Energy Management
Energy Analyzer Type EM24 DIN

- Protection degree (front): IP50
- RS485 serial output (on request) (MODBUS-RTU), iFIX

SCADA compatibility

- Application adaptable display and programming procedure (Easyprog function)
- Easy connections management
- MID "annex MI-003" (Measuring Instruments Directive) compliant

Product Description

Three-phase energy analyzer with built-in configuration joystick and LCD data displaying; particularly indicated for active and reactive energy metering and for cost allocation. Housing for DINrail mounting with IP50 (front) protection degree. Direct connection up to 64A and by means of external current and potential trans-
formers. Moreover the meter can be provided with digital outputs that can be either for pulse proportional to the active and reactive energy being measured or for alarm outputs. In alternative the RS485 communication port and 3 digital inputs are available as an option.

- Class 1 (kWh) according to EN62053-21
- Class B (kWh) according to EN50470-3
- Class 2 (kvarh) according to EN62053-23
- Accuracy ± 0.5 RDG (current/voltage)
- Energy analyzer
- Instantaneous variables readout: 4 DGT
- Energies/gas/water readout: 7+1 DGT
- System variables: VLL, VLN, Admd, VA, VAdmd, VAdmd max, W, Wdmd, Wdmd max, var, PF, Hz, Phase-sequence.
- Single phase variables: VLL, VLN, A, VA, W, var, PF
- Energy measurements: total and partial kWh and kvarh or based on 4 different tariffs; single phase measurements
- Gas, cold water, hot water, kWh remote heating measurements
- Hour counter (6+2 DGT)
- TRMS measurements of distorted sine waves (voltages/currents)
- Self power supply (AV0-AV9 inputs)
- Auxiliary power supply (AV5-AV6)
- 3 digital inputs for tariff selection, DMD synch or gas/ water (hot-cold) and remote heating metering (on request)
- 2 digital outputs for pulses or for alarms or as a mix of them (on request)
- Dimensions: 4-DIN modules

How to order EM24 DIN AV5 $3 \times \mathbf{X} \mathbf{X}$
Model
Range code
System
Power supply
Output \qquad
Option

CARLO GAVAZZ

CARLO GAVAZZI

Input specifications

Rated inputs	System type: 3
Current type	Galvanic insulation by means of built-in CT's (AV5 and AV6 models)
Current range (by CT)	AV5 and AV6: 1/5(10)A
Voltage	AV5: 400VLL;
Voltage by VT/PT	AV6: 120/208VLL
Current range (direct)	AV0: 10(64)A; AV9: 10(64)A
Voltage	AVO: 208 VLL AC AV9: 400 VLL AC
Accuracy (Display + RS485)	lb: see below, Un: see below
(@25 ${ }^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}, \mathrm{R} . \mathrm{H} . \leq 60 \%, 48$ to 62 Hz)	
AV5 model	In: 5A, Imax: 10A; Un: 160 to 480 VLN (277 to 830 VLL)
AV6 model	In: 5A, Imax: 10A; Un: 40 to 144VLN (70 to 250VLL)
AVO model	lb: 10A, Imax: 64A; Un: 96
AV9 model	lb: 10A, Imax: 64A; Un: 184
	to 276 VLN (318 to 480VLL)
Current	
AV5, AV6 models	From 0.002 ln to 0.2 ln : $\pm(0.5 \%$ RDG +3 DGT)
	From 0.2In to Imax:
	$\pm(0.5 \%$ RDG $+1 \mathrm{DGT})$. From 0.004 lb to 0.2 lb :
AV0, AV9 models	From 0.004 lb to 0.2 lb : $\pm(0.5 \%$ RDG +3DGT)
	From 0.2lb to Imax: $\pm(0.5 \% \mathrm{RDG}+1 \mathrm{DGT})$.
Phase-neutral voltage	In the range Un: \pm (0,5\%
	RDG +1DGT)
Phase-phase voltage	In the range Un: \pm (1\% RDG
	+1DGT)
Frequency	$\pm 0.1 \mathrm{~Hz}$ (45 to 65 Hz)
Active and Apparent power	$\pm(1 \% \mathrm{RDG}+2 \mathrm{DGT})$
Power Factor	$\pm[0.001+1 \%$ (1.000-"PF
	RDG")]
Reactive power	$\pm(2 \% \mathrm{RDG}+2 \mathrm{DGT})$
Energies	Class 1 according to EN62053-21 and MID
	Annex MI-003 Class B
	Class 2 according to
	EN62053-23
AV5, AV6 models	In: 5A, Imax: 10A;
	$0.1 \mathrm{ln}: 0.5 \mathrm{~A}$,
	Start up current: 10 mA
AVO, AV9 models	lb: 10A, Imax: 64A;
	0.1 lb 1,0A,
	Start up current: 40 mA
Energy additional errors	
Influence quantities	According to EN62053-21, EN62053-23
Temperature drift	$\leq 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Sampling rate	1600 samples/s @ 50 Hz
Display refresh time	750 msec .
Display	3 lines (1×8 DGT; 2×4
	DGT)
Type	LCD, h 7 mm
Instantaneous variables read-out	4 DGT

