FATON

Series G
 Moulded Case Circuit Breakers

- Up to 690 Vac
-18kA to $100 \mathrm{kA} \mathrm{I}_{\mathrm{cu}}$
- 16-2500 Amperes
- IEC 60947-2

Description Page
Standards 1
General Information 1
Electrical Characteristics 2
Multi-Function
Electronic Trip Units 8
Electronic Trip Unit Selection Guide 9
Frame Size Selection Guide
\& Ordering Information/Termination Accessories
GE-Frame,
16-160 Amperes 11
GJ-Frame,
20-250 Amperes 13
GL-Frame,
100-630 Amperes 15
GN-Frame, 400-1600 Amperes 17
GR-Frame,
800-2500 Amperes 21
Motor Circuit Protectors 25
Earth Leakage Modules 26
Optional Featuresand Accessories27
Plug-in Blocks \& Drawout Cassette 30
Handle Mechanisms 31
Time Current Curves 34
Current Limiting Curves 40
Dimensions 41

Standards

Eaton's Moulded Case Circuit Breakers are designed to conform with the following international standards:
■ International Electrotechnical Commission Recommendations IEC 60947-2 Circuit Breakers. C€

- Australian Standard AS 2184 and AS 3947-2 Moulded Case Circuit Breakers.
- Swiss Electro-Technical Association Standard SEV 947.2, Safety Regulations for Circuit Breakers.
- Union Technique de l'Electricite Standard NF C 63-120, Low Voltage Switchgear and Control Gear Circuit Breaker Requirements.
- Verband Deutscher Elektrotechnike (Association of German Electrical Engineers) Standard VDE 0660, Low Voltage Switchgear and Control Gear, Circuit Breakers.

General Information

The " G " signifies global applications. Other advantages include:
■ Field-fit accessories.

- Common accessories through 630 amperes.
- Electronic trip units from 20 to 2500 amperes.
- Earth leakage modules.
- Built-in fault protection down to 20 amperes.

The Eaton Series G family includes five frame sizes in ratings from 16 to 2500 amperes. Series G offers a choice of several interrupting capacities up to 100 kA at 690 volts ac.

Standard calibration is $40^{\circ} \mathrm{C}$. For applications in high ambient temperature conditions, $50^{\circ} \mathrm{C}$ factory calibration is available on thermal magnetic breakers.

Global Third Party Certification

Certification marks ensure product compliance with the total standard via the third party witnessing of tests by globally recognised independent certification organisations.
KEMA is a highly recognised, independent international organisation that offers certification and inspection facilities for equipment in many industries. The KEMA-KEUR mark is the highest certification an electrical product can receive from KEMA. Our IEC 60947-2 Moulded Case Circuit Breakers are KEMA tested and certified. These breakers are also available in accordance with UL® 489, as well as CSA C22.2 No. 5-02.

KEMA and UL provide ongoing follow-up testing and inspections to ensure that Eaton's Moulded Case Circuit Breakers continue to meet their exacting standards.

The Most Logically Designed Contact Assembly

The flexibility and outstanding performance characteristics of Eaton Circuit Breakers are made possible by the best contact designs in circuit breaker history. Our patented technology creates a high-speed "opening force" action using the electromechanical forces produced by high-level fault currents.

Eaton Circuit Breakers are operated by a toggle-type mechanism that is mechanically trip-free from the handle so that the contacts cannot be held closed against short circuit currents. Tripping due to overload or short circuits is clearly indicated by the position on the handle. This remarkably fast and dependable contact action is designed to enhance safety.

Thorough In-Plant Testing

The quality, dependability and reliability of every Eaton Circuit Breaker is ensured by a thorough program of in-plant testing. Two calibration tests are conducted on every pole of every circuit breaker to verify the trip mechanism, operating mechanism, continuity and accuracy.

ISO Certification

Eaton Circuit Breakers are manufactured in ISO ${ }^{\circledR}$ certified facilities.

Current Limiting Characteristics

Eaton Series G Circuit

Breakers are current limiting because of their high repulsion contact arrangement and use of state-of-the-art arc extinguishing technology.

Operating Mechanisms

Eaton Circuit Breakers have a toggle handle operating mechanism, which also serves as a switching position indicator. The indicator shows the positions of: ON, OFF and TRIPPED.

The toggle handle snaps into the TRIPPED position if the breaker is tripped by one of its overcurrent, short circuit, shunt or undervoltage releases. Before the circuit breaker can be reclosed following a trip-out, the toggle handle must be brought beyond the OFF position (RESET). The circuit breaker can then be reclosed.

As an additional switching position indicator for GE- to GR-Frame circuit breakers, there are two windows on the right and on the left of the toggle handle, in which the switching state is indicated by means of the colours red, green and white corresponding to the ON, OFF andTRIPPED positions respectively.

Figure 1. Positions of the Toggle Handle Drive

16-2500 Amperes for IEC Applications

Series G Frame Sizes GE through GL

Electrical Characteristics

Table 1. Electrical Characteristics

Frame size and page number	GE (p. 11)					GJ (p. 13)			GL (p. 15)		
Maximum Rated Current (Amperes)	125			160	125	250			400,630		
Breaker Type	B	E		S	H		H	C ${ }^{1}$	S	H	C ${ }^{1}$
Number of Poles	1 l 2,3	1	3,44	3,44	3,44	S	3,44		3,44		

IEC 60947-2	220-240 Vac	I cu	18	25		25	35	85		100	85	100	200	85	100	200	
		$\mathrm{I}_{\text {cs }}$	12	13		13	18	43		50	85	100	150	85	100	150	
	380-415 Vac	I cu	-	18		-	25	40		70	40	70	100	50	70	100	
		I_{cs}	-	12		-	13	30		35	40	70	75	50	70	75	
	$660-690$ Vac	I cu	-	-		-	-	4		6	12	14	20	20	25	35	
		Ics	-	-		-	-	3		3	6	7	10	10	13	18	
	250 Vdc (2)	I cu	10	10		10	10	35		42	35	42	42	22	42	42	
		Ics	10	10		10	10	35		42	35	42	42	22	42	42	
Ampere Range			16-160A								20-250 A			100-630 A			
Trip Units F= Fixed A=Adjustable T=Thermal M=Magnetic			FT-FM AT-FM								AT-AM Electronic (Digitrip RMS 310)			AT-AM Electronic (Digitrip RMS 310)			
Thermal Magnetic	FixedThermal		\square								-			-			
	AdjustableThermal		\square								\square			\square			
	Magnetic		Fixed								Adjustable			Adjustable			
Electronic rms (3)	LSI		-								$\square{ }^{(3)}$			$\square{ }^{(3)}$			
	LSIG		-								$\square{ }^{(3)}$			$\square{ }^{(3)}$			
Dimensions mm	1-Pole		H			W		D			H	W	D	H	W	D	
			139.7			25.4		81.1			-	-	-	-	-	-	
	2-Pole					50.8					-	-	-	-	-	-	
	3-Pole					76.2					177.8	105.0	87.4	258.0	140.0	104.0	
	4-Pole					101.6					135.6	183.0					
Weight (approximate) kg			1-Pole		2-Pole		3-Pole	4-Pole				3-Pole		4-Pole	3-Pole		4-Pole
			0.5				1.4		1.8		5.2 7.0			7.3		9.1	
Utilisation Category			A								A			A			

(1) Contact your Eaton representative for availability.
(2) Two poles in series.
${ }^{(3)}$ Not suitable for dc application. 4-pole earth fault not available.
(4) Neutral on left side.

