : Number of operations after which $10 \%$ of the components have failed dangerously
$\mathrm{B}_{10}$ : Number of operations after which $10 \%$ of the components have failed
$\mathrm{B}_{10} / \mathrm{B}_{100}$ : ratio of total failures to dangerous failures
${ }^{\text {M }}{ }^{10} \mathrm{~T}_{\mathrm{D}} \mathrm{F}_{\mathrm{D}}$ : Mean Time To Dangerous Failure
DC: Diagnostic Coverage
PFH ${ }_{D}$ : Probability of Dangerous Failure per hour
(1) Dependent on the base module

## EXAMPLE 1

Application: Guard monitoring


Reference standard EN ISO 13849-1
Safety category
1
Performance Level PL c


## Description of the safety function

The control circuit illustrated above has a guard monitoring function. If the guard is open the engine must not be able to start. The hazard analysis showed that the system has no inertia or rather that the engine, once the power has been switched off, stops at a much faster rate than the opening of the guard. The risk analysis has shown that the required PL, target is PL c. This is necessary to verify if the intended control circuit with single channel structure is provided with a PL higher or equal to $\mathrm{PL}_{\text {r }}$.
The guard position is detected by the switch with separate actuator SS1, which operates directly on the contactor KM1. The contactor KM1 monitoring the moving parts is usually activated by the Start and Stop buttons. Though, the analysis of the working cycle has shown that the guard is opening at every switching operation too. Therefore, the number of switch operations by the contactor and by the safety switch can be considered equal.
A circuit structure is defined as single-channel without supervision (category B or 1) if there are only an Input component (switch) and an Output (contactor) component.
In case a failure on one of the two devices the safety function is not guaranteed anymore.
No measures for fault detection have been applied.

## Device data:

- SS1 (FX 693-M2) is a switch with positive opening (in accordance with EN 60947-5-1, Annex K). The switch is a well-tried component according to EN ISO 13849-2 table D.4. The $\mathrm{B}_{100}$ value of the device supplied by the manufacturer is equal to $2,000,000$ switching operations.
- KM1 is a contactor operated at nominal load and is a well-tried component in compliance with EN ISO 13849-2, table D.4. The $\mathrm{B}_{100}$ value of this component is equal to $1,300,000$ switching operations. This value results from the tables of the applicable standard (see EN ISO 13849-1, table C.1).


## Assumption of the frequency of use

- It is assumed that the equipment is used for a maximum of 365 days per year, for three shifts of 8 hours and 600 s cycle time. For the switch, the number of switching operations per year is equal to maximum $N_{\text {op }}=(365 \times 24 \times 3,600) / 600=52,560$.
- It is assumed that the start button is operated every 300 seconds. Therefore, the maximum number of switching operations per year is equal to $n_{\text {op }} /$ year $=105,120$
- The contactor KM1 is actuated both for the normal start-stop of the machine as well as for the restart after a guard opening. $\mathrm{n}_{\mathrm{op}} /$ year $=52,560+105,120=157,680$


## $\mathrm{MTTF}_{\mathrm{D}}$ calculation

TheMPTF ${ }_{D}$ of the SS1 switch is equal to: $\mathrm{MTTF}_{\mathrm{D}}=\mathrm{B}_{100} /\left(0,1 \times \mathrm{n}_{\mathrm{op}}\right)=2,000,000 /(0,1 \times 52560)=381$ years
TheMTTF $_{D}$ of the KM1 contactor is equal to: $M_{T T F_{D}}=B_{100} /\left(0.11^{\text {op }} \times n_{\text {op }}\right)=1,300,000 /(0.1 \times 157680)=82$ years
Therefore, the MTTF $_{D}$ of the single-channel circuit is equal to: $1 /(1 / 381+1 / 82)=67$ years

## Diagnostic Coverage $\mathrm{DC}_{\text {avg }}$

No measures for fault detection have been applied and there is therefore no diagnostic coverage, a permissible condition for the circuit in question that is in category 1.

## CCF Common Cause Failures

The CCF calculation is not required for category 1 circuits.

## PL determination

Using the graph or the figure no. 5 it can be verified that for a Category 1 circuit with $\mathrm{MTTF}_{\mathrm{D}}=95$ years the resulting PL of the control circuit is PL c. The PL , target is therefore achieved.


Any information or application example, connection diagrams included, described in this document are to be intended as purely descriptive.
The choice and application of the products in conformity with the standards, in order to avoid damage to persons or goods, is the user's responsibility.

EXAMPLE 2
Application: Emergency stop control


Reference standard EN ISO 13849-1

## Safety category

Performance Level
PLe


## Description of the safety function

The operation of one of the emergency devices causes the intervention of the safety module and the two contactors KM1 and KM2. The signal of the devices ES1, ES2, ES3 is redundantly read by the CS safety module. The contactors KM1 and KM2 (with forcibly guided contacts) are monitored by the CS via the feedback circuit too.

Device data:

- The devices ES1, ES2, ES3 (FD 978-M2) are rope switches for emergency stop with positive opening. The $B_{100}$ value is equal to $2,000,000$ (see page 271)
- KM1 and KM2 are contactors operated at nominal load. The $\mathrm{B}_{100}$ value is 1,300,000 (see EN ISO 13849-1 - Table C.1)
- CS is a safety module (CS AR-20) with MTTF $_{D}=225$ years and DC= High
- The circuit structure is two-channel in category 3


## Assumption of the frequency of use

- Twice a month, $\mathrm{n}_{\text {op }} /$ year $=24$
- Start button actuation: 4 times a day
- Assuming 365 working days, the contactors will take action $4 \times 365+24=1484$ times $/$ year
- The switches will be operated with the same frequency.
- It is not expected that multiple buttons will be pressed simultaneously.


## MTTF $_{\mathrm{D}}$ calculation

- MTTF $_{\text {DES1,ES2,ES3 }}=833,333$ years
- MTTF $_{\mathrm{D} \mathrm{KM1,Kм22}}=8760$ years
- MTTF $_{\text {DCs }}=225$ years
- $\mathrm{MTTF}_{\mathrm{DCH} 1}=219$ years. The value must be limited to 100 years. The channels are symmetric, therefore $\mathrm{MTTF}_{\mathrm{d}}=100$ years (High)


## Diagnostic Coverage DC

- The contacts of KM1 and KM2 are monitored by the CS module via the feedback circuit. DC=99\% (High)
- The safety module CS AR-20 is provided with a "High" diagnostic coverage.
- Not all failures in the series of emergency devices can be detected. The diagnostic coverage is 90\% (Medium)


## CCF Common Cause Failures

We assume a score > 65 (acc. to EN ISO 13849-1 - Annex F).

## PL determination

A circuit in category 3 with MTTF $_{D}=$ High and $D_{\text {avg }}=$ High can reach a PL e.


EXAMPLE 3
Application: Guard monitoring


Reference standard EN ISO 13849-1
Safety category
4 Performance Level PL e


## Description of the safety function

The guard opening causes the intervention of the switches SS1 and SS2 and, by consequence, of the safety module and the KM1 and KM2 contactors too
The signal of the devices SS1, SS2 is redundantly monitored by the CS safety module.
The switches have different operating principles.
The contactors KM1 and KM2 (with forcibly guided contacts) are monitored by the CS via the feedback circuit too.

## Device data:

- The switch SS1 (FR 693-M2) is a switch with positive opening. The $B_{100}$ value is 2,000,000
- The switch SS2 (FR 1896-M2) is a hinge switch with positive opening. $B_{100}=5,000,000$
- KM1 and KM2 are contactors operated at nominal load. $\mathrm{B}_{10 \mathrm{D}}=1,300,000$ (see EN ISO 13849-1 - Table C.1)
- The CS modules are safety modules (CS AR-01) with MTTF $_{\mathrm{d}}=227$ years and DC= High


## Assumption of the frequency of use

365 days/year, 16 h/day, 1 action every 4 minutes ( 240 s ). $\mathrm{n}_{\text {op }} /$ year $=87,600$.

## MTTF $_{\text {D }}$ calculation

- MTTF $_{\text {D Ss } 1}=228$ years
- MTTF $_{\text {D SS2 }}=571$ years
- $\mathrm{MTTF}_{\mathrm{DKM1,км2}}=148$ years
- MTTF $_{\text {DCs }}=227$ years
- MTTF $_{\mathrm{DCH} 1}=64$ years (SS1,CS, KM1)
- MTTF $_{\text {DCH2 }}=77$ years (SS2,CS,KM2)
- $\mathrm{MTTF}_{\mathrm{D}}$ : by calculating the average of the two channels $\mathrm{MTTF}_{\mathrm{D}}=70.7$ years (High) is achieved


## Diagnostic Coverage DC ${ }_{\text {avg }}$

- SS1, SS2 have DC $=99 \%$ since the SS1 and SS2 contacts are monitored by CS and have different operation principles.
- The contacts of KM1 and KM2 are monitored by the CS module via the feedback circuit. DC=99\% (High)
- CS AR-01 is provided with an internal redundant and self-monitoring circuit. DC = High
- $\mathrm{DC}_{\text {avg }}=$ High


## PL determination

A circuit in category 4 with $M T T F_{D}=72.1$ years and $\mathrm{DC}_{\mathrm{avg}}=$ High corresponds to PLe.


Any information or application example, connection diagrams included, described in this document are to be intended as purely descriptive
The choice and application of the products in conformity with the standards, in order to avoid damage to persons or goods, is the user's responsibility.

EXAMPLE 4
Application: Guard monitoring


Reference standard EN ISO 13849-1

## Safety category

 4Performance Level
PLe


## Description of the safety function

The opening of a guard triggers the switches SS1 and SS2 on the first guard as well as SS3 and SS4 on the second. The switches trigger the safety module and the contactors KM1 and KM2 too.
The signal of the devices SS1, SS2 and SS3, SS4 is redundantly monitored by the CS safety module. Furthermore, an auxiliary contact of the switch is monitored by the PLC.
The switches have different operating principles.
The contactors KM1 and KM2 (with forcibly guided contacts) are monitored by the CS via the feedback circuit too.

## Device data:

- The switches SS1, SS3 (FR 693-M2) are switches with positive opening. The $\mathrm{B}_{100}$ value is $2,000,000$
- The switches SS2, SS4 (FR 1896-M2) are hinge switches with positive opening. $B_{100}=5,000,000$
- KM1 and KM2 are contactors operated at nominal load. The $\mathrm{B}_{10 \mathrm{D}}$ value is 1,300,000 (see EN ISO 13849-1 - Table C.1)
- CS is a safety module (CS AR-05) with MTTF $_{D}=152$ years and DC= High


## Assumption of the frequency of use

- 4 times per hour for $24 \mathrm{~h} /$ day for 365 days/year equal to $\mathrm{n}_{\text {op }} /$ year $=35,040$
- The contactors will operate for twice the number of operations $=70,080$


## MTTF $_{\text {D }}$ calculation

- $\mathrm{MTTF}_{\mathrm{D} \text { ss1,Ss3 }}=571$ years; $\mathrm{MTTF}_{\mathrm{D} s s 2, \text { ss4 }}=1,427$ years
- MTTF $_{\text {D KM1, KM2 }}=185$ years
- MTTF $_{\text {DCS }}=152$ years
- MTTF $_{\text {DCh1 }}=73$ years (SS1,CS,KM1) / (SS3,CS,KM1)
- MTTF $_{\text {DCh2 }}=79$ years (SS2,CS,KM2) / (SS4,CS,KM2)
- $\mathrm{MTTF}_{\mathrm{D}}$ : by calculating the average of the two channels MTTF $=76$ years (High) is achieved


## Diagnostic Coverage $\mathrm{DC}_{\text {avg }}$

- The contacts of KM1, KM2 are monitored by the CS module via the feedback circuit. DC=99\%
- All auxiliary contacts of the switches are monitored by the PLC. DC=99\%
- The CS AR-05 module has a DC= High (see page 271)
- The diagnostic coverage for both channels is $99 \%$ (High)


## CCF Common Cause Failures

- We assume a score > 65 (acc. to EN ISO 13849-1 - Annex F).


## PL determination

- A circuit in category 4 with MTTF $_{D}=88.6$ years and DC $_{\text {avg }}=$ High corresponds to PL e.


[^20]The choice and application of the products in conformity with the standards, in order to avoid damage to persons or goods, is the user's responsibility.

## EXAMPLE 5

Application: Guard monitoring



## Description of the safety function

The opening of guards triggers the sensors SS1 on the first guard, SS2 on the second and SS3 on the third. The sensors trigger the safety module CS AR-08 and the contactors KM1 and KM2 too. The contactors KM1 and KM2 (with forcibly guided contacts) are monitored by the CS AR-08 via the feedback circuit.

## Device data

SS1, SS2, SS3 are ST series coded sensors with RFID technology. $\mathrm{PFH}_{\mathrm{D}}=1.20 \mathrm{E}-11, \mathrm{PL}={ }^{\prime \prime} e^{\prime \prime}$
CS AR-08 is a safety module. $\mathrm{PFH}_{\mathrm{D}}=9.73 \mathrm{E}-11, \mathrm{PL}=$ " e "
KM1 and KM2 are contactors operated at nominal load. $B_{100}=1,300,000$ (see EN ISO 13849-1 - Table C.1)

## Assumption of the frequency of use

Each door is opened every 2 minutes, 16 hours a day, for 365 days a year, equal to nop $=175,200$
Definition of the SRP/CS and subsystems
The SRP/CS consists of 5 subsystems (SB):
SB1,2,3 represent the three ST series RFID sensors
SB4 represents the safety module CS AR-08..
SB5 represents the two contactors KM1 and KM2 in redundant architecture (cat. 4)


## $\mathrm{PFH}_{\mathrm{D}}$ calculation for SB5

MTTF $_{D}$ KM1,KM2 $=74.2$ years.
$D C=99 \%$, the contacts of KM1 and KM2 are monitored by the CS safety module via the feedback circuit.
For the CCF parameter we assume a score higher than 65 (acc. to EN ISO 13849-1 - Annex F).
A category 4 circuit with $M T T F_{D}=74.2$ years (high) and high diagnostic coverage ( $\mathrm{DC}=99 \%$ ) corresponds to a failure probability of $\mathrm{PFH} \mathrm{D}_{\mathrm{D}}$
= 3.4E-08 and a PL "e".

## Calculation of the total $\mathrm{PFH}_{\mathrm{D}}$ of the SRP/CS

$\mathrm{PFH}_{\text {DTOT }}=\mathrm{PFH}_{\text {DSB1 }}+\mathrm{PFH}_{\text {DSB2 }}+\mathrm{PFH}_{\text {DSB3 }}+\mathrm{PFH}_{\text {DSB }}+\mathrm{PFH}_{\text {DSB5 }}=3.5 \mathrm{E}-08$
It corresponds to PL "e".

## Calculation example performed with SISTEMA software, downloadable free of charge at www.pizzato.com

EXAMPLE 6
Application: Guard monitoring


Reference standard EN ISO 13849-1
Safety category
Performance Level
4


## Description of the safety function

The opening of a guard triggers switches SS1 and SS2 on the first guard and triggers sensor SS3 on the second; the switches trigger the safety module and both contactors KM1 and KM2.
The signals from the SS1, SS2 and SS3 devices are redundantly monitored by the CS MF safety module.
There is also an emergency button which has a two-channel connection with the safety module too.
The contactors KM1 and KM2 (with forcibly guided contacts) are monitored by the CS MF via the feedback circuit too.