Output specifications

Digital outputs Pulse type Number of outputs Type	Up to 2, independent. Programmable from 0.01 to 1000 pulses per kWh/kvarh. Outputs connectable to the	Note	The meters equipped with the relay outputs ("AVO" and "AV9" models with "R2" option) work even if VL1 is missing (VL3, VL2 and neutral have to be available)
Pulse duration	energy meters (Wh/varh) $\geq 100 \mathrm{~ms}<120 \mathrm{msec}(\mathrm{ON})$, $\geq 120 \mathrm{~ms}$ (OFF), according to EN62052-31	RS485 Type	Multidrop, bidirectional (static and dynamic variables)
Alarm type Number of outputs Alarm modes	Up to 2, independent Up alarm, down alarm (see the table "List of the variables that can be connected to")	Connections Addresses	2-wire Max. distance 1200 m Termination directly on the instrument 247, selectable by means of the front joystick
Set-point adjustment	From 0 to 100\% of the display scale	Protocol Data (bidirectional)	MODBUS/JBUS (RTU)
Hysteresis On-time delay Output status	From 0 to full scale 0 to 255s Selectable; normally de-energized and normally energized	Dynamic (reading only) Static (reading and writing)	System and phase variables: see table "List of variables..." All the configuration parameters.
Min. response time Note	$\leq 700 \mathrm{~ms}$, filters excluded. Set-point on-time delay: " 0 s " The 2 digital outputs can also work as a dual pulse output, dual alarm output, one pulse output and one alarm output.	Data format Baud-rate Driver input capability Insulation	1 start bit, 8 data bit, no parity, 1 stop bit 4800, 9600 bits/s $1 / 5$ unit load Maximum 160 transceivers on the same bus. By means of optocouplers,
Static output Purpose	For pulse output or alarm output		4000 VRMS output to measuring input. 4000 VRMS output to
Signal Insulation	Von $1.2 \mathrm{VDC} / \mathrm{max} .100 \mathrm{~mA}$ Voff 30 VDC max. By means of optocuplers, 4000 VRMS output to measuring inputs, 4000 VRMS output to power supply input.	Note:	supply input The meters equipped with the communication port ("AVO" and "AV9" models with "XS" and "IS" options) work even if VL1 is missing (VL3, VL2 and neutral have
Relay output			to be available)
Purpose Type	For alarm output or pulse output Reed Relay, SPST type AC 1-5A @ 250VAC DC 12-5A @ 24VDC AC 15-1.5A @ 250VAC DC 13-1.5A @ 24VDC	Dupline Bus Addresses Variables	Full Dupline compatibility 128, selectable by means of the front joystick Total kWh, total kvarh. W, Wdmd, Wdmd max
Insulation	4000 VRMS output to measuring input. 4000 VRMS output to supply input.		