- Available
- Not Available

Moulded Case Circuit Breakers

Series G Frame Sizes GN and GR

Table 1. Electrical Characteristics (Continued)

Frame size and page number	GN (p. 17)				GR (p. 21)	
Maximum Rated Current (Amperes)	800, 1250			1600	1600, 2000, 2500	
Breaker Type	S	H	C	S	H	C
Number of Poles	3,44			3,44	3,44	

Breaking Capacity (kA rms) ac $\mathbf{5 0} \mathbf{- 6 0 ~ H z}$

IEC 60947-2	220-240 Vac	Icu	85	100	200		85	135		200		
		Ics	85	100	100		85	100		100		
	380-415 Vac	I Cu	50	70	100		50	70		100		
		Ics	50	50	50		50	50		50		
	660-690 Vac	$\mathrm{I}_{\text {cu }}$	20	25	35		20	25		35		
		Ics	10	13	18		10	13		18		
	250 Vdc	$\mathrm{I}_{\text {cu }}$	-	-	-		-	-		-		
		Ics	-	-	-		-	-		-		
Ampere Range			400-1250 A				1600 A	800-2500 A				
Trip Units			Electronic (Digitrip RMS 310)					Electronic (Digitrip RMS 310, 610 and 910)				
Electronic ${ }^{(3)}$	LSI		$\square{ }^{(3)}$					$\square{ }^{(3)}$				
	LSIG		$\square{ }^{(3)}$					$\square^{(3)}$				
Dimensions mm	1-Pole		H	W		D		H	W		D	
			-	-		-		-	-		-	
	2-Pole		-	-		-		-	-		-	
	3-Pole		406.0	210.0		140.0		406.0	394.0		229.0	
	4-Pole			280.0				508.0				
Weight (approximate) kg			3-Pole		4-Pole				3-Pole		4-Pole	
			21.3		28.3					54.0		
			A					$\begin{array}{\|l} \hline 47.0 \\ \hline \text { A } \\ \hline \end{array}$				

(3) Not suitable for dc application. 4-pole earth fault not available.
(4) Neutral on right side.

