Monitoring Technique

VARIMETER
 Asymmetry Relay
 BA 9042

Function Diagram

Circuit Diagrams

Connection Terminals

Terminal designation	Signal designation
L1, L2, L3	Connection phase voltage (L1, L2, L3)
$11,12,14$	Indicator relay (1. C/O contact)
$21,22,24$	Indicator relay (2. C/O contact)

- According to IEC 255, EN 60 255-1
- For nominal voltage from 3 AC 100 V to 500 V
- Detection of
- voltage asymmetry
- wrong phase sequence
- phase failure
- Detection of feedback voltage
- Closed circuit operation
- LED indicators for operation and state of contacts
- Optionally with adjustable time delay
- Width 45 mm

Approvals and Markings

C ϵ

Applications

Monitoring three-phase mains for voltage asymmetry, phase failure or incorrect phase sequence.

Function

The device responds to unsymmetric voltage changes, which can occur because of unbalanced load or phase failure (blown fuse). An asymmetry relay detects only the voltage difference between 2 phases and does not react on symmetric undervoltage.

Indicators

red LED:
green LED:
on, when supply voltage connected on, when output relay energized

Notes

On ambient temperature $>20^{\circ} \mathrm{C}$ overvoltage together with max. thermal current is not allowed. In industrial voltage systems with high harmonic content (content > 2 \%) measuring faults can occur. Harmonics in industrial systems are caused by thyristor controls, emergency power supplies, reactive current compensators, etc.
Normally the harmonic content of a voltage system is unknown. We recommend therefore to test a sample in the actual circuit which we can provide with the right to return. If problems occur during the test we are able to offer other solutions.

Technical Data		Technical Data			
Input		Wire connection:	$2 \times 2.5 \mathrm{~mm}^{2}$ solid or		
		$2 \times 1.5 \mathrm{~mm}^{2}$ stranded wire with sleeve			
Nominal voltage $\mathbf{U}_{\mathbf{N}}$:	$\begin{aligned} & 3 \mathrm{AC} 100,110,127,220,240,380 \text {, } \\ & 400,415,440,460,480,500 \mathrm{~V} \end{aligned}$			DIN 46 228-1/-2/-3/-4	
		Insulation of wires or			
Voltage range:	$0.8 \ldots 1.1 U_{\text {N }}$	sleeve length:	8 mm		
Nominal consumption: $\quad \leq 3.8 \mathrm{VA}$		Wire fixing:	Flat terminals with self-lifting		
Nominal frequency:	$50 / 60 \mathrm{~Hz}$		clamping piece IEC/EN 60 999-1		
Frequency range:	$\pm 5 \%$	Fixing torque:	0.8 Nm		
		Mounting:	DIN rail IEC/EN 60715		
Setting ranges		Weight:	310 g		
Setting range: Hysteresis: Voltage feedback recognition:	$5 \ldots 15 \%$ voltage asymmetry, settable>0.98	Dimensions			
		Width x height x depth:	$45 \times 73 \times 132 \mathrm{~mm}$		
	up to 100% - setting value, e.g. when setting value $=5 \%$ asymmetry, $100 \%-5 \%=95 \%$ Recognition of voltage feedback up to 95%				
		Standard Type			
		BA 90423 AC 400 V 50 Hz Article number: - Output: - Nominal voltage U_{N} : - Width:			
			0040770		
			2 changeover contacts		
Output			3 AC 400 V		
Contacts: Release delay: (at phase failure or asymmetry)					
	2 changeover contacts				
	$\leq 150 \mathrm{~ms}$	Variant			
	If the voltage system becomes again symmetric before 150 ms the contacts may switch	BA 9042/002:	with time delay $\mathrm{t}_{\mathrm{v}}=0.5 \ldots 10 \mathrm{~s}$		
			on asymmetry detection		
Operate delay:		Ordering example for variant			
		BA 9042 (002 3 AC 400 V			
switching on)	$\leq 500 \mathrm{~ms}$	BA9042 1002 3 400 V			
Thermal current $\mathrm{t}_{\text {th }}$:	6 A		- Nominal frequency		
Switching capacity to AC 15			- Variant, if required		
NO contact:	$2 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}$ IEC/EN 60 947-5-1		- Type		
NC contact:	1 A / AC 230 V IEC/EN 60 947-5-1				
to DC 13:	$1 \mathrm{~A} / \mathrm{DC} 24 \mathrm{~V}$ IEC/EN 60 947-5-1				
Electrical life					
to AC 15 at $1 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}$:	$\geq 2.5 \times 10^{5}$ switch. cycl. IEC/EN 60 947-5-1				
Short-circuit strengthmax. fuse rating:					
	$4 \mathrm{AgG} / \mathrm{gL}$ IEC/EN $60947-5-1$$>30 \times 10^{6}$ switching cycles				
Mechanical life:					
General Data					
Operating mode:	Continuous operation				
Temperature range					
Operation:	$-20 \ldots+60^{\circ} \mathrm{C}$				
Storage:	- $20 \ldots+60^{\circ} \mathrm{C}$				
Altitude:	<2.000 m				
Clearance and creepage distances					
rated impulse voltage /					
pollution degree	$4 \mathrm{kV} / 2 \quad \mathrm{IEC} 60$ 664-1				
EMC					
Electrostatic discharge:	8 kV (air) IEC/EN 61 000-4-2				
HF irradiation					
80 MHz ... 2.7 GHz :	$10 \mathrm{~V} / \mathrm{m}$ IEC/EN 61 000-4-3				
Fast transients:	2 kV IEC/EN 61 000-4-4				
Surge voltages between					
wire for powers supply:	1 kV IEC/EN 61 000-4-5				
between wire and ground:	2 kV IEC/EN 61 000-4-5				
HF wire guided:	10 V IEC/EN 61 000-4-6				
Interference suppression:	Limit value class B EN 55011				
Degree of protection					
Housing:	IP 40 IEC/EN 60529				
Terminals:	IP 20 IEC/EN 60529				
Housing:	Thermoplastic with V0 behaviour acccording to UL subject 94				
Vibration resistance:	Amplitude 0.35 mm IEC/EN 60 068-2-6 frequency 10 ... 55 Hz				
Climate resistance:	$20 / 060$ / 04 IEC/EN 60 068-1				
Terminal designation:	EN 50005				