Digital input specifications

Number of inputs
Input frequency
Prescaler adjustment
Contact measuring voltage
Contact measuring current
Input impedance
Contact resistance
Working modes

3

20 Hz max, duty cycle 50%
From 0,1 to $999.9 \mathrm{~m}^{3 /}$
pulse
5VDC +/- 5\%
10 mA max
680Ω
$\leq 100 \Omega$, closed contact $\geq 500 \mathrm{k} \Omega$, open contact Selectable:

- total and partial energy meters (kWh and kvarh) without digital inputs;
- total and partial energy meters (kWh and kvarh) managed by time periods (t1-t2-t3-t4), W dmd synchronisation (the synchronisation is made every time the tariff changes) and GAS $\left(m^{3}\right)$ or WATER (hotcold m^{3}) or remote heating (kWh) meters;
- total and partial energy meters (kWh and kvarh) managed by time periods (t1-t2), W dmd synchronisation (the synchronisation is made independently from the tariff selection) and GAS $\left(\mathrm{m}^{3}\right)$ or WATER (hot-cold m${ }^{3}$) or remote heating (kWh) meters; - total energy (kWh, kvarh) and GAS, WATER (hot-cold m^{3}) and remote heating meters (3 choices only). The energy metering is only made by means of the analogue inputs. By means of optocouplers, 4000 VRMS digital inputs to measuring inputs. 4000 VRMS digital inputs to supply input.

Software functions

General specifications

Operating temperature	$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(13^{\circ} \mathrm{F}\right.$ to 131° F) (R.H. from 0 to 90% non-condensing @ $40^{\circ} \mathrm{C}$) according to EN62053-21 and EN62053-23	Radio frequency suppression Standard compliance Safety	According to CISPR 22 IEC60664, IEC61010-1 EN60664, EN61010-1 EN62052-11
Storage temperature	$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(22^{\circ} \mathrm{F}\right.$ to 140° F) (R.H. <90\% noncondensing @ $40^{\circ} \mathrm{C}$) according to EN62053-21 and EN62053-23	Metrology Pulse output Approvals	EN62053-21, EN62053-23. MID "annex MI-003" DIN43864, IEC62053-31 CE, PTB (Revenue Approvals)
Installation category	Cat. III (IEC60664, EN60664)	Connections Cable cross-section area AVO-AV9 models	Screw-type Max. $16 \mathrm{~mm}^{2}$ (measuring inputs); Min. $2.5 \mathrm{~mm}^{2}$ (measuring inputs) Other inputs: $1.5 \mathrm{~mm}^{2}$ Min./Max. screws tightening torque: $1.7 \mathrm{Nm} / 3 \mathrm{Nm}$
Insulation (for 1 minute)	4000 VRMS between measuring inputs and power supply. 4000 VRMS between power supply and RS485/digital output		
Dielectric strength	4000 VRMS for 1 minute	Cable cross-section area AV5-AV6 models	
Noise rejection CMRR	$100 \mathrm{~dB}, 48$ to 62 Hz		Max. $1.5 \mathrm{~mm}^{2}$
EMC	According to EN62052-11	Housing DIN	
Electrostatic discharges	15 kV air discharge;	Dimensions (WxHxD)	$71 \times 90 \times 64.5 \mathrm{~mm}$
Immunity to irradiated	Test with current: $10 \mathrm{~V} / \mathrm{m}$ from 80 to 2000 MHz ;	Material	Nylon PA66, self-extinguishing: UL 94 V-0
Electromagnetic fields	Test without any current:	Mounting	DIN-rail
Burst	$30 \mathrm{~V} / \mathrm{m}$ from 80 to 2000MHz; On current and voltage	Protection degree Front Screw terminals	IP50
	measuring inputs circuit:	Weight	
			Approx. 400 g (packing included)
disturbances	$10 \mathrm{~V} / \mathrm{m}$ from 150 KHz to 80 MHz		
Surge	On current and voltage measuring inputs circuit: 4 kV ; on "L" auxiliary power supply input: 1 kV ;		