- Available
- Not Available

Table 2. GE through GR Electrical Characteristics

Technical Data	GE		GJ		GL		GN	GR
Maximum Rated Current I_{n} Depending on the Version	160 A		250 A		400, 630 A		800, 1250, 1600 A	1600, 2000, 2500 A
Rated Insulation Voltage U, According to IEC 60947-2 Main Conducting Paths Auxiliary Circuits	690 Vac 690 Vac		$\begin{aligned} & 750 \mathrm{Vac} \\ & 690 \mathrm{Vac} \end{aligned}$		750 Vac 690 Vac		750 Vac 690 Vac	750 Vac 690 Vac
Rated Impulse Withstand Voltage $\mathrm{U}_{\text {imp }}$ Main Conducting Paths Auxiliary Circuits	$\begin{array}{\|l\|} \hline 6 \mathrm{kV} \\ 4 \mathrm{kV} \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 8 \mathrm{kV} \\ 4 \mathrm{kV} \\ \hline \end{array}$		$\begin{aligned} & 8 \mathrm{kV} \\ & 4 \mathrm{kV} \end{aligned}$		$\begin{aligned} & 8 \mathrm{kV} \\ & 4 \mathrm{kV} \end{aligned}$	$\begin{aligned} & 8 \mathrm{kV} \\ & 4 \mathrm{kV} \end{aligned}$
```Rated Operational Voltage U}\mp@subsup{\textrm{U}}{\textrm{e}}{ IEC```	690 Vac		690 Vac		690 Vac		690 Vac	690 Vac
Permissible Ambient Temperature	-20 to $+70^{\circ} \mathrm{C}$		-20 to $+70^{\circ} \mathrm{C}$		-20 to $+70^{\circ} \mathrm{C}$		-5 to $+60^{\circ} \mathrm{C}$	-5 to $+60^{\circ} \mathrm{C}$
Permissible Load for Various AmbientTempera Close to the Circuit Breaker, Related to the Rated Current of the Circuit Breaker   - Circuit Breakers for Plant Protection   - At $40^{\circ} \mathrm{C}$   - At $50^{\circ} \mathrm{C}$   - At $55^{\circ} \mathrm{C}$   - At $60^{\circ} \mathrm{C}$   - At $70^{\circ} \mathrm{C}$   - Circuit Breakers for Motor Protection   - At $40^{\circ} \mathrm{C}$   - At $50^{\circ} \mathrm{C}$   - At $55^{\circ} \mathrm{C}$   - At $60^{\circ} \mathrm{C}$   - At $70^{\circ} \mathrm{C}$   - Circuit Breakers for Starter Combinations and Isolating Circuit Breakers   - At $40^{\circ} \mathrm{C}$   - At $50^{\circ} \mathrm{C}$   - At $55^{\circ} \mathrm{C}$   - At $60^{\circ} \mathrm{C}$   - At $70^{\circ} \mathrm{C}$	(1)   100\%   96\%   93\%   91\%   86\%	(2)   100\% 92\% 87\% 83\% 73\%	$\begin{array}{\|l\|} \hline 1 \\ \\ \\ 100 \% \\ 96 \% \\ 94 \% \\ 92 \% \\ 88 \% \end{array}$	$\begin{array}{\|l\|} \hline \text { (2) } \\ \\ \\ 100 \% \\ 94 \% \\ 90 \% \\ 87 \% \\ 80 \% \end{array}$	(1)   100\%   96\%   93\%   90\%   84\%	(2)   $100 \%$   91\%   86\%   82\%   70\%	$\begin{gathered} - \\ \\ 100 \% \\ 91 \% \\ 85 \% \\ 81 \% \end{gathered}$	$\begin{aligned} & - \\ & \\ & 100 \% \\ & 91 \% \\ & 85 \% \\ & 81 \% \\ & - \end{aligned}$
	$\begin{aligned} & \text { - } \\ & \text { - } \end{aligned}$		$\begin{array}{\|c} 100 \% \\ 100 \% \\ 100 \% \\ 100 \% \\ 90 \% \end{array}$		$\begin{gathered} 100 \% \\ 100 \% \\ 100 \% \\ 100 \% \\ 90 \% \end{gathered}$		-	-
	$\begin{array}{\|c} \hline 100 \% \\ 100 \% \\ 96 \% \\ 91 \% \\ 86 \% \\ \hline \end{array}$		$\begin{array}{\|c} \hline 100 \% \\ 100 \% \\ 96 \% \\ 82 \% \\ 88 \% \end{array}$		$\begin{gathered} 100 \% \\ 100 \% \\ 95 \% \\ 90 \% \\ 84 \% \\ \hline \end{gathered}$		$\begin{gathered} 100 \% \\ 91 \% \\ 85 \% \\ 81 \% \\ - \end{gathered}$	$\begin{gathered} 100 \% \\ 91 \% \\ 85 \% \\ 81 \% \\ - \end{gathered}$
Rated Short Circuit Breaking Capacity (dc) Not for Circuit Breakers for Motor Protection (Time Constant $\tau=10 \mathrm{rms}$ ) 2 Conducting Paths in Series For GE to GL up to 250 Vdc	$42 \mathrm{kA} \mathrm{Max}$.		$42 \mathrm{kA} \mathrm{Max}$.		$42 \mathrm{kA} \mathrm{Max}$.		(3)	(3)
Main Switch Characteristics According to IEC 60947-2 in Combination with Lockable Rotary Drives	Yes		Yes		Yes		Yes	Yes
Endurance (Operating Cycles)	10,000		10,000		8,000		3,000	3,000
Maximum Switching Frequency	$3001 / \mathrm{h}$		240 1/h		240 1/h		60 1/h	20 1/h

(1) Thermal overload release set to the lower value.
(2) Thermal overload release set to the upper value.
${ }^{(3)}$ Not suitable for dc switching.

## Moulded Case Circuit Breakers

## 16 - 2500 Amperes for IEC Applications

## Series G Frame Sizes GE through GR

Table 2. GE through GR Electrical Characteristics (Continued)

Technical Data	GE	GJ	GL		GN	GR
Conductor Cross Sections andTerminalTypes for Main Conductors   - Solid or Stranded   - Finely Stranded with End Sleeve   Bus Bar   TighteningTorque for BoxTerminals   Tightening Torque for Bus Bar Connection Pieces	BoxTerminals   2.5 to $70 \mathrm{~mm}^{2}$   2.5 to $50 / 70 \mathrm{~mm}^{2}$ $\qquad$   5.6 Nm   5.6 Nm	BoxTerminals      50 to $150 \mathrm{~mm}^{2}$   35 to $120 \mathrm{~mm}^{2}$   -20 Nm   15 Nm	BoxTerminals   95 to $240 \mathrm{~mm}^{2}$   70 to $150 \mathrm{~mm}^{2}$   -   42 Nm   30 Nm	Flat Bar Terminals $\qquad$   -   600 A   31 Nm   6 Nm	Flat BarTerminals - - Optional 31 Nm 50 Nm	Flat BarTerminals   Optional 20 Nm
Conductor Cross Sections for Auxiliary Circuits withTerminal Connection orTerminal Strip   $\square$ Solid   - Finely Stranded with End Sleeve   - With Brought-out Cable Ends   - TighteningTorque for Fitting Screws	$\begin{aligned} & 0.75 \text { to } 2.5 \mathrm{~mm}^{2} \\ & 0.75 \text { to } 2.5 \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 0.75 \text { to } 2.5 \mathrm{~mm}^{2} \\ & 0.75 \text { to } 2.5 \mathrm{~mm}^{2} \\ & 0.82 \text { (AWG } 18 \text { ) } \mathrm{mm}^{2} \\ & 0.8 \text { to } 1.4 \mathrm{Nm} \end{aligned}$	$\begin{aligned} & 0.75 \text { to } 2.5 \mathrm{~mm}^{2} \\ & 0.75 \text { to } 2.5 \mathrm{~mm}^{2} \\ & 0.82 \text { (AWG 18) } \mathrm{mm}^{2} \\ & 0.8 \text { to } 1.4 \mathrm{Nm} \end{aligned}$		Up to $2 \times 4 \mathrm{~mm}^{2}$ Up to $2 \times 2.5 \mathrm{~mm}^{2}$ 0.82 (AWG 18) mm² 0.8 to 1.4 Nm	Up to $2 \times 4 \mathrm{~mm}^{2}$   Up to $2 \times 2.5 \mathrm{~mm}^{2}$   0.82 (AWG 18) mm²   0.8 to 1.4 Nm