## Device data:

- The switch SS1 (FR 693-M2) is a switch with positive opening. $B_{100}=2,000,000$
- The switch SS3 (FR 1896-M2) is a hinge switch with positive opening. $B_{10 D}=5,000,000$
- SS3 (SR AD40AN2) is a magnetic safety sensor. $B_{100}=20,000,000$
- SS4 (ES AC31005) is a housing with emergency button (E2 1PERZ4531) provided with 2 NC contacts. $B_{100}=600,000$
- KM1 and KM2 are contactors operated at nominal load. $\mathrm{B}_{10 \mathrm{D}}=1,300,000$ (see EN ISO 13849-1 - Table C.1)
- CS MF201M0-P1 is a safety module with MTTF $=842$ years and $D C=99 \%$


## Assumption of the frequency of use

- Each door is opened 2 times per hour for $16 \mathrm{~h} /$ day for 365 days/year equal to $n_{o p}$ /year $=11,680$
- It is assumed that the emergency button is actuated at a maximum of once a day, $\mathrm{n}_{\mathrm{op}} / \mathrm{year}=365$
- The contactors will operate for twice the number of operations $=23,725$


## MTTF $_{\mathrm{D}}$ calculation

## Guard SS1/SS2

- MTTF $_{\text {D Ss } 1, S s_{3}}=1,712$ years
- MTTF $_{\text {D SS2. SS } 4}=4,281$ years
- $\mathrm{MTTF}_{\mathrm{D} \mathrm{KM1,kM2}}=548$ years
- $\mathrm{MTTF}_{\mathrm{DCS}}=842$ years
- MTTF $_{\mathrm{DCH1}}=278$ years (SS1,CS, KM1)
- $\mathrm{MTTF}_{\mathrm{DCH2}}=308$ years (SS2,CS, KM2)
- MTTF $_{\mathrm{D}}=$ by calculating the average of the two channels MTTF ${ }_{D}=293$ years is achieved


## Guard SS3

- $\mathrm{MTTF}_{\mathrm{D} \text { Ss3 }}=17,123$ years
- $\mathrm{MTTF}_{\mathrm{DKM1}, \mathrm{KM} 2}=548$ years
- $\mathrm{MTTF}_{\mathrm{D} \text { cs }}=842$ years
- MTTF $_{\mathrm{D}}=325$ years


## Emergency button SS4

- $\mathrm{MTTF}_{\mathrm{D} \mathrm{ss4}}=16,438$ years
- $\mathrm{MTTF}_{\mathrm{D} \mathrm{KM1} 1, \mathrm{KM} 2}=548$ years
- $\mathrm{MTFF}_{\mathrm{DCS}}=842$ years
- $\mathrm{MTTF}_{\mathrm{D}}=325$ years


## Diagnostic Coverage DC avg

- The contacts of KM1, KM2 are monitored by the CS MF module via the feedback circuit. DC=99\%
- For the devices SS1, SS2 and SS3 it is possible to detect all faults. DC=99\%
- The CS MF201M0-P1 module has a DC=99\%
- We assume a diagnostic coverage of 99\% (High)


## CCF Common Cause Failures

- We assume a score > 65 (acc. to EN ISO 13849-1 - Annex F).


## PL determination

- A circuit in category 4 with $M T T F ~_{D}=$ High and $D_{\text {avg }}=$ High corresponds to PL e.
- The safety functions associated to the guards SS1/SS2, SS3 and the emergency button present the level PL e.


Any information or application example, connection diagrams included, described in this document are to be intended as purely descriptive.
The choice and application of the products in conformity with the standards, in order to avoid damage to persons or goods, is the user's responsibility.

EXAMPLE 7
Application: Guard monitoring

Reference standard EN ISO 13849-1 Safety category 4 Performance Level PLe



## Description of the safety function

Every machine is divided into 3 different zones. The access to each zone is monitored by the guards and 4 emergency buttons are present too.
The operation of an emergency button will trigger the CS MP safety module as well as the forcibly guided contactors KMA1/2, KMB1/2 and $\mathrm{KMC} 1 / 2$, and will therefore stop all motors.
The opening of a guard in zone A triggers the devices SS5 or SS6 and, as a consequence, the CS MP safety module as well as the contactors KMA1 and KMA2, and therefore also the stop of the MA motor. The devices SS5 and SS6 are connected to the CS MP safety module separately, with a two-channel connection.
The opening of the guard in zone B triggers the device SS7 and, as a consequence, the CS MP safety module as well as the contactors KMB1 and KMB2, and therefore also the stop of the MB motor. The SS7 hinge is provided with two OSSD outputs and is redundantly controlled by the CS MP safety module.
The opening of a guard in zone C triggers the devices SS8, SS9 or SS10 and, as a consequence, the safety module as well as the contactors KMC1 and KMC2, and therefore also the stop of the MC motor. The sensors SS8, SS9 and SS10 are interconnected via the OSSD outputs and are redundantly monitored by the CS MP safety module.

## Device data

- SS1, SS2, SS3 and SS4 (ES AC31005) are emergency buttons (E2 1PERZ4531) provided with 2 NC contacts. $\mathrm{B}_{100}=600,000$ (see page 333)
- SS5 and SS6 (SR AD40AN2) are magnetic safety sensors. $B_{100}=20,000,000$
- SS7 (HX BEE1-KSM) is a safety hinge with OSSD outputs. MTTF $_{\mathrm{D}}=4,077$ years / DC=99\%
- SS8, SS9 and SS10 (ST DD310MK-D1T) are safety sensors with RFID technology and OSSD outputs. MTTF $F_{D}=4,077$ years / DC=99\% (see page 333)
- KMA, KMB and KMC are contactors operated at nominal load. $\mathrm{B}_{100}=1,300,000$ (see EN ISO 13849-1 - Table C.1)
- CS MP202M0 is a safety module with MTTF $_{\mathrm{D}}=2035$ years / $D C=99 \%$


## Assumption of the frequency of use

- Each door of zone $A$ is opened 2 times per hour for $16 \mathrm{~h} /$ day for 365 days/year equal to $\mathrm{n}_{\mathrm{op}} /$ year $=11,680$. The contactors will operate for twice the number of operations $=23,360$
- The door of zone $B$ is opened 4 times per hour for $16 \mathrm{~h} /$ day for 365 days/year equal to $\mathrm{n}_{\text {op }} /$ year $=23,360$. The contactors will operate for a given number of operations $=23,360$
- Each door of zone $C$ is opened 1 times per hour for $16 \mathrm{~h} /$ day for 365 days/year equal to $\mathrm{n}_{\mathrm{op}} /$ year $=5,840$. The contactors will operate for a given number of operations $=17,520$
- It is assumed that the emergency button is actuated at a maximum of once a week, $n_{\text {op }} / y e a r=52$
- Fault Exclusion: since it is assumed that the pairs of contactors, connected in parallel to the respective safety outputs, are wired permanently within the switching cabinet, the possibility of short-circuit between +24 V and the contactors is excluded (see Table D.4, item D.5.2 of EN ISO 13849-2).


## MTTF $_{\text {D }}$ calculation

## Emergency buttons

- $\mathrm{MTTF}_{\mathrm{D}}$ SS1/SS2/SS3/SS4 = 115,384 years
- MTTF $_{\text {D }}$ CS $=2035$ years
- MTTF $_{\mathrm{D}}$ KMC1, KMC2 $=742$ years
- $\mathrm{MTTF}_{\mathrm{D}}$ e-stop $=541$ years


## Guards, zone A

- $\mathrm{MTTF}_{\mathrm{D}}$ SS5/SS6 $=17,123$ years
- MTTF $_{D}$ CS $=2035$ years
- MTTF $_{\text {D }}$ KMA1,KMA2 $=556$ years
- MTTF ${ }_{\mathrm{D}}$ A = 425 years (SS5/ SS6,CS,KMA)


## Guards, zone B

- MTTF $_{\text {D }}$ SS7 $=4,077$ years
- MTTF $_{D}$ CS $=2035$ years
- MTTF $_{\mathrm{D}}$ KMB1,KMB2 $=556$
years
- MTTF $_{0}$ B $=394$ years
(SS7,CS, KMB)


## Guards, zone C

- MTTF SS8/SS9/SS10 = 4,077 years
- MTTF $_{\text {D }}$ CS $=2035$ years
- MTTF $_{\mathrm{D}}$ KMC1,KMC2 $=742$ years
- MTTF $_{\text {D }} \mathrm{C}=479$ years (SS8/SS9/ SS10, CS, KMC)


## Diagnostic Coverage DC

- The contacts of KMA, KMB and KMC are monitored by the CS MP module via the feedback circuit. DC=99\%
- All faults in the various devices can be detected. $D C=99 \%$
- The CS MP202M0 module has a DC=99\%
- The result is a diagnostic coverage of $99 \%$ for each function


## CCF Common Cause Failures

- We assume a score > 65 for all safety functions (acc. to EN ISO 13849-1 - Annex F).


## PL determination

- A circuit in category 4 with MTTF $_{\mathrm{D}}=$ High and $\mathrm{DC}_{\text {avg }}=$ High corresponds to PL e.
- All safety functions associated to the guards and the emergency buttons have PLe.



## EXAMPLE 8

Application: Guard monitoring


Reference standard EN ISO 13849-1

Performance Level - Safety function 1	PL e
Performance Level - Safety function 2	PL d



## Description of the safety function

Interlocking devices SS1, SS2 and SS3 perform two safety functions: monitoring the locked state and locking the guard.
Once the guards have been released, the three sensors trigger the safety module and the contactors KM1 and KM2 too. The contactors KM1 and KM2 (with forcibly guided contacts) are monitored by the CS AR-08 via the feedback circuit.
The interlock command on the three devices SS1, SS2 and SS3 is maintained until the motor standstill monitoring module
CS AM-01 detects the actual stopping of movement.

## Device data

SS1, SS2, SS3 are NS series coded interlock devices with RFID technology, with guard locking device. Locked protection detection function $\mathrm{PFH}_{\mathrm{D}}=1.22 \mathrm{E}-09 \mathrm{PL}=$ "e", operating of locking control $\mathrm{PFH}_{\mathrm{D}}=2.29 \mathrm{E}-10 \mathrm{PL}=$ "e".
CS AR-08 is a safety module, $\mathrm{PFH}_{\mathrm{D}}=9.73 \mathrm{E}-11, \mathrm{PL}=$ "e".
CS AM-01 is a safety module for motor standstill monitoring, $P F H_{D}=8,70 \mathrm{E}-09$, PL " d ".
KM1 and KM2 are contactors operated at nominal load. $B 10_{D}=1,300,000$ (see EN ISO 13849-1 - Table C.1)

## Assumption of the frequency of use

Each door is opened every 10 minutes, 16 hours a day, for 365 days a year, equal to $n_{\text {op }} / y e a r=35,040$

## Definition of the SRP/CS and subsystems

This application example presents two safety functions:

1. Safety-related stop function initiated by a protective measure
2. Maintaining the protection guard interlock with M motor in motion

The safety function 1 is performed by an SRP/CS consisting of 5 subsystems (SB):

- SB11,12,13 represent the three RFID interlock devices of the NS series: SS1, SS2 and SS3
- SB14 represents the safety module CS AR-08
- SB15 represents the two contactors KM1 and KM2 in redundant architecture (cat. 4)


The safety function 2 is performed by 2 subsystems (SB):

- SB21 represents the CS AM-01 safety module for motor standstill monitoring
- SB22 represents the three NS series RFID interlock devices



## $\mathrm{PFH}_{\mathrm{p}}$ calculation for SB15

MTTF DM1,KM2 = 371 years.
$D C=99 \%$, the contacts of KM1 and KM2 are monitored by the CS safety module via the feedback circuit.
For the CCF parameter we assume a score higher than 65 (acc. to EN ISO 13849-1 - Annex F).
A category 4 circuit with $M T T F_{D}=371$ and high diagnostic coverage ( $\mathrm{DC}=99 \%$ ) corresponds to a failure probability of $\mathrm{PFH}_{\mathrm{D}}=6.3 \mathrm{E}-09$
and a PL "e".

## Calculation of the total $\mathrm{PFH}_{\mathrm{D}}$ of the SRP/CS safety function 1

$\mathrm{PFH}_{\text {DTOT }}=\mathrm{PFH}_{\mathrm{DSB} 11}+\mathrm{PFH}_{\mathrm{DSB} 12}+\mathrm{PFH}_{\mathrm{DSB} 13}+\mathrm{PFH}_{\mathrm{DSB} 14}+\mathrm{PFH}_{\mathrm{DSB} 15}=1 \mathrm{E}-08$
It corresponds to PL "e".

## Calculation of the total $\mathrm{PFH}_{\mathrm{D}}$ of the SRP/CS safety function 2

$\mathrm{PFH}_{\text {DTот }}=\mathrm{PFH}_{\text {DSB21 }}+\mathrm{PFH}_{\text {DSB22 }}=8.9 \mathrm{E}-09$
That would correspond to PL "e". However, considering that the motor standstill monitoring module is characterised by a PL "d", and that the unlock command takes place via a single-channel architecture, the entire SRP/CS is downgraded to this value, therefore PL "d".

Calculation example performed with SISTEMA software, downloadable free of charge at www.pizzato.com

## 7 - Positive opening, redundancy, diversification and self-monitoring

## Positive mode and negative mode.

According to the standard EN ISO 12100, if a moving mechanical component inevitably moves another component along with it, either by direct contact or via rigid elements, these components are said to be connected in the positive mode. Instead, if the movement of a mechanical component simply allows another element to move freely, without using direct force (for example by gravity force, spring effect, etc.), that connection is said to be connected in the negative mode.


With positive mode, preventive maintenance can be performed, thereby avoiding the dangerous failures described above. With negative mode, on the other hand, failures can occur within the switch and are therefore difficult to detect.
In the event of an internal failure (welded contacts or a damaged spring), the contacts will still open in positive mode in spite of the damage and the machine will be stopped.


Welded contacts
Machine standstill

## Use of switches in safety applications

If only one switch is used in a safety application, the switch must be actuated in positive mode. In order to be used for safety applications, the opening contact (normally closed) must be with "positive opening". All switches with the symbol $\Theta$ are provided with NC contacts with positive opening.


No flexible connection between the moving contacts and the actuator on which the actuating force is exerted.

In case of two or more switches, they should operate in opposite modes, for example:

- The first with an NC contact (normally closed contact), actuated by the guard in positive mode.
- The other with an NO contact (normally open contact), actuated by the guard in negative mode.

This is a common practice, though it does not exclude the possible use of two switches that are actuated in positive mode (see diversification).

## Diversification

In redundant systems, safety is increased through diversification. This can be obtained by using two switches with different design and/ or technology; failures with the same cause can thereby be prevented. Some examples of diversification are: the use of a switch working with positive switching mode combined with another working in negative switching mode; a switch with mechanical actuation combined with another with non-mechanical actuation (e.g. electronic sensor); two switches, both with mechanical actuator working in positive mode but with a different actuation principle (e.g. a key switch FR 693-M2 combined with a pin switch FR 1896-M2).