Power supply specifications

Self supplied version

Note

AV9-AV0 models "O2" and "DP" options only: -20\% +15\%, 48-62Hz "R2", "XS" and "IS" options only: $-15 \%+10 \%, 48-62 \mathrm{~Hz}$ The instruments provided with "IS" and "R2" options work only if all the voltage inputs are connected (3phase and neutral). If a $1-$ phase connection has to be performed, the L1, L2 and L3 voltage inputs have to be short circuited. The instrument provided with "O2" option, working in a 3-phase system with

	neutral may work also if one or two phases are missing.
Auxiliary power supply	AV5-AV6 modules: L: 18 to 60VAC/DC; D: $115 \mathrm{VAC} / 230 \mathrm{VAC}$ $(48$ to 62 Hz$)$
Power consumption AV9-AV0 models	$\leq 20 \mathrm{VA} / 1 \mathrm{~W}$
AV9-AV0 models	
(IS option only)	
AV5-AV6 models	$\leq 12 \mathrm{VA} / 2 \mathrm{~W}$
	$\leq 2 \mathrm{VA} / 2 \mathrm{~W}$

CARLO GAVAZZI

Accuracy

kWh, accuracy (RDG) depending on the current

kvarh, accuracy (RDG) depending on the current

- Accuracy limits (Reactive energy)

Start-up current: 10mA (AV5-6), 40mA (AV0-9)

MID "Annex MI-003" compliance

Accuracy

AVO-AV9 models
0.9 Un $\leq \mathrm{U} \leq 1.1 \mathrm{Un}$;
$0.98 \mathrm{fn} \leq \mathrm{f} \leq 1.02 \mathrm{fn}$; fn: 50 or 60 Hz ; $\cos \varphi: 0.5$ inductive to 0.8 capacitive.
Class B
I st: 0.04A; I min: 0.5A;
Itr: 1A;
I max: 64A

AV5-AV6 models	Class B
	I st: $0.01 \mathrm{~A} ;$
	I min: $0.05 \mathrm{~A} ;$
	I tr: $0.25 \mathrm{~A} ;$
	I n: $5 \mathrm{~A} ;$
	I max: 10 A
Operating temperature	$-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(13^{\circ} \mathrm{F}\right.$ to
	$\left.131^{\circ} \mathrm{F}\right)(\mathrm{R} . \mathrm{H}$. from 0 to 90%
	non-condensing @ $\left.40^{\circ} \mathrm{C}\right)$
EMC compliance	E2

Used calculation formulas

Phase variables
Instantaneous effective voltage
$V_{1 N}=\sqrt{\frac{1}{n} \cdot \sum_{1}^{n}\left(V_{1 N}\right)_{i}^{2}}$
Instantaneous active power
$W_{1}=\frac{1}{n} \cdot \sum_{1}^{n}\left(V_{1 N}\right) \cdot\left(A_{1}\right)$
Instantaneous power factor
$\cos \varphi_{1}=\frac{W_{1}}{V A_{1}}$
Instantaneous effective current
$A_{1}=\sqrt{\frac{1}{n} \cdot \sum_{1}^{n}\left(A_{1}\right)_{i}^{2}}$
Instantaneous apparent power
$V A_{1}=V_{1 N} \cdot A_{1}$
Instantaneous reactive power
$\operatorname{var}_{1}=\sqrt{\left(V A_{1}\right)^{2}-\left(W_{1}\right)^{2}}$