Power Loss per Circuit Breaker at Maximum Rated Current In (The Power Losses of the Undervoltage Releases ("r" Releases) Must Be Observed if Necessary) atThree-Phase Symmetrical Load)   - For Plant Protection   - As Isolating Circuit Breaker   - For Starter Combinations   - For Motor Protection	$\begin{aligned} & 40 \mathrm{~W} \\ & 40 \mathrm{~W} \\ & 40 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 45 \mathrm{~W} \\ & 45 \mathrm{~W} \\ & 45 \mathrm{~W} \\ & 45 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 65 \mathrm{~W} \\ & 65 \mathrm{~W} \\ & 65 \mathrm{~W} \\ & 65 \mathrm{~W} \end{aligned}$		$\begin{aligned} & 87 / 210 \mathrm{~W} \\ & 87 / 210 \mathrm{~W} \\ & - \\ & - \end{aligned}$	$\begin{aligned} & \text { 220/270/400W } \\ & 220 / 270 / 400 \mathrm{~W} \end{aligned}$
Permissible Mounting Position			8			
Arc Spacing Suitable for Reverse-Feed Applications	Yes   (Except HMCPE)	Yes	Yes		Yes	Yes

16-2500 Amperes for IEC Applications

Table 2. GE through GR Electrical Characteristics (Continued)

Technical Data	GE	GJ	GL	GN	GR
Auxiliary Switches					
RatedThermal Current $I_{\text {th }}$ Rated Making Capacity	$\begin{array}{\|r} \hline 6 \mathrm{~A} \\ 20 \mathrm{~A} \end{array}$	$\begin{array}{\|r\|} \hline 6 \mathrm{~A} \\ 20 \mathrm{~A} \end{array}$	$\begin{array}{r} \hline 6 \mathrm{~A} \\ 20 \mathrm{~A} \end{array}$	$\begin{array}{\|r} \hline 6 \mathrm{~A} \\ 20 \mathrm{~A} \end{array}$	$\begin{array}{r} \hline 6 \mathrm{~A} \\ 20 \mathrm{~A} \end{array}$
ac (ac-15)   ■ Rated Operational Voltage   $\quad$ Rated Operational Current	$\begin{aligned} & 230 / 400 / 600 \mathrm{~V} \\ & 6 / 3 / 0.25 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 230 / 400 / 600 \mathrm{~V} \\ & 6 / 3 / 0.25 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 230 / 400 / 600 \mathrm{~V} \\ & 6 / 3 / 0.25 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 600 \mathrm{~V} \\ & 6 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 600 \mathrm{~V} \\ & 6 \mathrm{~A} \end{aligned}$
$\begin{array}{ll} \hline \text { dc (dc-13) } \\ \text { ■ Rated Operational Voltage } \\ \text { ■ated Operational Current } \end{array}$	$\begin{aligned} & 125 / 250 \mathrm{~V} \\ & 0.5 / 0.25 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 125 / 250 \mathrm{~V} \\ & 0.5 / 0.15 \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 125 / 250 \mathrm{~V} \\ & 0.5 / 0.15 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 125 / 250 \mathrm{~V} \\ & 0.5 / 0.25 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 125 / 250 \mathrm{~V} \\ & 0.5 / 0.25 \mathrm{~A} \\ & \hline \end{aligned}$

## Releases

Undervoltage Releases   Response Voltage:   - Drop (BreakerTripped)   - Pickup (Breaker May Be Switched on)	$\begin{aligned} & 35-70 \% \\ & 85-110 \% \end{aligned}$	$\begin{aligned} & 35-70 \% \\ & 85-110 \% \end{aligned}$	$\begin{array}{\|l\|} \hline 35-70 \% \\ 85-110 \% \end{array}$	$\begin{aligned} & 35-70 \% \\ & 85-110 \% \end{aligned}$	$\begin{aligned} & 35-70 \% \\ & 85-110 \% \end{aligned}$
Power Consumption in Continuous Operation at:					
- $50 / 60 \mathrm{~Hz} 12 \mathrm{Vac}$	0.95 VA	1.9 VA	1.9 VA	1.9 VA	2.9 VA
- $50 / 60 \mathrm{~Hz} 24 \mathrm{Vac}$	0.72 VA	3.9 VA	3.9 VA	2.4VA	3.1 VA
- $50 / 60 \mathrm{~Hz} \mathrm{48-60} \mathrm{Vac}$	1.15-1.78VA	2.5-3.8VA	2.5-3.8VA	2.3-4.1 VA	3.4-6.0VA
- $50 / 60 \mathrm{~Hz} 110-127 \mathrm{Vac}$	0.96-1.25VA	1.8-2.4VA	1.8-2.4VA	3.4-4.2 VA	3.3-3.8VA
- $50 / 60 \mathrm{~Hz} 208-240 \mathrm{Vac}$	1.28-1.68VA	2.7-3.8VA	2.7-3.8VA	4.8 -6.5VA	4.2-7.2 VA
- $50 / 60 \mathrm{~Hz} \mathrm{380-500} \mathrm{Vac}$	2.2-3.9VA	3.4-5.8VA	3.4-5.8VA	6.8-12.0 VA	3.8-10.0 VA
- $50 / 60 \mathrm{~Hz} 525-600 \mathrm{Vac}$	3.4-4.3VA	3.4 - 4.3VA	3.4-4.3VA	-	
- 12 Vdc	0.88W	1.6 W	1.6 W	2.6 W	3.4 W
- 24 Vdc	0.70 W	3.1 W	3.1 W	3.6W	4.3W
- $48-60 \mathrm{Vdc}$	$1.12-1.76 \mathrm{~W}$	2.0-3.1 W	2.0-3.1 W	$3.5-5.5 \mathrm{~W}$	4.8-7.2 W
- $110-125 \mathrm{Vdc}$	0.94-1.21 W	$1.6-2.2 \mathrm{~W}$	1.6-2.2W	$2.9-3.6 \mathrm{~W}$	$3.3-3.8 \mathrm{~W}$
- 220-250 Vdc	$1.45-1.86 \mathrm{~W}$	$3.1-4 \mathrm{~W}$	3.1 - 4 W	4.8-6.3W	6.6-7.5W
Maximum OpeningTime	50 ms	50 ms	50 ms	62 ms	62 ms

## Shunt Trips

ShuntTrips   Response Voltage:   - Pickup (BreakerTripped)	70-110\%	70-110\%	70-110\%	70-110\%	70-110\%
Power Consumption in (ShortTime) at:   $50 / 60 \mathrm{~Hz} 24 \mathrm{Vac}$   $50 / 60 \mathrm{~Hz} 48-60 \mathrm{Vac}$   $50 / 60 \mathrm{~Hz} 48-127 \mathrm{Vac}$   $50 / 60 \mathrm{~Hz} 110-240 \mathrm{Vac}$   $50 / 60 \mathrm{~Hz} 380-440 \mathrm{Vac}$   $50 / 60 \mathrm{~Hz} 380-600 \mathrm{Vac}$   $50 / 60 \mathrm{~Hz} 480-600 \mathrm{Vac}$   $12-24 \mathrm{Vdc}$   $48-60 \mathrm{Vdc}$   $110-125 \mathrm{Vdc}$   $220-250 \mathrm{Vdc}$	$\begin{gathered} 10-41 \mathrm{VA} \\ 139-210 \mathrm{VA} \\ - \\ 83-360 \mathrm{VA} \\ -118-1080 \mathrm{VA} \\ -\quad \\ 29-120 \mathrm{~W} \\ 475-720 \mathrm{~W} \\ 99-121 \mathrm{~W} \end{gathered}$	$\begin{gathered} 87-405 \mathrm{VA} \\ 710-1105 \mathrm{VA} \\ - \\ 66-432 \mathrm{VA} \\ 127-188 \mathrm{VA} \\ -34-60 \mathrm{VA} \\ 164-631 \mathrm{~W} \\ 830-1580 \mathrm{~W} \\ 112-150 \mathrm{~W} \\ 40-58 \mathrm{~W} \end{gathered}$	$\begin{gathered} 87-405 \mathrm{VA} \\ 710-1105 \mathrm{VA} \\ - \\ 66-432 \mathrm{VA} \\ 127-188 \mathrm{VA} \\ -34-60 \mathrm{VA} \\ 164-631 \mathrm{~W} \\ 830-1580 \mathrm{~W} \\ 112-150 \mathrm{~W} \\ 40-58 \mathrm{~W} \end{gathered}$	$\begin{gathered} 98-475 \mathrm{VA} \\ 24-50 \mathrm{VA} \\ - \\ 67-432 \mathrm{VA} \\ 76-110 \mathrm{VA} \\ -19-42 \mathrm{VA} \\ 145-610 \mathrm{~W} \\ 67-102 \mathrm{~W} \\ 121-150 \mathrm{~W} \\ 46-55 \mathrm{~W} \end{gathered}$	612 VA $403-666 \mathrm{VA}$ - $396-1896 \mathrm{VA}$ $1596-2156 \mathrm{VA}$ $-230-384 \mathrm{VA}$ 396 W $341-528 \mathrm{~W}$ $264-350 \mathrm{~W}$ $374-475 \mathrm{~W}$