## Redundancy

Redundancy implies the use of more than one device or system to make sure that, in case of a failure in one device, there is another one available to perform the required safety functions. If the first failure is not detected, an additional failure may lead to the loss of the safety function.

## Self-monitoring

Self-monitoring consists in an automatic control performed to check the functioning of all devices involved in the machine workingcycle. This way the next working cycle can be either accepted or rejected.

## Redundancy and self-monitoring

Combining redundancy and self-monitoring in the same system makes sure that a first failure in the safety circuit does not lead to the loss of safety functions. This first failure will be detected at the next re-start or, in any case, before a second failure which may lead to the loss of the safety function.

## Definitions according to the EN 60947-1 and EN 60947-5-1 standards

## Control switches

Devices or operating mechanism for controlling the operation of equipment, including signalling, interlocking, etc.

## Utilization category

Combination of specified requirements related to the conditions in which the switching device fulfils its purpose.

## Operating cycle

Sequence of two operations, one for opening and one for closing.

## Rated current le

This current depends on the rated operating voltage, the rated frequency, the utilization category and the type of protective enclosure, if present.

## Thermal current lth

Maximum current for heating tests on equipment without enclosure, in free air. Its value shall be least to equal to the maximum value of the rated operational current le of the equipment without enclosure, in eight-hour duty.

## Electrical endurance

Number of on-load operating cycles, under the conditions defined by the corresponding product standard, which can be carried out without repair or replacement.

## Mechanical endurance

Number of no-load operating cycles (i.e. without current on the main contacts), under the conditions defined by the corresponding product standard, which can be carried out without repair or replacement of mechanical parts.

## Contact elements

The parts, fixed or movable, conducting or insulating, of a control switch necessary to close and open one single conducting path of a circuit.

## Single interruption contact elements

Contact element opening or closing the circuit's conducting path at one point only.

## Double interruption contact elements

Contact element opening or closing the circuit's conducting path at two points in series.

## Make-contact elements (normally open)

Contact element closing a circuit's conducting path when the control switch is actuated.

## Break-contact elements (normally closed)

Contact element opening a circuit's conducting path when the control switch is actuated.

## Change-over contact elements

Contact element combination including one make-contact element and one break-contact element.

## Electrically separated contact elements

Contact elements of the same control switch which are well isolated from each other and therefore can be connected to electric circuits with different voltages.

## Contact elements with independent action (snap action)

Contact element of a manual or automatic device for control circuits where the motion speed of the contact is substantially independent from the motion speed of the actuator.

## Contact elements with dependent action (slow action)

Contact element of a manual or automatic device for control circuits where the motion speed of the contact depends on the motion speed of the actuator.

## Minimum actuating force

Minimum force to be applied to the actuator that will cause all contacts to reach their switched position.

## Position switch

Control switch whose controller is actuated by a moving part of the machine, when this part arrives to a set position.

## Foot switch

Control switch whose actuator is actuated by exerting force with a foot on the pedal.

## Pre-travel of the actuator

The maximum travel of the actuator which does not cause any travel of the contact elements.

## Ambient temperature

The air temperature surrounding the complete switching device, under prescribed conditions.

## Rated operating voltage Ue

Voltage which, combined with the rated operational current le, determinates the application of the equipment and the referred utilization categories.

## Rated insulation voltage Ui

Reference voltage for the dielectric test voltage and the creepage distances along surfaces.

## Rated impulse withstand voltage Uimp

The highest peak value of an impulse voltage, of a prescribed shape and polarity, which does not cause destructive discharge under the specified test conditions.

## Contact block

Contact element or contact elements combination which can be combined with similar units, operated by a common actuating system

## Markings and quality marks

## CE marking

CThe CE marking is a mandatory declaration made by the manufacturer of a product in order to indicate that the product satisfies all requirements foreseen by the directives (regulated by the European Community) in terms of safety and quality. Therefore, it ensures National bodies of the EU countries about the fulfilment of obligations laid down in the agreements

## IMQ mark

The IMQ (Italian Institute of the Quality Mark) is an association in Italy (independent third body) whose task is to check and certify the compliance of materials and equipment with safety standards (CEI standards in the electric and electronic sector). This voluntary conformity certification is a guarantee of quality, safety and technical value.

## UL mark



UL (Underwriters Laboratories Inc.) is an independent non-profit body that tests materials, devices, products, equipment, constructions, methods and systems with regard to their risk for human life and goods according to the standard in force in the United States and Canada. Decisions made by UL are often recognized by many governing authorities concerning the compliance with local safety regulations.

## TÜV SÜD mark

TUV SUD is an international authority claiming long-standing experience in the certification of operating safety for electrical, electromechanical and electronic products. In the course of type approval, TUV SUD closely inspects the quality throughout all the stages concerning product development, from software design and completion, to production and to the tests conducted according to ISO/IEC standards. The operating safety certification is obtained voluntarily and has a high technical value, since it not only certifies the electrical safety of the product, but also its specific operating suitability for use in safety applications according to the IEC 61508 standard.

## EAC mark

E月[The EAC certificate of conformity is a certificate issued by a Customs Union certification body formed by Russia, Belarus and Kazakhstan, with which the conformity of a product is certified with the essential safety requirements laid down by one or more Technical Regulations (Directives) of the Customs Union.
moreTechnical Regulations (Directives) of the Customs Union.

CCC mark
The COC is the organization in the Chinese Popular Republic whose task is to check and certify the low voltage electrical material
This organization issues the product mark CCC which certifies the passing of electrical/mechanical conformity tests by products and the compliance of the company quality system with required standards. To obtain the mark, the Chinese body makes preliminary company visits as well as periodical check inspections. Position switches cannot be sold in the Chinese territory without this mark.

## International and European Standards

EN 50041: Low voltage switchgear and controlgear for industrial use. Control switches. Position switches $42.5 \times 80 \mathrm{~mm}$. Dimensions and features
EN 50047: Low voltage switchgear and controlgear for industrial use. Control switches. Position switches $30 \times 55 \mathrm{~mm}$. Dimensions and features
EN ISO 14119: Safety of machinery. Interlocking devices associated with guards. Design and selection principles.
EN ISO 12100: Safety of machinery. General design principles. Risk assessment and risk reduction
EN ISO 13849-1: Safety of machinery. Safety-related parts of control systems. Part 1: General principles for design.
EN ISO 13850: Safety of machinery. Emergency stop devices, functional aspects. Design principles.
EN 61000-6-3 (equivalent to IEC 61000-6-3): Electromagnetic compatibility. Generic emission standard. Part 1:
residential, commercial and light-industrial environments
EN 61000-6-2 (equivalent to IEC 61000-6-2): Electromagnetic compatibility. Generic immunity standard. Part 2: Industrial environments.
EN ISO 13855: Safety of machinery. Positioning of safeguards with respect to the approach speeds of parts of the human body
EN 1037: Safety of machinery. Prevention of unexpected start-up.
EN 574: Safety of machinery. Two-hand control devices. Functional aspects. Principles for design.
EN 60947-1 (equivalent to IEC 60947-1): Low-voltage switchgear and controlgear. Part 1: General rules.
EN 60947-5-1 (equivalent to IEC 60947-5-1): Low-voltage switchgear and controlgear. Part 5: Devices for control and operation circuits.
Section 1: Electromechanical control circuit devices.
EN 60947-5-2: Low-voltage switchgear and controlgear. Part 5-2: Control circuit devices and switching elements - Proximity switches
EN 60947-5-3: Low-voltage switchgear and controlgear. Part 5-3: Control circuit devices and switching elements - Requirements for proximity devices with defined behaviour under fault conditions (PDF)
EN 60204-1 (equivalent to IEC 60204-1): Safety of machinery. Electrical equipment of machines. Part 1: General rules.
EN 60529 (equivalent to IEC 60529): Protection degree of the housings (IP codes).
ISO 20653: Road vehicles-degrees of protection (IP CODE)
EN 62326-1 (equivalent to IEC 62326-1): Printed boards. Part 1: Generic specification
EN 60664-1 (equivalent to IEC 60664-1): Insulation coordination for equipment within low-voltage systems
Part 1: Principles, requirements and tests.
EN 61508 (equivalent to IEC 61508): Functional safety of electrical, electronic and programmable electronic systems for safety applications.
EN 62061 (equivalent to IEC 62061): Safety of machinery - Functional safety of safety-related electrical, electronic and programmable
electronic control systems.
EN 60079-0 (equivalent to IEC 60079-0): Electrical devices for potentially explosive atmospheres. General rules
EN 60079-11 (equivalent to IEC 60079-11): Electrical apparatus for potentially explosive atmospheres. Intrinsic safety "i"
EN 60079-31 (equivalent to IEC 60079-31): Electrical apparatus for potentially explosive atmospheres. Type of protection: " n ".
EN 60079-28 (equivalent to IEC 60079-28): Electrical apparatus for use in the presence of combustible dust. Part 1-1: Construction and testing
BG-GS-ET-15: Prescriptions about how to test switches with forced contact opening to be used in safety applications (German standard).
UL 508: Standards for industrial control equipment. (American standard).
CSA 22-2 No.14: Standards for industrial control equipment. (Canadian standard).

## European directives

2014/35/EU	Directive on low-voltage switchgear and controlgear
2006/42/EC	Machinery Directive
2014/30/EU	Directive on electromagnetic compatibility
94/9/EC	ATEX Directive

## Regulatory Organisations

CEI	Comitato Elettrotecnico Italiano (IT)	NF
CSA	Canadian Standard Association (CAN)	VDE
CENELEC	European Committee for Electrotechnical Standardisation	UNI
CEN	European Committee for Standardisation	UL
IEC	International Electrotechnical Commission	TÜV

Normes Françaises (FR)<br>Verband Deutscher Elektrotechniker (DE)<br>Ente Nazionale Italiano di Unificazione (IT)<br>Underwriter's Laboratories (USA)<br>Technischer Überwachungs-Verein (DE)

## Protection degree of housings for electrical material according to EN 60529

The table reports the required protection degrees according to the IEC 60529, EN 60529, CEI 70-1 standards.
The protection degrees are indicated by the abbreviation IP and 2 following digits. 2 additional letters can be reported indicating protection of persons or other features. The first digit shows the degree of protection against penetration of external solid materials. The second digit identifies instead the protection degree against liquid penetration.

1st digit	Description	Protection for the machine	Protection for persons	2nd digit	Description	Protection for the machine
0		Not protected	Not protected	0		Not protected
1		Protected against solid objects greater than 50 mm	Against access to hazardous parts with the back of a hand ( $\varnothing 50 \mathrm{~mm}$ )	1		Protected against vertically falling water drops
2	O	Protected against solid objects greater than 12 mm	Against access to hazardous parts with a finger ( $\varnothing 12 \mathrm{~mm}$ )	2		Protected against water drops falling at max. $15^{\circ}$ angle
3		Protected against solid objects greater than 2.5 mm	Against access to hazardous parts with a tool ( 02.5 mm )	3		Protected against rain drops falling at max. $60^{\circ}$ angle
4		Protected against solid objects greater than 1 mm	Against access to hazardous parts with a wire ( $\varnothing 1 \mathrm{~mm}$ )	4		Protected against splash water from any direction
5	Eid	Protected against dust	Against access to hazardous parts with a wire ( $\varnothing 1 \mathrm{~mm}$ )	5		Protected against water jets from any direction
6		Totally protected against dust	Against access to hazardous parts with a wire ( $\varnothing 1 \mathrm{~mm}$ )	6		Protected against powerful water jets from any direction (e.g. waves)
				7		Protected against temporary water immersion (30 minutes at onemeter depth)
				8		Protected against continuous immersion in water

## Protection degree IP69K according to ISO 20653



ISO 20653 envisages a particularly strenuous test. This test simulates the conditions of pressure washing in industrial environments with water jets having pressure between 80 and 100 bar, flow rate between 14 and $16 \mathrm{I} / \mathrm{min}$. and a temperature of $80^{\circ} \mathrm{C}$.

Test specifications:
Rotation speed (B):
Distance from water jet (A):
$5 \pm 1 \mathrm{rpm}$ $100+50 /-0 \mathrm{~mm}$
Water flow rate
$15 \pm 1 \mathrm{l} / \mathrm{min}$
Water pressure:
Water temperature:
Test duration:
$9000 \pm 1000 \mathrm{kPa}$
$80 \pm 5^{\circ} \mathrm{C}$
30 s per position

## Housing data in accordance with UL (UL 508) and CSA (C22-2 no.14) approvals

The features required for a housing are determined by a specific environmental designation and other features such as the kind of gasket or the use of solvent materials.

## Type Intended use and description

1 Mainly for indoor utilization, supplied with protection against contact with the internal mechanism and against a limited quantity of falling dirt.

Suitable for both indoor and outdoor use, provided with protection degree against falling rain, water splashes and direct coming water from a pipe. No damage caused by ice formation on the hosing. Corrosion-resistant.
Indoor utilization, provided with a protection degree against dust, dirt, flying fibres, dripping water and outside condensation of noncorrosive fluids.

13
Indoor utilization, supplied with a protection degree against gauze, dust penetration, outside condensation and sprinkling of water, oil and non-corrosive fluids.

## Pollution degree (of environmental conditions) according to EN 60947-1

According to the EN 60947-1 standard, the pollution degree is a conventional number based on the quantity of conducting hygroscopic dust, ionized gas or salt, and on the relative humidity and its frequency of occurrence resulting in hygroscopic absorption or condensation of moisture leading to reduction in dielectric strength and/or surface resistivity. In equipment to be used inside a housing or having an integral enclosure as part of the device, the pollution degree applies to the inner part of housing. With the purpose of evaluating the air and surface insulation distances, the following four pollution degrees are defined:

## Degree Description

1 No pollution or only dry and non-conductive pollution occurs.

2 Normally, only non-conductive pollution is present. Occasionally some temporary conductivity caused by condensation may occur.
3 Some conductive pollution is present, or some dry non-conductive pollution that becomes conductive because of condensation.

4
Pollution causes persistent conductivity, for instance due to conductive dust or rain or snow.

Where not otherwise specified by the applicable standards for the product, equipment for industrial applications are generally intended for their use in environment with pollution degree 3. Nevertheless, other degrees can be considered, depending on the micro-environment or on particular applications.