System variables
Equivalent three-phase voltage
$V_{\Sigma}=\frac{V_{1}+V_{2}+V_{3}}{3} \cdot \sqrt{3}$
Voltage asymmetry
$A S Y_{L L}=\frac{\left(V_{L L \text { max }}-V_{L L \text { min }}\right)}{V_{L L} \Sigma}$
$A S Y_{L N}=\frac{\left(V_{L N \text { max }}-V_{L N \text { min }}\right)}{V_{L N} \Sigma}$
Three-phase reactive power
$\operatorname{var}_{\Sigma}=\left(\operatorname{var}_{1}+\operatorname{var}_{2}+\operatorname{var}_{3}\right)$

Three-phase active power
$W_{\Sigma}=W_{1}+W_{2}+W_{3}$
Three-phase apparent power
$V A_{\Sigma}=\sqrt{W_{\Sigma}^{2}+\operatorname{var}_{\Sigma}^{2}}$

Three-phase power factor
$\cos \varphi_{\Sigma}=\frac{W_{\Sigma}}{V A_{\Sigma}}$

Energy metering
$k \operatorname{var} h i=\int_{t 1}^{t 2} Q i(t) d t \cong \Delta t \sum_{n 1}^{n 2} Q n j$
$k W h i=\int_{t 1}^{t 2} P i(t) d t \cong \Delta t \sum_{n 1}^{n 2} P n j$
Where:
$\mathbf{i}=$ considered phase (L1, L2 or L3)
$\mathbf{P}=$ active power; $\mathbf{Q}=$ reactive power; $\mathbf{t}_{1}, \mathbf{t}_{2}=$ starting and ending time points of consumption recording; $\mathbf{n}=$ time unit; $\Delta \mathbf{t}=$ time interval between two successive power consumptions; $\mathbf{n}_{1}, \mathbf{n}_{2}=$ starting and ending discrete time points of consumption recording

List of the variables that can be connected to:

- RS485 communication port
- Alarm outputs ("max" variable", "energies" and "hour counter" excluded)
- Pulse outputs (only "energies")
- Dupline bus (only "kWh, kvarh, W, Wdmd, Wdmd max")

No	Variable	1-phase system	2-phase system	3-ph. 4-wire balanced sys.	3-ph. 4-wire unbal. sys.	3 ph. 3-wire bal. sys.	3 ph. 3-wire unbal. sys.	Notes
1	V L-N sys	0	x	x	x	x	x	sys=system
2	V L1	x	x	x	x	x	x	
3	V L2	0	x	x	x	x	x	
4	V L3	0	0	x	x	x	x	
5	V L-L sys	0	x	x	x	x	x	sys=system
6	V L1-2	0	X	x	x	x	x	
7	V L2-3	0	0	X	x	x	x	
8	V L3-1	0	0	x	x	x	x	
9	A dmd max	-	X	x	X	x	x	Highest "dmd" current among the phases (1)
10	A L1	X	x	x	x	x	x	
11	A L2	0	x	x	x	x	x	
12	A L3	0	0	x	x	x	x	
13	VA sys	x	x	x	x	x	x	sys=system
14	VA sys dmd	x	X	x	X	x	x	sys=system (1)
15	VA L1	X	X	x	X	X	x	
16	VA L2	0	X	x	X	x	x	
17	VA L3	0	0	x	x	x	x	
18	var sys	X	X	x	X	X	x	sys=system
19	var L1	x	x	x	x	x	x	
20	var L2	0	x	x	x	x	x	
21	var L3	0	0	x	x	x	x	
22	W sys	x	x	x	x	x	x	sys=system
23	W sys dmd	x	x	x	X	X	X	sys=system (1)
24	W L1	X	X	X	X	X	X	
$\underline{25}$	W L2	0	X	x	X	x	x	
26	W L3	0	0	x	x	x	x	
$\underline{27}$	PF sys	X	X	X	X	X	x	
$\underline{28}$	PF L1	x	x	x	x	x	x	
29	PF L2	0	X	x	x	x	x	
30	PF L3	0	0	X	X	x	x	
31	Hz	X	x	x	x	x	X	
32	Phase seq.	0	x	x	x	x	x	
33	Hours	x	x	x	x	x	x	
34	kWh (+)	X	X	X	X	X	X	Total or by user
35	kvarh (+)	x	x	x	X	x	x	Total or by user
36	kWh (+)	x	x	x	x	x	X	Partial or by tariff
37	kvarh (+)	x	X	x	X	X	x	Partial or by tariff
38	kWh (-)	x	x	x	x	x	x	Total
39	kvarh (-)	x	x	x	X	x	x	Total
40	m^{3} Gas	x	X	x	x	x	x	Total
41	m^{3} Cold $\mathrm{H}_{2} \mathrm{O}$	x	x	x	x	x	x	Total
42	$\mathrm{m}^{3} \mathrm{Hot} \mathrm{H}_{2} \mathrm{O}$	x	x	x	X	x	x	Total
43	kWh $\mathrm{H}_{2} \mathrm{O}$	X	X	X	X	X	X	Total