Maximum Load Duration	Interrupts Automatically				
Maximum OpeningTime	50 ms	50 ms	50 ms	62 ms	62 ms
Moulded Case Switch (with High Magnetic Trip)					
Breaking capacity (kA) at 415 Vac Self-Protected, Will Trip Above:	25   1250 for GE125;   1600 for GE160	$\begin{array}{\|l\|} \hline 70 \\ 2500 \end{array}$	$\begin{array}{\|l\|} \hline 70 \\ 6300 \end{array}$	$\begin{array}{\|l\|} \hline 70 \\ 12,500 \end{array}$	$\begin{array}{\|l\|} \hline 70 \\ 20,000 \end{array}$

Moulded Case Circuit Breakers
16-2500 Amperes for IEC Applications

## Series G Frame Sizes GE through GL

## dc Switching Duty

The GE- to GL-Frame circuit breakers are also suitable for switching dc currents.

The GN- and GR-Frame circuit breakers are not suitable for dc currents due to the solid-state overcurrent release system.
For switching dc currents, however, the maximum permissible dc voltage per conducting path has to be considered.
For voltages higher than 250 volts, the series connection of two or three conducting paths is required.
As the current has to flow through all conducting paths so as to maintain the thermal tripping characteristics, the following circuit arrangements are recommended. With dc, the trip values of the instantaneous short circuit release (" $n$ " release) are increased by 30 to $40 \%$.

Table 3. For 3- and 4-Pole Circuit Breakers

Proposed   Circuit	Maximum   Permissible   Vdc Ue	Remarks

## Multi-Function Electronic Trip Units for All Applications

## Digitrip RMS Trip Units

True rms Sensing
Digitrip RMSTrip Units utilise our patented microprocessor-based intelligence to provide true rms sensing, permitting increased accuracy and reliable system protection. True rms sensing is not susceptible to nuisance tripping when waveforms containing high harmonic currents are present.

## Digitrip RMS 310

Digitrip RMS 310 Electronic Trip Units are available with Eaton Circuit Breakers GJ-, GL-, GN- and GR-Frames 20 through 2500 amperes. Digitrip RMS 310 Trip Units are available in four styles with either fixed or adjustable rating plugs which establishes the continuous ampere rating of the breaker.

Note: GJ- and GL-Frames have selectable long time delay ( $\mathrm{t}_{\mathrm{LD}}$ ) and pickup settings $\left(I_{r}\right)$. A rating plug is not required.

## Rating Plugs

If rating plugs are needed, they are marked for $50 / 60 \mathrm{~Hz}$ applications. Both fixed and adjustable rating plugs are available, providing further flexibility when applied to selectively coordinated systems.
Note: Digitrip RMS rating plugs are not interchangeable with Seltronic ${ }^{T M}$ rating plugs.

## Curve Shaping

When selectively coordinated systems are called for, Digitrip RMS 310 will provide a cost-effective solution for a variety of applications.

The standard Digitrip RMS 310 includes an adjustable short time pickup setting encompassing an $I^{2} t$ ramp function which provides the basic LS curve shaping function. GJ- and GL-Frames have an adjustable long time delay.

The optional Digitrip RMS 310 provides additional flat response short time delay adjustments on an instantaneous setting to provide LSI curve shaping capability.

Digitrip RMS 310Trip Units are available with earth fault pickup and flat response earth fault delay which provides the trip unit with full function LSIG curve shaping flexibility.
Digitrip RMS 310Trip Units can effec-
tively coordinate with both sophisticated upstream power breakers as well as downstream thermal magnetic breakers...making Digitrip RMS 310 Trip Units the cost-effective reliable choice for selectively coordinated systems.

## Thermal Memory

All Digitrip RMSTrip Units incorporate a long delay. Thermal memory prevents the system from cumulative overheating due to repeated overcurrent events that may occur in quick succession.

## Field Testing

A field test kit is available for Digitrip RMS 310 trip units.
Digitrip RMS $\mathbf{6 1 0}$ and 910


Digitrip RMS 610 and 910Trip Units are available with Eaton GR-Frame Circuit Breakers 800 through 2500 amperes. Digitrip 610 and 910 Trip Units provide unparalleled system protection with the added convenience of a local display.

## Curve Shaping

Digitrip RMS 610 and 910 Trip Units are available with up to nine curve shaping choices achieved by adjusting up to seven switches on the front of the unit for optimum system coordination. Maximum curve shaping flexibility is provided by dependent long and short delay adjustments that are long delay pickup (I ${ }_{r}$ ) based, depicted on the front of the unit by the blue portion of the time-current curve.