## Use in alternating and direct current of auxiliary devices acc. to EN 60947-5-1

Alternating current use

## Utilization category

## Description

Control of resistive loads and solid state loads with insulation by optocouplers.
Control of solid state loads with transformer isolation
Control of electromagnetic loads, power $\leq 72 \mathrm{VA}$
Control of electromagnetic loads, power $\geq 72$ VA

Direct current use
Utilization
category

Intended use

DC12 Control of resistive loads and solid state loads with insulation by optocouplers.
DC13 Control of electromagnetic loads without economy resistors in circuit
DC14
Control of electromagnetic loads with economy resistors in circuit

Legend:
FA •••-EX5 The dots indicate a generic alphanumeric character

Article	Page	Article	Page
AC 35	139	FK ••15-W3M1	103
FA ••••-EX5	173	FK ••16-M1	103
FC ••01-M2	45	FK $\bullet \bullet 17-\mathrm{M} 1$	103
FC ••02-M2	45	FK ••20-M1	103
FC ••04-M2	45	FK $\bullet \cdot 21-\mathrm{M} 1$	103
FC ••05-M2	45	FK ••25-M1	103
FC ••08-M2	45	FK ••30-M1	103
FC ••10-M2	45	FK ••30-W3M1	103
FC ••11-M2	45	FK $\bullet \cdot 30-X M 1 V 38$	191
FC ••15-M2	45	FK ••31-M1	103
FC ••16-M2	45	FK $\bullet \cdot 31-W 3 M 1$	103
FC ••18-M2	45	FK ••31-XM1V38	191
FC ••19-M2	45	FK ••33-M1	103
FC • $20-\mathrm{M} 2$	45	FK ••34-M1	103
FC ••21-M2	45	FK ••38-M1	103
FC $\cdot \bullet 25-\mathrm{M} 2$	45	FK ••38-W3M1	103
FC ••31-M2	45	FK ••50-M1	103
FC ••32-M2	45	FK ••51-M1	103
FC ••33-M2	45	FK ••51-W3M1	103
FC ••34-M2	45	FK ••51-XM1V38	191
FC • $\cdot 35-\mathrm{M} 2$	45	FK ••52-M1	103
FC ••36-M2	45	FK ••52-W3M1	103
FC • $\cdot 38$-M2	45	FK ••53-••••M1	103
FC ••51-M2	45	FK ••54-M1	103
FC ••52-M2	45	FK ••54-W3M1	103
FC ••53-••••M2	45	FK ••54-XM1V38	191
FC • $\bullet 56-\mathrm{M} 2$	45	FK ••55-M1	103
FC ••57-M2	45	FK ••56-M1	103
FC ••58-M2	45	FK ••56-W3M1	103
FC ••76-M2	45	FK ••56-XM1V38	191
FD ••01-M2	15	FK ••57-M1	103
FD ••02-M2	15	FK ••57-W3M1	103
FD ••04-M2	15	FK ••69-M1	103
FD ••05-M2	15	FK $\bullet \bullet 76-\mathrm{M} 1$	103
FD ••08-M2	15	FK ••93-XM1	191
FD ••10-M2	15	FK ••96-XM1	191
FD ••11-M2	15	FK ••A2-M1	103
FD ••15-M2	15	FK ••A4-M1	103
FD ••16-M2	15	FK ••A5-M1	103
FD ••18-M2	15	FK ••A7-M2	103
FD ••19-M2	15	FL ••01-M2	35
FD ••20-M2	15	FL ••02-M2	35
FD ••21-M2	15	FL ••04-M2	35
FD ••25-M2	15	FL ••05-M2	35
FD ••31-M2	15	FL ••08-M2	35
FD ••32-M2	15	FL ••10-M2	35
FD ••33-M2	15	FL ••11-M2	35
FD ••34-M2	15	FL ••15-M2	35
FD ••35-M2	15	FL ••16-M2	35
FD $\cdot \bullet 36-\mathrm{M} 2$	15	FL ••18-M2	35
FD ••38-M2	15	FL ••19-M2	35
FD ••40-M2	15	FL ••20-M2	35
FD ••41-M2	15	FL ••21-M2	35
FD ••42-M2	15	FL ••25-M2	35
FD ••51-M2	15	FL ••31-M2	35
FD ••52-M2	15	FL ••32-M2	35
FD ••53-••••M2	15	FL ••33-M2	35
FD ••56-M2	15	FL ••34-M2	35
FD ••57-M2	15	FL ••35-M2	35
FD ••58-M2	15	FL ••36-M2	35
FD ••76-M2	15	FL ••38-M2	35
FD ••••-M2-EX7	155	FL ••40-M2	35
FD ••••-M2-EX8	155	FL ••41-M2	35
FD •••-M2-EX4	155	FL ••42-M2	35
FD ••••-M2T2	179	FL ••51-M2	35
FK ••01-M1	103	FL ••52-M2	35
FK ••01-W3M1	103	FL ••53-•••••M2	35
FK ••01-XM1	191	FL ••56-M2	35
FK ••02-M1	103	FL ••57-M2	35
FK ••02-W3M1	103	FL ••58-M2	35
FK ••02-XM1	191	FL ••76-M2	35
FK ••05-M1	103	FL ••••-M2-EX7	161
FK ••05-W3M1	103	FL ••••-M2-EX8	161
FK ••05-XM1	191	FL ••••-M2-EX4	161
FK ••07-M1	103	FM ••01-M2	67
FK ••07-W3M1	103	FM ••01-W3M2	67
FK ••07-XM1	191	FM ••02-M2	67
FK ••08-M1	103	FM ••02-W3M2	67
FK ••10-M1	103	FM ••05-M2	67
FK ••12-M1	103	FM ••05-W3M2	67
FK ••13-M1	103	FM ••07-M2	67
FK ••14-M1	103	FM ••07-W3M2	67
FK ••15-M1	103	FM ••08-M2	67
FK ••15-M1R28	103	FM ••12-M2	67


Article	Page	Article	Page
FM ••13-M2	67	FR ••07-W3M2	55
FM ••14-M2	67	FR ••07-XM2	191
FM ••15-M2R28	67	FR ••08-M2	55
FM ••15-W3M2R28	67	FR ••10-M2	55
FM $\bullet \bullet 16-M 2$	67	FR ••12-M2	55
FM $\bullet \cdot 20-\mathrm{M} 2$	67	FR ••13-M2	55
FM • $21-\mathrm{M} 2$	67	FR ••14-M2	55
FM $\cdot \bullet 25-\mathrm{M} 2$	67	FR ••15-M2	55
FM ••30-M2	67	FR ••15-M2R28	55
FM ••30-W3M2	67	FR ••15-W3M2	55
FM •31-M2	67	FR ••15-XM2	191
FM ••31-W3M2	67	FR ••16-M2	55
FM ••33-M2	67	FR ••17-M2	55
FM ••34-M2	67	FR ••20-M2	55
FM $\bullet \bullet 38-\mathrm{M} 2$	67	FR ••21-M2	55
FM ••38-W3M2	67	FR ••25-M2	55
FM $\bullet \bullet 50-\mathrm{M} 2$	67	FR ••30-M2	55
FM ••51-M2	67	FR ••30-W3M2	55
FM ••51-W3M2	67	FR ••30-XM2V38	191
FM ••52-M2	67	FR ••31-M2	55
FM ••52-W3M2	67	FR ••31-W3M2	55
FM ••53-••••M2	67	FR ••31-XM2V38	191
FM $\bullet \bullet 54-M 2$	67	FR ••33-M2	55
FM ••54-W3M2	67	FR ••34-M2	55
FM ••55-M2	67	FR ••38-M2	55
FM ••56-M2	67	FR ••38-W3M2	55
FM ••56-W3M2	67	FR ••50-M2	55
FM ••57-M2	67	FR ••51-M2	55
FM ••57-W3M2	67	FR ••51-W3M2	55
FM ••69-M2	67	FR ••51-XM2V38	191
FM ••76-M2	67	FR ••52-M2	55
FM ••A2-M2	67	FR ••52-W3M2	55
FM $\bullet \bullet A 4-M 2$	67	FR ••53-••••M2	55
FM ••A5-M2	67	FR ••54-M2	55
FM ••A7-M2	67	FR ••54-W3M2	55
FM ••••-M2-EX7	167	FR ••54-XM2V38	191
FP ••01-M2	25	FR ••55-M2	55
FP ••01-XM2	191	FR ••56-M2	55
FP ••02-M2	25	FR ••56-W3M2	55
FP ••02-XM2	191	FR ••56-XM2V38	191
FP ••04-M2	25	FR ••57-M2	55
FP ••05-M2	25	FR ••57-W3M2	55
FP ••05-XM2	191	FR ••69-M2	55
FP ••08-M2	25	FR ••73-M2	189
FP ••08-XM2	191	FR ••76-M2	55
FP ••10-M2	25	FR ••93-XM2	191
FP ••10-XM2	191	FR ••96-XM2	191
FP ••11-M2	25	FR ••A1-M2	55
FP ••11-XM2	191	FR ••A1-XM2	191
FP ••15-M2	25	FR ••A2-M2	55
FP ••16-M2	25	FR ••A4-M2	55
FP ••16-XM2	191	FR ••A5-M2	55
FP ••18-M2	25	FR ••A7-M2	55
FP ••19-M2	25	FR ••F1-M2	189
FP ••20-M2	25	FW ••92-XM2	191
FP ••21-M2	25	FX ••01-M2	79
FP ••25-M2	25	FX ••01-W3M2	79
FP ••31-M2	25	FX ••01-XM2	191
FP ••32-M2	25	FX ••02-M2	79
FP ••33-M2	25	FX ••02-W3M2	79
FP ••34-M2	25	FX ••02-XM2	191
FP ••35-M2	25	FX ••05-M2	79
FP ••36-M2	25	FX ••05-W3M2	79
FP ••38-M2	25	FX ••05-XM2	191
FP ••40-M2	25	FX ••07-M2	79
FP ••41-M2	25	FX ••07-W3M2	79
FP ••42-M2	25	FX ••07-XM2	191
FP ••51-M2	25	FX ••08-M2	79
FP ••52-M2	25	FX ••12-M2	79
FP ••53-••••M2	25	FX ••13-M2	79
FP ••56-M2	25	FX ••14-M2	79
FP ••57-M2	25	FX ••15-M2	79
FP ••58-M2	25	FX $\bullet \bullet 15-M 2 R 28$	79
FP ••76-M2	25	FX ••15-W3M2	79
FR ••01-M2	55	FX ••15-XM2	191
FR ••01-W3M2	55	FX ••16-M2	79
FR ••01-XM2	191	FX ••20-M2	79
FR ••02-M2	55	FX ••21-M2	79
FR ••02-W3M2	55	FX ••25-M2	79
FR ••02-XM2	191	FX ••30-M2	79
FR ••05-M2	55	FX ••30-W3M2	79
FR ••05-W3M2	55	FX ••30-XM2V38	191
FR ••05-XM2	191	FX ••31-M2	79
FR ••07-M2	55	FX ••31-W3M2	79


Article	Page	Article	Page
FX ••31-XM2V38	191	NB B12•••-•••	115
FX ••33-M2	79	NB B22•••-•••	115
FX ••34-M2	79	NB G11 •••-•••	115
FX ••38-M2	79	NB G02•••-•••	115
FX ••38-W3M2	79	NB G12 $\bullet$ •••••	115
FX ••50-M2	79	NB G22•••-•••	115
FX ••51-M2	79	NF B11 •••-•••	125
FX ••51-W3M2	79	NF B02•••-•••	125
FX ••51-XM2V38	191	NF B12•••-•••	125
FX ••52-M2	79	NF B22•••-•••	125
FX ••52-W3M2	79	NF G11 $\bullet \bullet \bullet$ - $\bullet$ •	125
FX ••53-••••M2	79	NF G02•••-•••	125
FX ••54-M2	79	NF G12•••-•••	125
FX ••54-W3M2	79	NF G22•••-•••	125
FX ••54-XM2V38	191	VF AC72	139
FX ••55-M2	79	VF AC83	139
FX ••56-M2	79	VF AD••••••	197
FX ••56-W3M2	79	VF B••••	187
FX ••56-XM2V38	191	VF C••	139
FX ••57-M2	79	VF CA $\bullet \bullet \bullet$ •	197
FX ••57-W3M2	79	VF CBM•••••••	197
FX ••69-M2	79	VF CBS $\bullet \bullet \bullet \bullet \bullet \bullet$	197
FX ••76-M2	79	VF CCM $\bullet \bullet \bullet \bullet \bullet$	197
FX ••93-XM2	191	VF CF•••••	197
FX ••96-XM2	191	VF CN••••	197
FX ••A2-M2	79	VF CY $\bullet \bullet \bullet \bullet$	197
FX ••A4-M2	79	VF D16B	113
FX ••A5-M2	79	VF DFP•••	197
FX ••A7-M2	79	VF KEYD	196
FZ ••01-M2	91	VF KEYF	159
FZ ••01-W3M2	91	VF L31	15
FZ ••02-M2	91	VF L31-•	15
FZ ••02-W3M2	91	VF L32	15
FZ ••05-M2	91	VF L33	15
FZ ••05-W3M2	91	VF L34	15
FZ ••07-M2	91	VF L35	15
FZ ••07-W3M2	91	VF L35-•	15
FZ ••08-M2	91	VF L36	15
FZ ••12-M2	91	VF L41	15
FZ ••13-M2	91	VF L42	15
FZ ••14-M2	91	VF L51	15
FZ ••15-M2R28	91	VF L51-•	15
FZ ••15-W3M2R28	91	VF L52	15
FZ ••16-M2	91	VF L52-•	15
FZ ••20-M2	91	VF L53	15
FZ ••21-M2	91	VF L56	15
FZ $\cdot$ 25-M2	91	VF L56-•	15
FZ ••30-M2	91	VF L57	15
FZ ••30-W3M2	91	VF L57-•	15
FZ ••31-M2	91	VF LE30	55
FZ ••31-W3M2	91	VF LE31	55
FZ ••33-M2	91	VF LE31-•	55
FZ ••34-M2	91	VF LE33	55
FZ ••38-M2	91	VF LE34	55
FZ ••38-W3M2	91	VF LE50	55
FZ ••50-M2	91	VF LE51	55
FZ ••51-M2	91	VF LE51-•	55
FZ ••51-W3M2	91	VF LE52	55
FZ ••52-M2	91	VF LE52-•	55
FZ ••52-W3M2	91	VF LE53	55
FZ $\bullet \bullet 53-\bullet \bullet \bullet$ M2	91	VF LE54	55
FZ ••54-M2	91	VF LE54-•	55
FZ ••54-W3M2	91	VF LE55	55
FZ ••55-M2	91	VF LE55-•	55
FZ ••56-M2	91	VF LE56	55
FZ ••56-W3M2	91	VF LE56-•	55
FZ ••57-M2	91	VF LE57	55
FZ ••57-W3M2	91	VF LE57-•	55
FZ ••69-M2	91	VF LE69	55
FZ ••A2-M2	91	VF MK••••	139
FZ ••A4-M2	91	VF PA $\bullet \bullet \bullet \bullet \bullet$	197
FZ ••A5-M2	91	VF PB••••••	151
FZ ••A7-M2	91	VF PF••••••	197
MK •••••	139	VF PT•••	197
NA B11 •••-•••	115	VF SFP•	197
NA B02•••-•••	115	VF SL••••••	197
NA B12•••-•••	115	VF VAIT1T••	197
NA B22•••-•••	115	VF VAM••••••-X	197
NA G11 $\bullet \bullet \bullet \bullet \bullet$	115	VN A $\bullet \bullet \bullet$	113
NA G02•••-•••	115	VN CM $\bullet \bullet \bullet \bullet$	113
NA G12•••-•••	115	VN CP•••••	113
NA G22•••-*••	115	VN DT1F	113
NB B11 $\bullet \bullet \bullet \bullet \bullet$	115		
NB B02•••-•••	115		