(x) = available
(o) = not available (zero indication on the display)
(1) Max. value with data storage

Display pages

Sel. pos.	No	1st variable (1st line)	2nd variable (2nd line)	3rd variable (3rd line)	Note	Applications							
						A	B	C	D	E	F	G	H
	1	Phase seq.	VLN sys	Hz		x	X	X		X	X	X	X
	2	Phase seq.	VLL sys	Hz							X	x	x
	3	Total kWh (+)	W sys dmd	W sys dmd max		x	x	x		x	X	X	X
	4	kWh (+)	A dmd max	"PArt"	"PArt" = Partial kWh (+)						X	X	X
	5	Total kvarh (+)	VA sys dmd	VA sys dmd max			X	X			X	X	X
	6	kvarh (+)	VA sys	"PArt"	"PArt" = Partial kvarh (+)						x	x	X
	7	Totalizer 1 (2)	W sys	(3)	(1)			X			X	X	X
	8	Totalizer 2 (2)	W sys	(3)	(1)			X			X	X	X
	9	Totalizer 3 (2)	W sys	(3)	(1)			X			X	X	X
	10	kWh (+)	t1 tariff	W sys dmd	(1) digital input enabled			X			X	X	X
	11	kWh (+)	t2 tariff	W sys dmd	(1) digital input enabled			X			X	X	X
	12	kWh (+)	t3 tariff	W sys dmd	(1) digital input enabled			x			X	x	X
	13	kWh (+)	t4 tariff	W sys dmd	(1) digital input enebled			X			X	X	X
	14	kvarh (+)	t1 tariff	W sys dmd	(1) digital input enabled			X			X	X	X
	15	kvarh (+)	t2 tariff	W sys dmd	(1) digital input enabled			X			X	X	X
	16	kvarh (+)	t3 tariff	W sys dmd	(1) digital input enabled			X			X	X	X
	17	kvarh (+)	t4 tariff	W sys dmd	(1) digital input enabled			X			X	X	X
	18	kWh (+) X	W X	User X	(1) specific function enabled				X				
	19	kWh (+) Y	W Y	User Y	(1) specific function enabled				x				
	20	kWh (+) Z	W Z	User Z	(1) specific function enabled				X				
	21	Total kvarh (-)	VA sys dmd	VA sys dmd max							X		x
	22	Total kWh (-)	W sys dmd	W sys dmd max						x	x		X
	23	Hours	W sys	PF sys						X	X	X	X
	24	Hours	var sys	PF sys						X	X	X	X
	25	var L1	var L2	var L3								X	X
	26	VA L1	VA L2	VA L3								X	x
	27	PF L1	PF L2	PF L3								X	X
	28	W L1	W L2	W L3						X		X	X
	29	A L1	A L2	A L3						X		X	X
	30	V L1-2	V L2-3	V L3-1								X	x
	31	V L1	V L2	V L3			X		x	X		X	X
0		tor position whis	ch can be linke	to any of the va	iable conbinations listed above	(.		to				
1		ctor position wh	ch can be linke	to any of the va	iable conbinations listed above	(No	from	m 1	to				
2		ctor position whis	ch can be linke	to any of the va	iable conbinations listed above	(No	from		to				
3		ector position w is position the	ch can be linked front LED blinks	to any of the va roportionally to the	iable conbinations listed above e reactive energy (kvarh) being								