Additional coordination capability can be provided by utilising the short delay and earth fault zone selective interlocking features available on these trip units.

## System Diagnostics

Digitrip RMS 610 and 910 models of trip units provide long delay, short delay, instantaneous, and earth fault cause of trip LEDs on the front of the unit. Their display shows a magnitude of trip information, as well as remote signal contacts, for improved system alarming.

## System Monitoring

Digitrip 610 and 910 Trip Units have the capability to monitor phase currents, as well as neutral or ground currents. This information is displayed on a large digital display mounted on the unit.

Digitrip RMS 910 Trip Units can also provide the user with power and energy monitoring capability. Peak power demand, present power demand, and total energy, as well as forward and reverse energy can be monitored with this unit.

Digitrip RMS 910Trip Units have the additional capability of monitoring line-to-line voltage, as well as system power factor. Both parameters are displayed in the digital display window and are supported by LEDs to indicate which parameter is being displayed.

## Harmonics Monitoring

Digitrip RMS 910 Trip Units are capable of displaying values of current harmonics in the digital display window. Percentage of harmonic content can be monitored for each phase, up to the 27th harmonic. Additionally, a total harmonic distortion value can be calculated and displayed.

## Communications

Digitrip RMS 910 units have built-in communications options to allow all protection, monitoring, and control information to be transmitted back to a central location via the PowerNet ${ }^{\text {TM }}$ system.

## Field Testing

Integral field testing capability is provided on all 610 and 910 Trip Units. No additional test set is needed to perform both trip and no trip field testing.

## Series G Frame Sizes GJ through GR

## Digitrip RMS Electronic Trip Unit Selection Guide

Table 4. Digitrip RMS Electronic Trip Unit Selection Guide

Digitrip		RMS 310	$\text { RMS } 610$	RMS 910
Breaker Type				
Frame(s)		GJ-, GL-, GN- and GR-Frames	GR-Frame	GR-Frame
Ampere Rating		20-2500A	800-2500 A	800-2500 A
Interrupting Rating at 415V		40, 50, 70, 100 kA	70, 100 kA	70, 100 kA
Trip Unit Sensing				
rms Sensing		Yes	Yes	Yes
Protection and Coordination				
Protection	Ordering Options	LSI, LSIG	LSI, LSIG	LSI, LSIG
	Fixed Rating Plug ( $\left.\mathrm{l}_{\mathrm{n}}\right)^{(1)}$	Yes	Yes	Yes
	OvertemperatureTrip	Yes	Yes	Yes
Long Delay	Adjustable Rating Plug ( $\mathrm{In}^{\text {) }}{ }^{(1)}$	Yes	No	No
	Long Delay Setting	0.5-1.0 ( $\left.\mathrm{I}_{\mathrm{n}}\right)^{(2)}$	$0.5-1.0 \times\left(\mathrm{I}_{\mathrm{n}}\right)$	$0.5-1.0 \times\left(\mathrm{I}_{\mathrm{n}}\right)$
	Long DelayTime $\mathrm{I}^{2} \mathrm{t}$ at 6 x	10 Seconds (2)	2-24 Seconds	2-24 Seconds
	Long Delay Thermal Memory	Yes	Yes	Yes
	High Load Alarm	No	$0.85 \times \mathrm{I}_{\mathrm{r}}$	$0.85 \times \mathrm{I}_{\mathrm{r}}$
Short Delay	Short Delay Setting	$200-800 \% \times\left(\mathrm{In}^{\prime}\right)^{(3)}$	$200-600 \%$ S1 \& S2 x ( $\mathrm{I}_{\mathrm{r}}$ )	$200-600 \%$ S1 \& S2 $\times\left(\mathrm{I}_{\mathrm{r}}\right)$
	Short DelayTime ${ }^{2} \mathrm{t}$	No	100,300, 500 ms	100,300, 500 ms
	Short DelayTime Flat	$1-300 \mathrm{~ms}$	$100-500 \mathrm{~ms}$	$100-500 \mathrm{~ms}$
	Short DelayTime ZSI	No	Yes	Yes
Instantaneous	Instantaneous Setting	$200-800 \% \times\left(\mathrm{I}_{\mathrm{n}}\right)^{44}$	200-600\% M1 \& M2 x ( $\mathrm{I}^{\text {) }}$ )	200-600\% M1 \& M2 x ( I )
	Discriminator	No	Yes	Yes
	Instantaneous Override	Yes	Yes	Yes
Earth Fault	Earth Fault Setting	Var/Frame ${ }^{\text {(5) }}$	25-100\% $\times\left(\mathrm{I}_{\mathrm{n}}\right)^{(5)}$	25-100\% $\times\left(\mathrm{I}_{\mathrm{n}}\right)^{(5)}$
	Earth Fault Delay $\mathrm{l}^{2} \mathrm{t}$ at. 62 x	No	$100,300,500 \mathrm{~ms}$	100,300, 500 ms
	Earth Fault Delay Flat	$1-500 \mathrm{~ms}{ }^{\text {® }}$	$100-500 \mathrm{~ms}$	$100-500 \mathrm{~ms}$
	Earth Fault ZSI	No	Yes	Yes
	Earth FaultThermal Memory	No	Yes	Yes
System Diagnostics				
Cause ofTrip LEDs		No	Yes	Yes
Magnitude ofTrip Information		No	Yes	Yes
Remote Signal Contacts		No	Yes	Yes
System Monitoring				
Digital Display		No	Yes	Yes
Current		No	Yes	Yes
Voltage		No	No	Yes
Power and Energy		No	No	Yes
Power Quality - Harmonics		No	No	Yes
Power Factor		No	No	Yes
System Communications				
PowerNet		No	No	Yes
Field Testing				
Testing Method		Test Set	Integral	Integral
(1) GJ- and GL-Frames have selectable settings instead of a rating plug.   ${ }^{(2)}$ GJ- and GL-Frames have adjustable long delay times of $2-24$ seconds.   (3) 2500 ampere GR-Frame $200-600 \% \times\left(I_{n}\right)$.   (4) GJ-Frame also has a 14 X setting.   (5) Not to exceed 1250 amperes.		(6) GJ- and GL-Frames are Instantaneous, 120 ms . GN- and GR-Frames are Instantaneous, 100, 300 and 500 ms .   Note: $I_{n}=$ Rating plug rating.   $I_{r}=$ Long delay setting.		

Moulded Case Circuit Breakers

GE-Frame, 160 Amperes - Selection Guide \& Ordering Information


Table 5. Complete Circuit Breaker — Incl. Frame, Trip Unit, Standard Terminals and Mounting Hardware

Maximum Continuous Ampere Rating at $40^{\circ} \mathrm{C}$	1-Pole	2-Pole	3-Pole
	Fixed Thermal, Fixed Magnetic	Fixed Thermal, Fixed Magnetic	Fixed Thermal, Fixed Magnetic
Breaking Capacity 18 kA at $\mathbf{2 4 0}$ Vac		Breaking Capacity 18 kA at 415 Vac	
16	GEB1016FFG	GEB2016FFG	GEB3016FFG