Legend:

The codes in grey have been replaced by the code after the arrow

## Old

## article

FA 4101-•DN $\rightarrow$ FA 4101-KDM $\rightarrow$ FA 4102-•DN $\rightarrow$ FA 4102-KDM $\rightarrow$ FA 4108-DN $\rightarrow$ FA 4108-KDM $\rightarrow$ FA 4110-•DN $\rightarrow$ FA 4110-KDM $\rightarrow$ FA 4111-•DN $\rightarrow$ FA 4111-KDM $\rightarrow$ FA 4112-•DN $\rightarrow$ FA 4112-KDM $\rightarrow$ FA 4113-•DN $\rightarrow$ FA 4113-KDM FA 4115-•DN $\rightarrow$ FA $4115-$ KDM $\rightarrow$ FA 4117-•DN $\rightarrow$ FA 4117-KDM $\rightarrow$ FA 4120-•DN $\rightarrow$ FA 4120-KDM $\rightarrow$ FA 4125-•DN $\rightarrow$ FA 4125-KDM $\rightarrow$ FA 4130-•DN $\rightarrow$ FA 4130-KDM $\rightarrow$ FA 4131-•DN $\rightarrow$ FA 4131-KDM $\rightarrow$ FA 4133-•DN $\rightarrow$ FA 4133-KDM $\rightarrow$ FA 4134-•DN $\rightarrow$ FA 4134-KDM $\rightarrow$ FA 4140-•DN $\rightarrow$ FA 4140-KDM $\rightarrow$ FA $4150-\bullet$ DN $\rightarrow$ FA 4150-KDM $\rightarrow$ FA 4151-DN $\rightarrow$ FA 4151-KDM $\rightarrow$ FA 4152-•DN $\rightarrow$ FA 4152-KDM $\rightarrow$ FA $4154-\bullet$ DN $\rightarrow$ FA 4154-KDM $\rightarrow$ FA 4155-•DN $\rightarrow$ FA 4155-KDM $\rightarrow$ FA $4156-$-DN $\rightarrow$ FA $4156-K D M \rightarrow$ FA 4157-•DN $\rightarrow$ FA 4157 -KDM $\rightarrow$ FA 4169-•DN $\rightarrow$ FA 4169-KDM $\rightarrow$ FA 4501-•DN $\rightarrow$ FA 4501-KDM $\rightarrow$ FA 4502-•DN $\rightarrow$ FA 4502-KDM $\rightarrow$ FA 4508-•DN $\rightarrow$ FA 4508-KDM $\rightarrow$ FA 4510-•DN $\rightarrow$ FA 4510-KDM $\rightarrow$ FA 4511-•DN $\rightarrow$ FA 4511-KDM $\rightarrow$ FA $4512-\bullet$ DN $\rightarrow$ FA 4512-KDM $\rightarrow$ FA 4513-•DN $\rightarrow$ FA 4513-KDM $\rightarrow$ FA 4515-•DN $\rightarrow$ FA 4515-KDM $\rightarrow$ FA 4517-•DN $\rightarrow$ FA 4517-KDM $\rightarrow$ FA 4520-•DN $\rightarrow$ FA 4520-KDM $\rightarrow$ FA 4525-•DN $\rightarrow$ FA 4525-KDM $\rightarrow$ FA 4530-•DN $\rightarrow$ FA 4530-KDM $\rightarrow$ FA 4531-•DN $\rightarrow$ FA 4531-KDM $\rightarrow$ FA 4533-•DN $\rightarrow$ FA 4533-KDM $\rightarrow$ FA $4534-$ DN $\rightarrow$ FA 4534-KDM $\rightarrow$ FA 4540-•DN $\rightarrow$ FA 4540-KDM $\rightarrow$

## New <br> article

NA B110AB-DN• NA B110AB-DMK NA B110CP-DN• NA B110CP-DMK NA B110AE-DN• NA B110AE-DMK NA B110EB-DN• NA B110EB-DMK NA B110FB-DN• NA B110FB-DMK NA B110FB-DN•H0 NA B110FB-DMKHO NA B110EE-DN• NA B110EE-DMK NA B110BB-DN• NA B110BB-DMK NA B110BB-DN•HO NA B110BB-DMKH0 NA B110HB-DN• NA B110HB-DMK NA B110HE-DN• NA B110HE-DMK NA B112KA-DN• NA B112KA-DMK NA B112KC-DN• NA B112KC-DMK NA B112LB-DN• NA B112LB-DMK NA B112LLDN• NA B112LL-DMK NA B112KD-DN• NA B112KD-DMK NA B112LE-DN• NA B112LE-DMK NA B112KE-DN• NA B112KE-DMK NA B112KF-DN• NA B112KF-DMK NA B112KG-DN• NA B112KG-DMK NA B112KP-DN• NA B112KP-DMK NA B112KP-DN• NA B112KP-DMK NA B112KH-DN• NA B112KH-DMK NA B112LH-DN• NA B112LH-DMK NA B110AB-DN• NA B110AB-DMK NA B110CP-DN• NA B110CP-DMK NA B110AE-DN• NA B110AE-DMK NA B110EB-DN• NA B110EB-DMK NA B110FB-DN• NA B110FB-DMK NA B110FB-DN•H0 NA B110FB-DMKHO NA B110EE-DN• NA B110EE-DMK NA B110BB-DN• NA B110BB-DMK NA B110BB-DN•H0 NA B110BB-DMKHO NA B110HB-DN• NA B110HB-DMK NA B110HE-DN• NA B110HE-DMK NA B112KA-DN• NA B112KA-DMK NA B112KC-DN• NA B112KC-DMK NA B112LB-DN• NA B112LB-DMK NA B112LLDN• NA B112LL-DMK NA B112KD-DN• NA B112KD-DMK

## Old

 articleFA 4550-•DN $\rightarrow$ FA 4550-KDM $\rightarrow$ FA 4551-•DN $\rightarrow$ FA 4551-KDM $\rightarrow$ FA $4552 \cdot$ DN $\rightarrow$ FA 4552-KDM $\rightarrow$ FA 4554- DN $\rightarrow$ FA 4554-KDM $\rightarrow$ FA 4555-•DN $\rightarrow$ FA 4555-KDM $\rightarrow$ FA 4556-•DN $\rightarrow$ FA 4556-KDM $\rightarrow$ FA 4557-•DN $\rightarrow$ FA 4557-KDM $\rightarrow$ FA 4569- DN $\rightarrow$ FA 4569-KDM $\rightarrow$ FA 4601-•DN $\rightarrow$ FA 4601-KDM $\rightarrow$ FA 4602-•DN $\rightarrow$ FA 4602-KDM $\rightarrow$ FA 4608-•DN $\rightarrow$ FA 4608-KDM $\rightarrow$ FA 4610-•DN $\rightarrow$ FA 4610-KDM $\rightarrow$ FA 4611-•DN $\rightarrow$ FA 4611-KDM $\rightarrow$ FA 4612-•DN $\rightarrow$ FA 4612-KDM $\rightarrow$ FA 4613-•DN $\rightarrow$ FA 4613-KDM $\rightarrow$ FA 4615-•DN $\rightarrow$ FA 4615-KDM $\rightarrow$ F 4617-•DN $\rightarrow$ FA 4617-KDM $\rightarrow$ FA 4630-•DN $\rightarrow$ FA 4630-KDM $\rightarrow$ A 4631-•DN $\rightarrow$ FA 4631-KDM $\rightarrow$ FA 4633-•DN $\rightarrow$ FA 4633-KDM $\rightarrow$ FA 4634- DN $\rightarrow$ FA 4634-KDM $\rightarrow$ FA 4640-•DN $\rightarrow$ FA 4640-KDM $\rightarrow$ FA 4650-•DN $\rightarrow$ FA 4650-KDM $\rightarrow$ -A 4651-•DN $\rightarrow$ FA 4651-KDM $\rightarrow$ FA 4652-•DN $\rightarrow$ FA 4652-KDM $\rightarrow$ FA 4654-•DN $\rightarrow$ FA 4654-KDM $\rightarrow$ FA 4655-•DN $\rightarrow$ FA 4655-KDM $\rightarrow$ FA 4656-•DN $\rightarrow$ FA 4656-KDM $\rightarrow$ FA 4657-•DN $\rightarrow$ FA 4657-KDM $\rightarrow$ FA 4669-DN $\rightarrow$ FA 4669-KDM $\rightarrow$ A 4801-•DN $\rightarrow$ FA 4801-KDM $\rightarrow$ FA 4802-•DN $\rightarrow$ FA 4802-KDM $\rightarrow$ FA 4808-•DN $\rightarrow$ FA 4808-KDM $\rightarrow$ FA 4810- ${ }^{\text {DN }} \rightarrow$ FA 4810-KDM $\rightarrow$ FA 4811-•DN $\rightarrow$ FA 4811-KDM $\rightarrow$ FA 4812-•DN $\rightarrow$ FA 4812-KDM $\rightarrow$ FA 4813-•DN $\rightarrow$ FA 4813-KDM $\rightarrow$ FA 4815-•DN $\rightarrow$ FA 4815-KDM $\rightarrow$ FA 4817-•DN $\rightarrow$ A 4817-KDM $\rightarrow$ FA 4820-•DN $\rightarrow$ FA 4820-KDM $\rightarrow$
New
article
NA B112LE-DN• NA B112LE-DMK NA B112KE-DN• NA B112KE-DMK NA B112KF-DN• NA B112KF-DMK NA B112KG-DN• NA B112KG-DMK NA B112KP-DN• NA B112KP-DMK NA B112KP-DN• NA B112KP-DMK NA B112KH-DN• NA B112KH-DMK NA B112LH-DN• NA B112LH-DMK NA G110AB-DN• NA G110AB-DMK NA G110CP-DN• NA G110CP-DMK NA G110AE-DN• NA G110AE-DMK NA G110EB-DN• NA G110EB-DMK NA G110FB-DN• NA G110FB-DMK NA G110FB-DN•H0 NA G110FB-DMKH0 NA G110EE-DN• NA G110EE-DMK NA G110BB-DN• NA G110BB-DMK NA G110BB-DN•HO NA G110BB-DMKH0 NA G112KA-DN• NA G112KA-DMK NA G112KC-DN• NA G112KC-DMK NA G112LB-DN• NA G112LB-DMK NA G112LL-DN• NA G112LL-DMK NA G112KD-DN• NA G112KD-DMK NA G112LE-DN• NA G112LE-DMK NA G112KE-DN• NA G112KE-DMK NA G112KF-DN• NA G112KF-DMK NA G112KG-DN• NA G112KG-DMK NA G112KP-DN• NA G112KP-DMK NA G112KP-DN• NA G112KP-DMK NA G112KH-DN• NA G112KH-DMK NA G112LH-DN• NA G112LH-DMK NA L110AB-DN• NA L110AB-DMK NA L110CP-DN• NA L110CP-DMK NA L110AE-DN• NA L110AE-DMK NA L110EB-DN• NA L110EB-DMK NA L110FB-DN• NA L110FB-DMK NA L110FB-DN•H0 NA L110FB-DMKH0 NA L110EE-DN• NA L110EE-DMK NA L110BB-DN• NA L110BB-DMK NA L110BB-DN•H0 NA L110BB-DMKH0 NA L110HB-DN• NA L110HB-DMK

Old article
FA 4825-•DN $\rightarrow$ FA 4825-KDM $\rightarrow$ FA 4830-•DN $\rightarrow$ FA 4830-KDM $\rightarrow$ FA 4831-•DN $\rightarrow$ FA 4831-KDM $\rightarrow$ FA 4833-•DN $\rightarrow$ FA 4833-KDM $\rightarrow$ FA 4834-•DN $\rightarrow$ FA 4834-KDM $\rightarrow$ FA 4840-•DN $\rightarrow$ FA 4840-KDM $\rightarrow$ FA 4850-•DN $\rightarrow$ FA 4850-KDM $\rightarrow$ FA 4851-•DN $\rightarrow$ FA 4851-KDM $\rightarrow$ FA 4852-•DN $\rightarrow$ FA 4852-KDM $\rightarrow$ FA 4854-•DN $\rightarrow$ FA 4854-KDM $\rightarrow$ FA 4855-•DN $\rightarrow$ FA 4855-KDM $\rightarrow$ FA 4856-•DN $\rightarrow$ FA 4856-KDM $\rightarrow$ FA 4857-•DN $\rightarrow$ FA 4857-KDM $\rightarrow$ FA 4869-•DN $\rightarrow$ FA 4869-KDM $\rightarrow$ FB 4101-•SN $\rightarrow$ FB 4101-KSM $\rightarrow$ FB 4102-•SN $\rightarrow$ FB 4102-KSM $\rightarrow$ FB 4108-•SN $\rightarrow$ FB 4108-KSM FB 4110-•SN $\rightarrow$ FB 4110-KSM $\rightarrow$ FB 4111-•SN $\rightarrow$ FB 4111-KSM $\rightarrow$ FB 4112-•SN $\rightarrow$ FB 4112-KSM $\rightarrow$ FB 4113-•SN $\rightarrow$ FB 4113-KSM $\rightarrow$ FB 4115-•SN $\rightarrow$ FB 4115-KSM $\rightarrow$ FB 4117-•SN $\rightarrow$ FB 4117-KSM $\rightarrow$ FB 4120-•SN $\rightarrow$ FB 4120-KSM $\rightarrow$ FB 4125-•SN $\rightarrow$