(1) The page is available according to the enabled measurement.
(2) m^{3} Gas, m^{3} Water, kWh remote heating.
(3) Hot or Cold (water).

Note: in case of alarm the down arrow on the display blinks. There is a time-out of 60 s that brings the scrolled page to the default one (selectable according to the table given above).

Additional available information on the display

Type	1st line	2nd line	3rt line
Meter information 1	Serial number	Year of production	Display page index
Meter information 2 (AV0-9)	System (1-2-3-phase)	Connection (2-3-4-wire)	dmd (time)
Meter information 3 (AV5-6)	CT ratio		
Meter information 4 (AV5-6)	VT/PT ratio		Variable type
In case of alarm output	Alarm output 1 or 2 status	Set-point value	
In case of pulse output	Pulse output 1 or 2 variable link (kWh/kvarh)	Output pulse weight (pulse/kWh/kvarh)	Address
In case of communication port	Serial port	RS485 status (RX-TX)	

List of selectable applications

	Description	Notes
A	Basic domestic	Mainly energy metering
B	Shopping centres	Mainly energy metering
\mathbf{C}	Advanced domestic	Mainly energy metering (total and based on tariff), gas and water metering
\mathbf{D}	Multi domestic (also camping and marinas)	Mainly energy metering (3 by single phase)
\mathbf{E}	Solar	Energy meter with some basic power analyzer functions
\mathbf{F}	Industrial	Mainly energy metering
\mathbf{G}	Advanced industrial	Energy metering and power analysis
\mathbf{H}	Advanced industrial for power generation	Complete energy metering and power analysis

Insulation between inputs and outputs

	Measuring Inputs	Relay outputs	Open collector outputs	Comm. port and digital inputs	Self power supply	Auxiliary power supply

NOTE: all the models with auxiliary power supply have, mandatory, to be connected to external current transformers because the isolation among the current inputs is just functional (100VAC).

Tamper proof accessory kit

The "tamper proof" kit is available with the "P" option (two screw protection covers). points:

- Upper cover;
- Lower cover;
- Front selector (to lock the instrument programming);

Wiring diagrams

(64A) System type selection: 3P.n

(11) (1) (4) (7)		
64 A inputs self power supply		
${ }^{414243}$		
O_{313233}	(3) (6)	(9)

(64A) System type selection: 2P

(64A) System type selection: 1P

(10A) System type selection: 3P.n

Wiring diagrams

(10A) System type selection: 3P.n

System type selection: 3P. 1

1-CT connection

3-ph, 3-wire, balanced load Fig. 13

(10A) System type selection: 2P

(10A) System type selection: 1P

Wiring diagrams

(10A) System type selection: 1P

(11) (1) (4) (7)			
64A inputs self power supply			
$\begin{array}{llll} \hline 414243 & & & \\ \text { OOO } \\ \text { OOO } \\ 313233 & \text { © } & \text { (6) } & \text { © } \end{array}$			

Power supply wiring diagrams (auxiliary power supply)

230VAC ("D" option)
115VAC ("D" option)
24 to 48VAC/DC ("L" option)

Open collector and relay outputs wiring diagrams

[^0] 100 mA ; the VDC voltage must be lower than or equal to 30VDC.

Digitala inputs and RS485 port wiring diagrams

RS485 port

Dimensions

[^0]: The load resistances (RC) must be designed so that the close contact current is lower than