20	GEB1020FFG	GEB2020FFG	GEB3020FFG
32	GEB1032FFG	GEB2032FFG	GEB3032FFG
40	GEB1040FFG	GEB2040FFG	GEB3040FFG
50	GEB1050FFG	GEB2050FFG	GEB3050FFG
63	GEB1063FFG	GEB2063FFG	GEB3063FFG
80	GEB1080FFG	GEB2080FFG	GEB3080FFG
100	GEB1100FFG	GEB2100FFG	GEB3100FFG
125	GEB1125FFG	GEB2125FFG	GEB3125FFG
Breaking Capacity 25 kA at 240 Vac		Breaking Capacity 25 kA at 415 Vac	
16	GEE1016FFG		GEE3016FFG
20	GEE1020FFG		GEE3020FFG
32	GEE1032FFG		GEE3032FFG
40	GEE1040FFG		GEE3040FFG
50	GEE1050FFG		GEE3050FFG
63	GEE1063FFG		GEE3063FFG
80	GEE1080FFG		GEE3080FFG
100	GEE1100FFG		GEE3100FFG
125	GEE1125FFG		GEE3125FFG


Maximum Continuous Ampere Rating at $40^{\circ} \mathrm{C}$	3-Pole		4-Pole ${ }^{1}$	
	Adjustable Thermal, Fixed Magnetic	Thermal Range (A)	Adjustable Thermal, Fixed Magnetic	Thermal Range (A)

Breaking Capacity 40 kA at 415 Vac

20	GES3020AFG	16-20	GES4020AFG	16-20
25	GES3025AFG	20-25	GES4025AFG	20-25
32	GES3032AFG	25-32	GES4032AFG	25-32
40	GES3040AFG	32-40	GES4040AFG	32-40
50	GES3050AFG	40-50	GES4050AFG	40-50
63	GES3063AFG	50-63	GES4063AFG	50-63
80	GES3080AFG	63-80	GES4080AFG	63-80
100	GES3100AFG	80-100	GES4100AFG	80-100
125	GES3125AFG	100-125	GES4125AFG	100-125
160	GES3160AFG	160-125	GES4160AFG	125-160
Breaking Capacity 70 kA at 415 Vac				
20	GEH3020AFG	16-20	GEH4020AFG	16-20
25	GEH3025AFG	20-25	GEH4025AFG	20-25
32	GEH3032AFG	25-32	GEH4032AFG	25-32
40	GEH3040AFG	32-40	GEH4040AFG	32-40
50	GEH3050AFG	40-50	GEH4050AFG	40-50
63	GEH3063AFG	50-63	GEH4063AFG	50-63
80	GEH3080AFG	63-80	GEH4080AFG	63-80
100	GEH3100AFG	80-100	GEH4100AFG	80-100
125	GEH3125AFG	100-125	GEH4125AFG	100-125

(1) Neutral protection is indicated by the fourth character: $4=0 \%, 7=100 \%$. Neutral pole on left side.

Table 6. Moulded Case Switches

Ampere Rating	Number of Poles	Catalogue Number	Number of Poles	Catalogue Number
100	3	GEK3100KSG	4	GEK4100KSG
125	3	GEK3125KSG	4	GEK4125KSG
160	3	GEK3160KSG	4	GEK4160KSG

## Line and Load Terminals

GE-Frame circuit breakers and moulded case switches have 3T125EF line and load terminals as standard equipment.
Table 7. Line and Load Terminals

Maximum Breaker Amperes	Terminal Body Material	Wire Type	Metric Wire Range $\mathrm{mm}^{2}$	AWG Wire Range	Catalogue Number Package of 3 Terminals
Standard Cu/AI Pressure Type Terminals					
125	Steel	$\mathrm{Cu} / \mathrm{Al}$	2.5-70	\#14-3/0	3T125EF ${ }^{(1)}$
$\begin{array}{\|l\|} \hline 125 \\ 125 \\ \hline \end{array}$	Aluminium Aluminium	$\begin{aligned} & \hline \mathrm{Cu} / \mathrm{Al} \\ & \mathrm{Cu} / \mathrm{Al} \end{aligned}$	$\begin{array}{\|r\|} \hline 2.5-50 \\ 16-70 \end{array}$	$\begin{aligned} & \# 14-1 / 0 \\ & \# 6-3 / 0 \end{aligned}$	$\begin{array}{\|l} \hline \text { 3TA125EF } \\ \text { 3TA150EF } \end{array}$
$\begin{array}{\|l\|} \hline 160 \\ 160 \\ \hline \end{array}$	Aluminium Aluminium	$\begin{aligned} & \hline \mathrm{Cu} / \mathrm{Al} \\ & \mathrm{Cu} / \mathrm{Al} \end{aligned}$	$\begin{array}{\|l\|} \hline 35-120 \\ 35-120 \end{array}$	$\begin{aligned} & \# 3-250 \\ & \# 3-250 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 3TA160EFK }{ }^{2} \\ \text { 4TA160EFK (3) } \end{array}$

(1) Standard line and load terminals included with GE-Frame MCCBs.
(2) 3 terminals with terminal shield.
(3) 4 terminals with terminal shield.


Figure 2. Line and Load Terminals, End Cap Kits and Control Wire Terminal Kit

Insert collar enclosing conductor as shown in Figure 2. Locate nut on top of conductor and tighten securely with screw and washer.

Caution: Collar must surround conductor.
Insert collar enclosing conductor and centre on extrusion. Tighten securely with screw and washer.

## Control Wire Terminal Kit

For use with steel or stainless steel terminals only.
Note: Standard line and load terminals included with GE-Frame MCCBs.

## End Cap Kits - for Line or Load

Kits are used on GE Frame breaker line side to connect bus bar or similar electrical connections. Includes hardware.

Table 8. End Cap Kits

Number of Poles	Catalogue Number
3	EF3RTWK
4	EF4RTWK

Add suffix ' M ' to breaker catalogue number to include End Cap kit or order separately using above catalogue numbers.

Table 9. Control Wire Terminal Kit

Description	Catalogue Number
Package of 12   (Priced Individually)	EFCWTK

## Interphase Barriers

The interphase barrier is available for extended insulation between circuit breaker poles. Specify quantity when ordering.
Table 10. Interphase Barriers

Description	Catalogue Number
Package of 1	EIPBK

## Base Mounting Hardware

Base mounting hardware is included with a circuit breaker or moulded case switch. A DIN rail adapter is available.

Table 11. Base Mounting Hardware

DIN Rail Adapter	Catalogue Number
3- or 4-Pole	EF34DIN

Terminal Shields (IP30 Protection)
The terminal shield is available for 1-, 2-, 3- and 4-pole circuit breakers.

Table 12. Terminal Shields

Number of Poles	Catalogue Number
1P (Load end)	EFTS1KA
1P (Line end)	EFTS1KB
3	EFTS3K
4	EFTS4K

Terminal Extensions
Table 13. Terminal Extensions

Number of Poles	Catalogue Number
3	EFTES3
4	EFTES4

## Terminal Spreaders

Table 14. Terminal Spreaders

Number of Poles	Catalogue Number
3	EFTEW3
4	EFTEW4



Figure 3. Terminal Spreaders

## GJ-Frame, 250 Amperes - Selection Guide \& Ordering Information



Table 15. Complete Circuit Breaker with Thermal-Magnetic Trip Unit -
Incl. Frame, Thermal-Magnetic Trip Unit, Standard Box Clamp Terminals and Mounting Hardware ${ }^{(1)}$