## Old <br> article

FB 4508-•SN $\rightarrow$ FB 4508-KSM $\rightarrow$ FB 4510-•SN $\rightarrow$ FB 4510-KSM $\rightarrow$ FB 4511-•SN $\rightarrow$ FB 4511-KSM $\rightarrow$ FB 4512-•SN $\rightarrow$ FB 4512-KSM $\rightarrow$ FB 4513-•SN $\rightarrow$ FB 4513-KSM $\rightarrow$ FB 4515-•SN $\rightarrow$ FB 4515-KSM $\rightarrow$ FB 4517-•SN $\rightarrow$ FB 4517-KSM $\rightarrow$ FB 4520-•SN $\rightarrow$ FB 4520-KSM $\rightarrow$ FB 4525-•SN $\rightarrow$ FB 4525-KSM $\rightarrow$ FB 4530-•SN $\rightarrow$ FB 4530-KSM $\rightarrow$ FB 4531-•SN $\rightarrow$ FB 4531-KSM $\rightarrow$ FB 4533-•SN $\rightarrow$ FB 4533-KSM $\rightarrow$ FB 4534-•SN $\rightarrow$ FB 4534-KSM $\rightarrow$ FB 4540-•SN $\rightarrow$ FB 4540-KSM $\rightarrow$ FB 4550-•SN $\rightarrow$ FB 4550-KSM $\rightarrow$ FB 4551-•SN $\rightarrow$ FB 4551-KSM $\rightarrow$ FB 4552-•SN $\rightarrow$ FB 4552-KSM $\rightarrow$ FB 4554-•SN $\rightarrow$ FB 4554-KSM $\rightarrow$ FB 4555-•SN $\rightarrow$ FB 4555-KSM $\rightarrow$ FB 4556-•SN $\rightarrow$ FB 4556-KSM $\rightarrow$ FB 4557-•SN $\rightarrow$ FB 4557-KSM $\rightarrow$ FB 4569-•SN $\rightarrow$ FB 4569-KSM $\rightarrow$ FB 4601-•SN $\rightarrow$ FB 4601-KSM $\rightarrow$ FB 4602-•SN $\rightarrow$ FB 4602-KSM $\rightarrow$ FB 4608-•SN $\rightarrow$ FB 4608-KSM $\rightarrow$ FB 4610-•SN $\rightarrow$ FB 4610-KSM $\rightarrow$ FB 4611-•SN $\rightarrow$ FB 4611-KSM $\rightarrow$ FB 4612-•SN $\rightarrow$ FB 4612-KSM $\rightarrow$ FB 4613-•SN $\rightarrow$ FB 4613-KSM $\rightarrow$ FB 4615-•SN $\rightarrow$ FB 4615-KSM $\rightarrow$ FB 4617-•SN $\rightarrow$ FB 4617-KSM $\rightarrow$ FB 4630-•SN $\rightarrow$ FB 4630-KSM $\rightarrow$ FB 4631-•SN $\rightarrow$ FB 4631-KSM $\rightarrow$ FB 4633-•SN $\rightarrow$ FB 4633-KSM $\rightarrow$ FB 4634-•SN $\rightarrow$ FB 4634-KSM $\rightarrow$ FB 4640-•SN $\rightarrow$ FB 4640-KSM $\rightarrow$ FB 4650-•SN $\rightarrow$ FB 4650-KSM $\rightarrow$ FB 4651-•SN $\rightarrow$ FB 4651-KSM $\rightarrow$ FB 4652-•SN $\rightarrow$ FB 4652-KSM $\rightarrow$ FB 4654-•SN $\rightarrow$ FB 4654-KSM $\rightarrow$ FB 4655-•SN $\rightarrow$ FB 4655-KSM $\rightarrow$ FB 4656-•SN $\rightarrow$

New
article
NB B110AE-DN NB B110AE-SMK NB B110EB-DN• NB B110EB-SMK NB B110FB-DN• NB B110FB-SMK NB B110FB-DN•H0 NB B110FB-SMKH0 NB B110EE-DN• NB B110EE-SMK NB B110BB-DN• NB B110BB-SMK NB B110BB-DN•H0 NB B110BB-SMKH0 NB B110HB-DN• NB B110HB-SMK NB B110HE-DN• NB B110HE-SMK NB B112KA-DN• NB B112KA-SMK NB B112KC-DN• NB B112KC-SMK NB B112LB-DN• NB B112LB-SMK NB B112LL-DN• NB B112LL-SMK NB B112KD-DN• NB B112KD-SMK NB B112LE-DN• NB B112LE-SMK NB B112KE-DN• NB B112KE-SMK NB B112KF-DN• NB B112KF-SMK NB B112KG-DN• NB B112KG-SMK NB B112KP-DN• NB B112KP-SMK NB B112KP-DN• NB B112KP-SMK NB B112KH-DN• NB B112KH-SMK NB B112LH-DN• NB B112LH-SMK NB G110AB-DN• NB G110AB-SMK NB G110CP-DN• NB G110CP-SMK NB G110AE-DN• NB G110AE-SMK NB G110EB-DN• NB G110EB-SMK NB G110FB-DN• NB G110FB-SMK NB G110FB-DN•HO NB G110FB-SMKH0 NB G110EE-DN• NB G110EE-SMK NB G110BB-DN• NB G110BB-SMK NB G110BB-DN•H0 NB G110BB-SMKH0 NB G112KA-DN• NB G112KA-SMK NB G112KC-DN• NB G112KC-SMK NB G112LB-DN NB G112LB-SMK NB G112LL-DN• NB G112LL-SMK NB G112KD-DN• NB G112KD-SMK NB G112LE-DN• NB G112LE-SMK NB G112KE-DN• NB G112KE-SMK NB G112KF-DN• NB G112KF-SMK NB G112KG-DN• NB G112KG-SMK NB G112KP-DN• NB G112KP-SMK NB G112KP-DN•

## Old article

 FB 4657-•SN $\rightarrow$ FB 4657-KSM $\rightarrow$ FB 4669-•SN $\rightarrow$ FB 4669-KSM $\rightarrow$ FB 4801-•SN $\rightarrow$ FB 4801-KSM $\rightarrow$ FB 4802-•SN $\rightarrow$ FB 4802-KSM $\rightarrow$ FB 4808-®SN $\rightarrow$ FB 4808-KSM $\rightarrow$ FB 4810-•SN $\rightarrow$ FB 4810-KSM $\rightarrow$ FB 4811-•SN $\rightarrow$ FB 4811-KSM $\rightarrow$ FB 4812-•SN $\rightarrow$ FB 4812-KSM $\rightarrow$ FB 4813-•SN $\rightarrow$ FB 4813-KSM $\rightarrow$ FB 4815-•SN $\rightarrow$ FB 4815-KSM $\rightarrow$ FB 4817-•SN $\rightarrow$ FB 4817-KSM $\rightarrow$ FB 4820-•SN $\rightarrow$ FB 4820-KSM $\rightarrow$ FB 4825-•SN $\rightarrow$ FB 4825-KSM $\rightarrow$ FB 4830-•SN $\rightarrow$ FB 4830-KSM $\rightarrow$ FB 4831-•SN $\rightarrow$ FB 4831-KSM $\rightarrow$ FB 4833-•SN $\rightarrow$ FB 4833-KSM $\rightarrow$ FB 4834-•SN $\rightarrow$ FB 4834-KSM $\rightarrow$ FB 4840-•SN $\rightarrow$ FB 4840-KSM $\rightarrow$ FB 4850-•SN $\rightarrow$ FB 4850-KSM $\rightarrow$ FB 4851-•SN $\rightarrow$ FB 4851-KSM $\rightarrow$ FB 4852-•SN $\rightarrow$ FB 4852-KSM $\rightarrow$ FB 4854-•SN $\rightarrow$ FB 4854-KSM $\rightarrow$ FB 4855-•SN $\rightarrow$ FB 4855-KSM $\rightarrow$ FB 4856-•SN $\rightarrow$ FB 4856-KSM $\rightarrow$ FB 4857-•SN $\rightarrow$ FB 4857-KSM $\rightarrow$ FB 4869-•SN $\rightarrow$ FB 4869-KSM $\rightarrow$ FF 4101-•DN $\rightarrow$ FF 4101-•SN $\rightarrow$ FF 4101-KSM $\rightarrow$ FF 4101-KDM $\rightarrow$ FF 4102-•DN $\rightarrow$ FF 4102-•SN $\rightarrow$ FF 4102-KSM $\rightarrow$ FF 4102-KDM $\rightarrow$ FF 4108-•DN $\rightarrow$ FF 4108-•SN $\rightarrow$ FF 4108-KSM $\rightarrow$ FF 4108-KDM $\rightarrow$ FF 4110-•DN $\rightarrow$ FF 4110-•SN $\rightarrow$ FF 4110-KSM $\rightarrow$ FF 4110-KDM $\rightarrow$ FF 4111-•DN $\rightarrow$ FF 4111-•SN $\rightarrow$ FF 4111-KSM $\rightarrow$ FF 4111-KDM $\rightarrow$ FF 4112-•DN $\rightarrow$ FF 4112-•SN $\rightarrow$ FF 4112-KSM $\rightarrow$ FF 4112-KDM $\rightarrow$ FF 4113-•DN $\rightarrow$ FF 4113-•SN $\rightarrow$ FF 4113-KSM $\rightarrow$ FF 4113-KDM $\rightarrow$ FF 4115-•DN $\rightarrow$ FF 4115-•SN $\rightarrow$New
article
NB G112KP-SMK NB G112KH-DN• NB G112KH-SMK NB G112LH-DN• NB G112LH-SMK NB L110AB-DN• NB L110AB-SMK NB L110CP-DN• NB L110CP-SMK NB L110AE-DN• NB L110AE-SMK NB L110EB-DN• NB L110EB-SMK NB L110FB-DN• NB L110FB-SMK NB L110FB-DN•H0 NB L110FB-SMKHO NB L110EE-DN• NB L110EE-SMK NB L110BB-DN• NB L110BB-SMK NB L110BB-DN•HO NB L110BB-SMKH0 NB L110HB-DN• NB L110HB-SMK NB L110HE-DN• NB L110HE-SMK NB L112KA-DN• NB L112KA-SMK NB L112KC-DN• NB L112KC-SMK NB L112LB-DN• NB L112LB-SMK NB L112LL-DN• NB L112LL-SMK NB L112KD-DN• NB L112KD-SMK NB L112LE-DN• NB L112LE-SMK NB L112KE-DN• NB L112KE-SMK NB L112KF-DN• NB L112KF-SMK NB L112KG-DN• NB L112KG-SMK NB L112KP-DN• NB L112KP-SMK NB L112KP-DN• NB L112KP-SMK NB L112KH-DN• NB L112KH-SMK NB L112LH-DN• NB L112LH-SMK NF B110AB-DN• NF B110AB-DN• NF B110AB-SMK NF B110AB-DMK NF B110CP-DN• NF B110CP-DN• NF B110CP-SMK NF B110CP-DMK NF B110AE-DN• NF B110AE-DN• NF B110AE-SMK NF B110AE-DMK NF B110EB-DN• NF B110EB-DN• NF B110EB-SMK NF B110EB-DMK NF B110FB-DN• NF B110FB-DN• NF B110FB-SMK NF B110FB-DMK NF B110FB-DN•H0 NF B110FB-DN•H0 NF B110FB-SMKHO NF B110FB-DMKH0 NF B110EE-DN• NF B110EE-DN NF B110EE-SMK NF B110EE-DMK NF B110BB-DN• NF B110BB-DN•

## Old

 articleFF 4115-KSM $\rightarrow$ FF 4115-KDM $\rightarrow$ FF 4117-•DN $\rightarrow$ FF 4117-•SN $\rightarrow$ FF 4117-KSM $\rightarrow$ FF 4117-KDM $\rightarrow$ FF 4120-•DN $\rightarrow$ FF 4120-•SN $\rightarrow$ FF 4120-KSM $\rightarrow$ FF 4120-KDM $\rightarrow$ FF 4125-•DN $\rightarrow$ FF 4125-•SN $\rightarrow$ FF 4125-KSM $\rightarrow$ FF 4125-KDM $\rightarrow$ FF 4130-•DN $\rightarrow$ FF 4130-•SN $\rightarrow$ FF 4130-KSM $\rightarrow$ FF 4130-KDM $\rightarrow$ FF 4131-•DN $\rightarrow$ FF 4131-•SN $\rightarrow$ FF 4131-KSM $\rightarrow$ FF 4131-KDM $\rightarrow$ FF 4133-•DN $\rightarrow$ FF 4133-•SN $\rightarrow$ FF 4133-KSM $\rightarrow$ FF 4133-KDM $\rightarrow$ FF 4134-•DN $\rightarrow$ FF 4134-•SN $\rightarrow$ FF 4134-KSM $\rightarrow$ FF 4134-KDM FF 4140-•DN $\rightarrow$ FF 4140-•SN $\rightarrow$ FF 4140-KSM $\rightarrow$ FF 4140-KDM $\rightarrow$ FF 4150-•DN $\rightarrow$ FF 4150-•SN $\rightarrow$ FF 4150-KSM $\rightarrow$ FF 4150-KDM $\rightarrow$ FF 4151-•DN $\rightarrow$ FF 4151-•SN $\rightarrow$ FF 4151-KSM $\rightarrow$ FF 4151-KDM $\rightarrow$ FF 4152-•DN $\rightarrow$ FF 4152-•SN $\rightarrow$ FF 4152-KSM $\rightarrow$

## Old

## article

FF 4511-•SN $\rightarrow$ FF 4511-KSM $\rightarrow$ FF 4511-KDM $\rightarrow$ FF 4512-•DN $\rightarrow$ FF 4512-•SN $\rightarrow$ FF 4512-KSM $\rightarrow$ FF 4512-KDM $\rightarrow$ FF 4513-•DN $\rightarrow$ FF 4513-•SN $\rightarrow$ FF 4513-KSM $\rightarrow$ FF 4513-KDM $\rightarrow$ FF 4515-•DN $\rightarrow$ FF 4515-•SN $\rightarrow$ FF 4515-KSM $\rightarrow$ FF 4515-KDM $\rightarrow$ FF 4517-•DN $\rightarrow$ FF 4517-•SN $\rightarrow$ FF 4517-KSM $\rightarrow$ FF 4517-KDM $\rightarrow$ FF 4520-•DN $\rightarrow$ FF 4520-•SN $\rightarrow$ FF 4520-KSM $\rightarrow$ FF 4520-KDM $\rightarrow$ FF 4525-•DN $\rightarrow$ FF 4525-•SN $\rightarrow$ FF 4525-KSM $\rightarrow$ FF 4525-KDM $\rightarrow$ FF 4530-•DN $\rightarrow$ FF 4530-•SN $\rightarrow$ FF 4530-KSM $\rightarrow$ FF 4530-KDM $\rightarrow$ FF 4531-•DN $\rightarrow$
FF 4531-•SN $\rightarrow$
FF 4531-KSM $\rightarrow$ FF 4531-KDM $\rightarrow$ FF 4533-•DN $\rightarrow$ FF 4533-•SN $\rightarrow$ FF 4533-KSM $\rightarrow$ FF 4533-KDM $\rightarrow$ FF 4534-•DN $\rightarrow$ FF 4534-•SN $\rightarrow$ FF 4534-KSM $\rightarrow$ FF 4534-KDM $\rightarrow$ FF 4540-•DN $\rightarrow$ FF 4540-•SN $\rightarrow$ FF 4540-KSM $\rightarrow$ FF 4540-KDM $\rightarrow$ FF 4550-•DN $\rightarrow$ FF 4550-•SN $\rightarrow$ FF 4550-KSM $\rightarrow$ FF 4550-KDM $\rightarrow$ FF 4551-•DN $\rightarrow$ FF 4551-•SN $\rightarrow$
FF 4551-KSM $\rightarrow$ FF 4551-KDM $\rightarrow$ FF 4552-•DN $\rightarrow$ FF 4552-•SN $\rightarrow$ FF 4552-KSM $\rightarrow$ FF 4552-KDM $\rightarrow$ FF 4554-•DN $\rightarrow$ FF 4554-•SN $\rightarrow$ FF 4554-KSM $\rightarrow$ FF 4554-KDM $\rightarrow$ FF 4555-•DN $\rightarrow$ FF 4555-•SN $\rightarrow$ FF 4555-KSM $\rightarrow$ FF 4555-KDM $\rightarrow$ FF 4556-•DN $\rightarrow$ FF 4556-•SN $\rightarrow$ FF 4556-KSM $\rightarrow$ FF 4556-KDM $\rightarrow$ FF 4557-•DN $\rightarrow$ FF 4557-•SN $\rightarrow$ FF 4557-KSM $\rightarrow$ FF 4557-KDM $\rightarrow$ FF 4569-•DN $\rightarrow$ FF 4569-•SN $\rightarrow$ FF 4569-KSM $\rightarrow$ FF 4569-KDM $\rightarrow$ FF 4601-•DN $\rightarrow$

New

NF B110FB-DN• NF B110FB-SMK NF B110FB-DMK NF B110FB-DN•H0 NF B110FB-DN•H0 NF B110FB-SMKH0 NF B110FB-DMKH0 NF B110EE-DN• NF B110EE-DN• NF B110EE-SMK NF B110EE-DMK NF B110BB-DN• NF B110BB-DN• NF B110BB-SMK NF B110BB-DMK NF B110BB-DN•H0 NF B110BB-DN•H0 NF B110BB-SMKH0 NF B110BB-DMKH0 NF B110HB-DN• NF B110HB-DN• NF B110HB-SMK NF B110HB-DMK NF B110HE-DN• NF B110HE-DN• NF B110HE-SMK NF B110HE-DMK NF B112KA-DN• NF B112KA-DN• NF B112KA-SMK NF B112KA-DMK NF B112KC-DN• NF B112KC-DN• NF B112KC-SMK NF B112KC-DMK NF B112LB-DN• NF B112LB-DN• NF B112LB-SMK NF B112LB-DMK NF B112LL-DN• NF B112LL-DN• NF B112LL-SMK NF B112LLDMK NF B112KD-DN• NF B112KD-DN• NF B112KD-SMK NF B112KD-DMK NF B112LE-DN• NF B112LE-DN• NF B112LE-SMK NF B112LE-DMK NF B112KE-DN• NF B112KE-DN• NF B112KE-SMK NF B112KE-DMK NF B112KF-DN• NF B112KF-DN• NF B112KF-SMK NF B112KF-DMK NF B112KG-DN• NF B112KG-DN• NF B112KG-SMK NF B112KG-DMK NF B112KP-DN• NF B112KP-DN• NF B112KP-SMK NF B112KP-DMK NF B112KP-DN• NF B112KP-DN• NF B112KP-SMK NF B112KP-DMK NF B112KH-DN• NF B112KH-DN• NF B112KH-SMK NF B112KH-DMK NF B112LH-DN• NF B112LH-DN• NF B112LH-SMK NF B112LH-DMK NF G110AB-DN•

## Old

## article

FF 4601-•SN $\rightarrow$ FF 4601-KSM $\rightarrow$ FF 4601-KDM $\rightarrow$ FF 4602-•DN $\rightarrow$ FF 4602-•SN $\rightarrow$ FF 4602-KSM $\rightarrow$ FF 4602-KDM $\rightarrow$ FF 4608-•DN $\rightarrow$ FF 4608-•SN $\rightarrow$ FF 4608-KSM $\rightarrow$ FF 4608-KDM $\rightarrow$ FF 4610-•DN $\rightarrow$ FF 4610-•SN $\rightarrow$ FF 4610-KSM $\rightarrow$ FF 4610-KDM $\rightarrow$ FF 4611-•DN $\rightarrow$ FF 4611-•SN $\rightarrow$ FF 4611-KSM $\rightarrow$ FF 4611-KDM $\rightarrow$ FF 4612-•DN $\rightarrow$ FF 4612-•SN $\rightarrow$ FF 4612-KSM $\rightarrow$ FF 4612-KDM $\rightarrow$ FF 4613-•DN $\rightarrow$ FF 4613-•SN $\rightarrow$ FF 4613-KSM $\rightarrow$ FF 4613-KDM $\rightarrow$ FF 4615-•DN $\rightarrow$ FF 4615-•SN $\rightarrow$ FF 4615-KSM $\rightarrow$ FF 4615-KDM $\rightarrow$ FF 4617-•DN $\rightarrow$ FF 4617-•SN $\rightarrow$ FF 4617-KSM $\rightarrow$ FF 4617-KDM $\rightarrow$ FF 4630-•DN $\rightarrow$ FF 4630-•SN $\rightarrow$ FF 4630-KSM $\rightarrow$ FF 4630-KDM $\rightarrow$ FF 4631-•DN $\rightarrow$ FF 4631-•SN $\rightarrow$ FF 4631-KSM $\rightarrow$ FF 4631-KDM $\rightarrow$ FF 4633-•DN $\rightarrow$ FF 4633-•SN $\rightarrow$ FF 4633-KSM $\rightarrow$ FF 4633-KDM $\rightarrow$ FF 4634-•DN $\rightarrow$ FF 4634-•SN $\rightarrow$ FF 4634-KSM $\rightarrow$ FF 4634-KDM $\rightarrow$ FF 4640-•DN $\rightarrow$ FF 4640-•SN $\rightarrow$ FF 4640-KSM $\rightarrow$ FF 4640-KDM $\rightarrow$ FF 4650-•DN $\rightarrow$ F 4650-•SN $\rightarrow$ FF 4650-KSM $\rightarrow$ FF 4650-KDM $\rightarrow$ FF 4651-•DN $\rightarrow$ FF 4651-•SN $\rightarrow$ FF 4651-KSM $\rightarrow$ FF 4651-KDM $\rightarrow$ FF 4652-•DN $\rightarrow$ FF 4652-•SN $\rightarrow$ FF 4652-KSM $\rightarrow$ FF 4652-KDM $\rightarrow$ FF 4654-•DN $\rightarrow$ FF 4654-•SN $\rightarrow$ FF 4654-KSM $\rightarrow$ FF 4654-KDM $\rightarrow$ FF 4655-•DN $\rightarrow$ FF 4655-•SN $\rightarrow$ FF 4655-KSM $\rightarrow$ FF 4655-KDM $\rightarrow$ FF 4656-•DN $\rightarrow$ FF 4656-•SN $\rightarrow$ FF 4656-KSM $\rightarrow$ FF 4656-KDM $\rightarrow$ FF 4657-•DN $\rightarrow$

## New

 articleNF G110AB-DN• NF G110AB-SMK NF G110AB-DMK NF G110CP-DN• NF G110CP-DN• NF G110CP-SMK NF G110CP-DMK NF G110AE-DN• NF G110AE-DN• NF G110AE-SMK NF G110AE-DMK NF G110EB-DN• NF G110EB-DN NF G110EB-SMK NF G110EB-DMK NF G110FB-DN• NF G110FB-DN• NF G110FB-SMK NF G110FB-DMK NF G110FB-DN•H0 NF G110FB-DN•H0 NF G110FB-SMKH0 NF G110FB-DMKH0 NF G110EE-DN NF G110EE-DN• NF G110EE-SMK NF G110EE-DMK NF G110BB-DN• NF G110BB-DN NF G110BB-SMK NF G110BB-DMK NF G110BB-DN•H0 NF G110BB-DN•H0 NF G110BB-SMKH0 NF G110BB-DMKH0 NF G112KA-DN• NF G112KA-DN NF G112KA-SMK NF G112KA-DMK NF G112KC-DN• NF G112KC-DN• NF G112KC-SMK NF G112KC-DMK NF G112LB-DN NF G112LB-DN• NF G112LB-SMK NF G112LB-DMK NF G112LL-DN• NF G112LL-DN• NF G112LL-SMK NF G112LL-DMK NF G112KD-DN• NF G112KD-DN NF G112KD-SMK NF G112KD-DMK NF G112LE-DNe NF G112LE-DN NF G112LE-SMK NF G112LE-DMK NF G112KE-DN• NF G112KE-DN• NF G112KE-SMK NF G112KE-DMK NF G112KF-DN• NF G112KF-DN• NF G112KF-SMK NF G112KF-DMK NF G112KG-DN• NF G112KG-DN• NF G112KG-SMK NF G112KG-DMK NF G112KP-DN• NF G112KP-DN NF G112KP-SMK NF G112KP-DMK NF G112KP-DN• NF G112KP-DN NF G112KP-SMK NF G112KP-DMK NF G112KH-DN•

Old article	New article
4657-•SN $\rightarrow$	NF G112KH-DN•
FF 4657-KSM $\rightarrow$	NF G112KH-SMK
FF 4657-KDM $\rightarrow$	NF G112KH-DMK
FF 4669-•DN $\rightarrow$	NF G112LH-DN•
FF 4669-•SN $\rightarrow$	NF G112LH-DN•
FF 4669-KSM $\rightarrow$	NF G112LH-SMK
FF 4669-KDM $\rightarrow$	NF G112LH-DMK
FF 4801-•DN $\rightarrow$	NF L110AB-DN•
FF 4801-• SN $\rightarrow$	NF L110AB-DN•
FF 4801-KSM $\rightarrow$	NF L110AB-SMK
FF 4801-KDM $\rightarrow$	NF L110AB-DMK
FF 4802-•DN $\rightarrow$	NF L110CP-DN•
FF 4802-•SN $\rightarrow$	NF L110CP-DN•
FF 4802-KSM $\rightarrow$	NF L110CP-SMK
FF 4802-KDM $\rightarrow$	NF L110CP-DMK
FF 4808-•DN $\rightarrow$	NF L110AE-DN•
FF 4808-•SN $\rightarrow$	NF L110AE-DN•
FF 4808-KSM $\rightarrow$	NF L110AE-SMK
FF 4808-KDM $\rightarrow$	NF L110AE-DMK
FF 4810-•DN $\rightarrow$	NF L110EB-DN•
FF 4810-•SN $\rightarrow$	NF L110EB-DN•
FF 4810-KSM $\rightarrow$	NF L110EB-SMK
FF 4810-KDM $\rightarrow$	NF L110EB-DMK
FF 4811-•DN $\rightarrow$	NF L110FB-DN•
FF 4811-॰SN $\rightarrow$	NF L110FB-DN•
FF 4811-KSM $\rightarrow$	NF L110FB-SMK
FF 4811-KDM $\rightarrow$	NF L110FB-DMK
FF 4812-•DN $\rightarrow$	NF L110FB-DN•H0
FF 4812-॰ SN $\rightarrow$	NF L110FB-DN•H0
FF 4812-KSM $\rightarrow$	NF L110FB-SMKH0
FF 4812-KDM $\rightarrow$	NF L110FB-DMKH0
FF 4813-•DN $\rightarrow$	NF L110EE-DN•
FF 4813-•SN $\rightarrow$	NF L110EE-DN•
FF 4813-KSM $\rightarrow$	NF L110EE-SMK
FF 4813-KDM $\rightarrow$	NF L110EE-DMK
FF 4815-•DN $\rightarrow$	NF L110BB-DN•
FF 4815-•SN $\rightarrow$	NF L110BB-DN•
FF 4815-KSM $\rightarrow$	NF L110BB-SMK
FF 4815-KDM $\rightarrow$	NF L110BB-DMK
FF 4817-•DN $\rightarrow$	NF L110BB-DN•H0
FF 4817-॰ SN $\rightarrow$	NF L110BB-DN•H0
FF 4817-KSM $\rightarrow$	NF L110BB-SMKH0
FF 4817-KDM $\rightarrow$	NF L110BB-DMKH0
FF 4820-•DN $\rightarrow$	NF L110HB-DN•
FF 4820-•SN $\rightarrow$	NF L110HB-DN•
FF 4820-KSM $\rightarrow$	NF L110HB-SMK
FF 4820-KDM $\rightarrow$	NF L110HB-DMK
FF 4825-•DN $\rightarrow$	NF L110HE-DN•
FF 4825-•SN $\rightarrow$	NF L110HE-DN•
FF 4825-KSM $\rightarrow$	NF L110HE-SMK
FF 4825-KDM $\rightarrow$	NF L110HE-DMK
FF 4830-•DN $\rightarrow$	NF L112KA-DN•
FF 4830-•SN $\rightarrow$	NF L112KA-DN•
FF 4830-KSM $\rightarrow$	NF L112KA-SMK
FF 4830-KDM $\rightarrow$	NF L112KA-DMK
FF 4831-•DN $\rightarrow$	NF L112KC-DN•
FF 4831-•SN $\rightarrow$	NF L112KC-DN•
FF 4831-KSM $\rightarrow$	NF L112KC-SMK
FF 4831-KDM $\rightarrow$	NF L112KC-DMK
FF 4833-•DN $\rightarrow$	NF L112LB-DN•
FF 4833-•SN $\rightarrow$	NF L112LB-DN•
FF 4833-KSM $\rightarrow$	NF L112LB-SMK
FF 4833-KDM $\rightarrow$	NF L112LB-DMK
FF 4834-•DN $\rightarrow$	NF L112LL-DN•
FF 4834-•SN $\rightarrow$	NF L112LL-DN•
FF 4834-KSM $\rightarrow$	NF L112LL-SMK
FF 4834-KDM $\rightarrow$	NF L112LL-DMK
FF 4840-•DN $\rightarrow$	NF L112KD-DN•
FF 4840-•SN $\rightarrow$	NF L112KD-DN•
FF 4840-KSM $\rightarrow$	NF L112KD-SMK
FF 4840-KDM $\rightarrow$	NF L112KD-DMK
FF 4850-•DN $\rightarrow$	NF L112LE-DN•
FF 4850-•SN $\rightarrow$	NF L112LE-DN•
FF 4850-KSM $\rightarrow$	NF L112LE-SMK
FF 4850-KDM $\rightarrow$	NF L112LE-DMK
FF 4851-•DN $\rightarrow$	NF L112KE-DN•
FF 4851-•SN $\rightarrow$	NF L112KE-DN•
FF 4851-KSM $\rightarrow$	NF L112KE-SMK
FF 4851-KDM $\rightarrow$	NF L112KE-DMK
FF 4852-•DN $\rightarrow$	NF L112KF-DN•


Old article	New article
FF 4852-• SN $\rightarrow$	NF L112KF-DN•
FF 4852-KDM $\rightarrow$	NF L112KF-DMK
FF 4852-KSM $\rightarrow$	NF L112KF-SMK
FF 4854- ${ }^{\text {DN }} \rightarrow$	NF L112KG-DN•
FF 4854-•SN $\rightarrow$	NF L112KG-DN•
FF 4854-KDM $\rightarrow$	NF L112KG-DMK
FF 4854-KSM $\rightarrow$	NF L112KG-SMK
FF 4855-•DN $\rightarrow$	NF L112KP-DN•
FF 4855-•SN $\rightarrow$	NF L112KP-DN•
FF 4855-KDM $\rightarrow$	NF L112KP-DMK
FF 4855-KSM $\rightarrow$	NF L112KP-SMK
FF 4856-•DN $\rightarrow$	NF L112KP-DN•
FF 4856-•SN $\rightarrow$	NF L112KP-DN•
FF 4856-KDM $\rightarrow$	NF L112KP-DMK
FF 4856-KSM $\rightarrow$	NF L112KP-SMK
FF 4857-•DN $\rightarrow$	NF L112KH-DN•
FF 4857-•SN $\rightarrow$	NF L112KH-DN•
FF 4857-KDM $\rightarrow$	NF L112KH-DMK
FF 4857-KSM $\rightarrow$	NF L112KH-SMK
FF 4869-的 $\rightarrow$	NF L112LH-DN•
FF 4869-•SN $\rightarrow$	NF L112LH-DN•
FF 4869-KDM $\rightarrow$	NF L112LH-DMK
FF 4869-KSM $\rightarrow$	NF L112LH-SMK
FK $\bullet \bullet \bullet-W \rightarrow$	FK ••••-W3
FK ••••-W1 $\rightarrow$	FK ••••-W3
FK•15-1 $\rightarrow$	FK•15-M1R28
FK $\cdot 15-1 \mathrm{~W} 3 \rightarrow$	FK•15-W3M2R28
FM $\bullet \bullet \bullet-W \rightarrow$	FM ••••-W3
FM $\bullet \bullet \bullet-$ W1 $\rightarrow$	FM $\bullet \bullet \bullet-W 3$
FM •01-72 $\rightarrow$	FM •F1-M2
FM •15 $\rightarrow$	FM •15-M2R28
FM -15-1M2-EX7 $\rightarrow$	FM •15-M2R28-EX7
FM •15-W3 $\rightarrow$	FM •15-W3M2R28
FR $\bullet \bullet \bullet-W \rightarrow$	FR ••••-W3
FR $\bullet \bullet \bullet-$ W1 $\rightarrow$	FR ••••-W3
FR •01-72 $\rightarrow$	FR •F1-M2
FR •15-1 $\rightarrow$	FR •15-M2R28
FR •15-1W3 $\rightarrow$	FR •15-W3M2R28
FX $\bullet \bullet \bullet-W \rightarrow$	FX ••••-W3
FX ••••-W1 $\rightarrow$	FX ••••-W3
FX •01-72 $\rightarrow$	FX $\bullet$ F1-M2
FX •15-1 $\rightarrow$	FX •15-M2R28
FX $15-1 \mathrm{~W} 3 \rightarrow$	FX •15-W3M2R28
FZ $\bullet \bullet \bullet-W \rightarrow$	FZ ••••-W3
FZ $\bullet \bullet \bullet \bullet-W 1 \rightarrow$	FZ ••••-W3
FZ •01-72 $\rightarrow$	FZ •F1-M2
FZ •15 $\rightarrow$	FZ •15-M2R28
FZ •15-W3 $\rightarrow$	FZ •15-W3M2R28
VF L••-1 $\rightarrow$	VF L••-R24
VF L••-2 $\rightarrow$	VF L••-R25
VF L••-3 $\rightarrow$	VF L••-R26
VF L••-4 $\rightarrow$	VF L•e-R27
VF LE••-1 $\rightarrow$	VF LE••-R24
VF LE••-2 $\rightarrow$	VF LE••-R25
VF LE••-3 $\rightarrow$	VF LE••-R26
VF LE••-4 $\rightarrow$	VF LE••-R27
VF IL $\bullet \bullet \bullet \bullet \bullet \rightarrow$	VF SL••••••

## Order procedures:

Purchasing orders must always be sent in writing (fax, e-mail). We reserve the right to not accept e-mail orders in case of missing characteristics necessary to correctly identify the sender or to not process them in case of virus infected attachments or attachments of dubious origin.

## Minimum order amount:

Unless specifically agreed, the minimum order amount for deliveries in Italy is EUR 200 net (VAT excluded). For orders of less than EUR 200, a EUR 10 fee will be deducted towards the costs if the delivery occurs in Italy and San Marino; for deliveries abroad, the fee will be EUR 30.

## Prices:

The prices quoted in the price list do not include VAT, custom taxes or any other charges. Unless otherwise agreed, the prices quoted in the price list are not binding and may undergo changes without prior notice.

## Order quantities:

Some products are shipped in packs. The ordered quantities of these items must be multiples of the quantities contained in the packages.

## Order cancellation/changes:

Order changes might be accepted depending on the job order status. Changes or cancellation of special article orders will not be accepted.

## Supply:

The supply includes only what is expressly stated in the order confirmation. As per article 1461 of the Italian Civil Code, we reserve the right to stop supply in case of changes in the customer's financial standing.

## Delivery:

The delivery is indicated in the order confirmation and reports the period in which the goods can be available at the factories of Pizzato Elettrica and not the date of arrival at the customer's premises. This date is an approximate value and cannot be used as a reason of the order non-fulfilment.

## Packaging:

Packaging is free. For more than six boxes pallets can be necessary for the transport.

## Shipment:

Goods always travel at risk of the buyer, even if the goods are sold carriage paid. The customer must check that the forwarder delivers the number of boxes indicated in the delivery note, that the boxes are intact and that the weight corresponds to what is stated in the documents. In case of any inconsistencies, always accept the goods SUBJECT TO VERIFICATION, clearly specifying the type of damage. Any discrepancy or mistakes should be reported in writing within 8 days of receipt of the goods at info@pizzato.com.

## Warranty:

The warranty has a validity of 12 months starting from the delivery date of the material. The warranty does not cover improper use of the material, negligence or wrong installation/assembling. The warranty does not cover parts subjected to wear or products used beyond the technological limits described in the catalogue, or items that have not received the right maintenance. Pizzato Elettrica engages itself to repair and/or replace parts or the complete product for those elements that present evident manufacturing defects, provided that they are still covered by warranty. Pizzato Elettrica is only responsible for the value of the product and requests for compensation due to machine downtime, repairs or costs for direct or indirect damages resulting from product malfunctions will not be accepted, even if these occur during the warranty period. It is the responsibility of the manufacturer to evaluate the importance of the products used and the possible damage caused by their malfunction and to adopt the necessary technical measures to minimize consequences on machines also for personal safety purposes (redundancy systems, self-controlled systems, etc). The warranty will be subject to the customer's compliance with the payment terms.
Any samples provided free of charge or bearing the phrase "SAMPLE" must be considered as purely demonstrative and are not covered by the guarantee.

## Products:

Products can be subjected to technical improvements in any moment without prior notice.

## Payment terms:

Payments should be settled within the terms agreed in the order confirmation. The payment method is always at the risk of the buyer, regardless of the means chosen. In case of delayed payment, Pizzato Elettrica reserves the right to stop the delivery of any current orders and charge interest at the rate envisaged by European Directive 2011/7/EU. Any technical or commercial complaints do not entitle the claimant to suspend the due payments.

## Returns:

Any products returned for any reason will not be accepted unless they are previously APPROVED and AUTHORISED in writing.
Otherwise, Pizzato Elettrica reserves the right to reject the goods and return them "freight collect" at the expense of the buyer, in the same way by which they were forwarded. Returns have to be sent back within 3 months from the authorization date and no later. After this period, returns will not be accepted. The request to return goods will lead to their sales price being devalued and will be considered if relative to standard items and materials delivered no more than 12 months ago. The returned goods and the relative packaging must be intact and free from damage.

## Ownership:

The delivered products remain property of Pizzato Elettrica until full settlement of the invoices.

## Proper Law:

The Court of Vicenza shall have jurisdiction in any disputes.
For the updated terms of sale, please consult the website www.pizzato.com

## Notes



Notes






Any information or application example, connection diagrams included, described in this document are to be intended as purely descriptive. The choice and application of the products in conformity with the standards, in order to avoid damage to persons or goods, is the user's responsibility.
The drawings and data contained in this catalogue are not binding and we reserve the right, in order to improve the quality of our products, to modify them at any time without prior notice.
They are also property of Pizzato Elettrica and can be reproduced only with our written permission.


General Catalogue Detection


General Catalogue HMI


General Catalogue
Safety Safety


General Catalogue
LIFT LIFT


DVD


Web
www.pizzato.com

Pizzato Elettrica s.r.I. Via Torino, 1-36063 Marostica (VI) Italy
E-mail: info@pizzato.com - Web site: www.pizzato.com


[^0]:    - ${ }^{(1)}$ Actuator VF L35 can only be used in safety applications if adjusted to its max. length, as shown in the figure to the right.

    If an adjustable lever is required for safety applications, use the VF L56 adjustable safety lever.
    (2) The position switch obtained by assembling switch FD •58-M2 (e.g. FD 558-M2, FD 658-M2...) with actuator VF 553 will not present the same travel diagrams and actuating forces as switch FD $\bullet 53-E 11 \mathrm{M} 2 \mathrm{~V} 9$ (e.g. FD 553-E11M2V9, FD 653-E11M2V9...).
    ${ }^{(3)}$ If installed with switch FD $\bullet 58-\mathrm{M} 2$ (e.g. FC 558-M2, FD 658-M2...) the actuator may hit the housing of the switch upon actuation. This possible interference depends on the fixing position of actuator and switch head.
    ${ }^{(4)}$ The actuator cannot be rotated to the inside because it will hit the switch head upon actuation.
    

[^1]:    - ${ }^{(1)}$ Actuator VF L35 can only be used in safety applications if adjusted to its max. length, as shown in the figure to the right.

    If an adjustable lever is required for safety applications, use the VF L56 adjustable safety lever.

    - ${ }^{(2)}$ The position switch obtained by assembling switch FP •58-M2 (e.g. FP 558-M2, FP 658-M2...) with actuator VF L53 will not present the same travel diagrams and actuating forces as switch FP •53-E11M2V9 (e.g. FP 553-E11M2V9, FP 653-E11M2V9...).
    ${ }^{\text {(3) }}$ If installed with switch FP $\bullet 58-\mathrm{M} 2$ (e.g. FP 558-M2, FP $658-\mathrm{M} 2 \ldots$ ) the actuator may hit the housing of the switch upon actuation. This possible interference depends on the fixing position of actuator and switch head.
    - (4) The actuator cannot be rotated to the inside because it will hit the switch head upon actuation.
    

    Items with code on green background are stock items

[^2]:    - ${ }^{(1)}$ Actuator VF L35 can only be used in safety applications if adjusted to its max. length, as shown in the figure to the right.

    If an adjustable lever is required for safety applications, use the VF L56 adjustable safety lever.

    - ${ }^{(2)}$ The position switch obtained by assembling switch FL $\bullet 58-\mathrm{M} 2$ (e.g. FL 558-M2, FL 658-M2 ...) with actuator VF L53 will not present the same travel diagrams and actuating forces as switch FL•53-E11M2V9 (e.g. FL 553-E11M2V9, FL 653-E11M2V9...).
    ${ }^{(3)}$ If installed with switch FL $\bullet 58-\mathrm{M} 2$ (e.g. FL 558-M2, FL 658-M2...) the actuator may hit the housing of the switch upon actuation. This possible interference depends on the fixing position of actuator and switch head.
    ${ }^{(4)}$ The actuator cannot be rotated to the inside because it will hit the switch head upon actuation.
    

[^3]:    - ${ }^{(1)}$ Actuator VF L35 can only be used in safety applications if adjusted to its max. length, as shown in the figure to the right. If an adjustable lever is required for safety applications, use the VF L56 adjustable safety lever.
    ${ }^{(2)}$ The position switch obtained by assembling switch FC $\bullet 58-\mathrm{M} 2$ (e.g. FC 358-M2, FC 3358-M2...) with actuator VF L53 will not present the same travel diagrams and actuating forces as switch FC •53-E11M2 (e.g. FC 353-E11M2, FC 3353-E11M2V9...).
    ${ }^{(3)}$ If installed with switch FC $\bullet 58-\mathrm{M} 2$ (e.g. FC 358-M2, FC 3358-M2 ..) the actuator may hit the housing of the switch upon actuation. This possible interference depends on the fixing position of actuator and switch head.
    ${ }^{(4)}$ The actuator cannot be rotated to the inside because it will hit the switch head upon actuation.
    Accessories See page 197

[^4]:    ${ }^{(1)}$ Positive opening only with actuator set to max. See page 65

[^5]:    - (1) Actuator VF LE55 can only be used in safety applications if adjusted to its max. length, as shown in the figure to the right. If an adjustable lever is required for safety applications, use the VF LE56 adjustable safety lever.
    - ${ }^{(2)}$ The position switch obtained by assembling switch FR •38-M2 (e.g. FR 538-M2, FR 638-M2...) with actuator VF L53 will not present the same travel diagrams and actuating forces as switch FR •53-E0M2V9 (e.g. FR 553-E0M2V9, FR 653-E0M2V9...).
    ${ }^{-14)}$ The actuator cannot be rotated to the inside because it will hit the switch head upon actuation.

[^6]:    - ${ }^{(1)}$ Actuator VF LE55 can only be used in safety applications if adjusted to its max. length, as shown in the figure to the right. If an adjustable lever is required for safety applications, use the VF LE56 adjustable safety lever.
    - (2) The position switch obtained by assembling switch FM •38-M2 (e.g. FM 538-M2, FM 638-M2 ...) with actuator VF L53 will not present the same travel diagrams and actuating forces as switch FM •53-E0M2V9 (e.g. FM 553-E0M2V9, FM 653-E0M2V9...).
    ${ }^{-14)}$ The actuator cannot be rotated to the inside because it will hit the switch head upon actuation.
    

[^7]:    ${ }^{\text {(1) }}$ Actuator VF LE55 can only be used in safety applications if adjusted to its max. length, as shown in the figure to the right
    If an adjustable lever is required for safety applications, use the VF LE56 adjustable safety lever.

    - ${ }^{(2)}$ The position switch obtained by assembling switch FX •38-M2 (e.g. FX 538-M2, FX 638-M2...) with actuator VF L53 will not present the same travel diagrams and actuating forces as switch FX •53-E0M2V9 (e.g. FX 553-E0M2V9, FX 653-E0M2V9...).
    ${ }^{(4)}$ The actuator cannot be rotated to the inside because it will hit the switch head upon actuation.
    

[^8]:    Accessories See page 197

[^9]:    - ${ }^{(1)}$ Actuator VF LE55 can only be used in safety applications if adjusted to its max. length, as shown in the figure to the right.

    If an adjustable lever is required for safety applications, use the VF LE56 adjustable safety lever

    - (2) The position switch obtained by assembling switch FZ •38-M2 (e.g. FZ 538-M2, FZ 638-M2...) with actuator VF LE53 will not present the same travel diagrams and actuating forces as switch FZ •53 E0M2V9 (e.g. FZ 553-E0M2V9, FZ 653-E0M2V9...).
    ${ }^{(4)}$ The actuator cannot be rotated to the inside because it will hit the switch head upon actuation.

[^10]:    Accessories See page 197

[^11]:    ${ }^{(1)}$ Positive opening only with actuator set to max. See page 111.

[^12]:    To order the switch with reset and increased actuating force, replace the -W3 option with -W4 in the order code.
    Example: FK 3301-W3M1 $\boldsymbol{\rightarrow}$ FK 3301-W4M1

[^13]:    Female connectors see page 198

[^14]:    To order a product with cable and M12 connector:
    replace DN2 with DM0. 2 in the codes shown above. Example
    NA B110AA-DN2 $\rightarrow$ NA B110AA-DM0. 2

[^15]:    To order a product with cable and M12 connector:
    replace DN2 with DM0. 2 in the codes shown above. Example
    NA B110AA-DN2 $\rightarrow$ NA B110AA-DM0. 2

[^16]:    - ${ }^{(1)}$ Actuator VF LE55 can only be used in safety applications if adjusted to its max. length, as shown in the figure to the right.

    If an adjustable lever is required for safety applications, use the VF LE56 adjustable safety lever.

[^17]:    § If not expressly indicated in this chapter, for correct installation and utilization of all articles see the instructions given on pages 211 to 222.

[^18]:    Items with code on green background are stock items

[^19]:    Accessories See page 197

[^20]:    Any information or application example, connection diagrams included, described in this document are to be intended as purely descriptive.