Maximum Continuous Ampere Rating at $40^{\circ} \mathrm{C}$	Magnetic Range (A)	3-Pole		4-Pole	
		Adjustable Thermal Adjustable Magnetic ${ }^{2}$	Thermal Range (A)	Adjustable Thermal Adjustable Magnetic ${ }^{2}$	Thermal Range (A)
Breaking Capacity 40 kA at 415 Vac					
80	400-800	GJS3080AAG	64-80	GJS4080AAG	64-80
100	500-1000	GJS3100AAG	80-100	GJS4100AAG	80-100
125	625-1250	GJS3125AAG	100-125	GJS4125AAG	100-125
160	800-1600	GJS3160AAG	128-160	GJS4160AAG	128-160
200	1000-2000	GJS3200AAG	160-200	GJS4200AAG	160-200
250	1250-2500	GJS3250AAG	200-250	GJS4250AAG	200-250
Breaking Capacity 70 kA at 415 Vac					
80	400-800	GJH3080AAG	64-80	GJH4080AAG	64-80
100	500-1000	GJH3100AAG	80-100	GJH4100AAG	80-100
125	625-1250	GJH3125AAG	100-125	GJH4125AAG	100-125
160	800-1600	GJH3160AAG	128-160	GJH4160AAG	128-160
200	1000-2000	GJH3200AAG	160-200	GJH4200AAG	160-200
250	1250-2500	GJH3250AAG	200-250	GJH4250AAG	200-250

(1) Suffix " $G$ " represents box clamp type terminals. Change " $G$ " to " $M$ " for screw/keeper nut type termination suitable for cable lug. See page 14.
${ }^{(2)}$ Neutral protection is indicated by the fourth character: $4=0 \%, 8=$ adjustable 0 or $60 \%$ and $9=0$ or $100 \%$.
Table 16. Complete Circuit Breaker with Electronic Trip Unit -
Incl. Frame, Electronic Trip Unit, Standard Box Clamp Terminals and Mounting Hardware (1)(2)

Ampere Rating	LSI	LSIG ${ }^{3}$	Neutral CT (3)4 for LSG \& LSIG	Ampere Rating	LSI	LSIG ${ }^{3}$	Neutral CT (3) (4) for LSG \& LSIG
3-Pole (5) - IC Rating: 40 kA at 415 Vac				3-Pole (5) - IC Rating: 70 kA at 415 Vac			
50	GJS305032G	GJS305036G	JGFCT050	50	GJH305032G	GJH305036G	JGFCT050
100	GJS310032G	GJS310036G	JGFCT100	100	GJH310032G	GJH310036G	JGFCT100
160	GJS316032G	GJS316036G	JGFCT160	160	GJH316032G	GJH316036G	JGFCT160
250	GJS325032G	GJS325036G	JGFCT250	250	GJH325032G	GJH325036G	JGFCT250
4-Pole (6) - IC Rating: 40 kA at 415 Vac				4-Pole (6) - IC Rating: 70 kA at 415 Vac			
50	GJS405032G	GJS405036G	JGFCT050	50	GJH405032G	GJH405036G	JGFCT050
100	GJS410032G	GJS410036G	JGFCT100	100	GJH410032G	GJH410036G	JGFCT100
160	GJS416032G	GJS416036G	JGFCT160	160	GJH416032G	GJH416036G	JGFCT160
250	GJS425032G	GJS425036G	JGFCT250	250	GJH425032G	GJH425036G	JGFCT250

(1) Suffix " $G$ " represents box clamp type terminals. Change " $G$ " to " $M$ " for screw/keeper nut type termination suitable for cable lug. See page 14.
(2) For ac use only.
(3) Neutral CT for LSG and LSIG applied to 4-wire applications must be ordered as a separate item.
4) Required for 4-wire systems if neutral protection is desired.
(5) For 2-pole applications, use two outer poles.
(6) Neutral protection $4=0 \%, 6=60 \%, 7=100 \%$ electronic trip unit neutral protection is not adjustable. Neutral pole on left side.
Note: Long time pick up - no rating plug.
250 Ampere Settings - 250, 200, 160, 125, 100.
160 Ampere Settings - 160, 125, 100, 80, 63.
100 Ampere Settings - 100, 80, 63, 50, 40.
50 Ampere Settings - 50, 40, 32, 25, 20.
Note: Adjustable long time delay $-2-24$ seconds at $6 \times I_{r}$. Adjustable short time delay - Inst., 120, 300 ms .

Table 17. Moulded Case Switches (1)

Ampere   Rating	Number   of Poles	Catalogue   Number
160	3	GJK3160KSG   GJK4160KSG
200	3   4	GJK3200KSG   GJK4200KSG
250	3   4	GJK3250KSG   GJK4250KSG

(1) Suffix "G" represents box clamp type terminals. Change " $G$ " to " $M$ " for screw/keeper nut type termination suitable for cable lug.

## Series G Frame Size GJ, 250 Amperes

## Line and Load Terminals

GJ-Frame circuit breakers include $\mathrm{Cu} / \mathrm{Al}$ terminals T250FJ as standard.
When optional copper only terminals are required, order by catalogue number.
Table 18. Line and Load Terminals

Maximum Breaker Amperes	Terminal   Body   Material	Wire Type	Metric Wire Range mm ${ }^{2}$	AWG Wire Range/Number of Conductors	Catalogue Number
Standard Pressure Type Terminals					
250	Stainless Steel	Cu	25-185	\#4-350 (1)	T250FJ (1)(2)
250	Aluminium	$\mathrm{Cu} / \mathrm{Al}$	25-185	\#4-350 (1)	TA250FJ (1)

(1) Single terminals individually packed.
(2) Standard line and load terminals.


Figure 4. Standard Pressure Type Terminal T250FJ


Figure 5. Standard and Optional Pressure Type Terminal TA250FJ/TC250FJ

## Control Wire Terminal Kit

For use with aluminium or copper terminals only.

Table 19. Control Wire Terminal Kit

Description	Catalogue Number
Package of 14   (Priced Individually)	FJCWTK

## Plug-in test kit



Digitrip 310+ Test Kit


Digitrip 310+ Test Kit Shown with GJ MCCB


GJ Digitrip 310+ Electronic Trip Unit
Table 24. Plug-in test kit

Voltage	Catalogue Number
120 Vac	MTST120V
230 Vac	MTST230V

## Terminal Spreaders

Table 25. Terminal Spreaders

Number of Poles	Catalogue Number
3 FJTEW3   4 FJTEW4 l	



Figure 6. Terminal Spreaders

## GL-Frame, 630 Amperes - Selection Guide \& Ordering Information



Table 26. Complete Circuit Breaker - Incl. Frame,
Thermal Magnetic Trip Unit, Standard Box Clamp Terminals \& Mounting Hardware ${ }^{1}$

Maximum	Magnetic Range (A)	3-Pole ${ }^{(2)}$	Thermal Range(A)	4-Pole (0\%) ${ }^{(3)}$	Thermal Range (A)
Continuous   Ampere   Rating at $40^{\circ} \mathrm{C}$		Adj. Thermal Adj. Magnetic		Adj. Thermal Adj. Magnetic	
Breaking Capacity 50 kA at 415 Vac					
250	1250-2500	GLS3250AAG	200-250	GLS4250AAG	200-250
320	1600-3200	GLS3320AAG	250-320	GLS4320AAG	250-320
400	2000-4000	GLS3400AAG	320-400	GLS4400AAG	320-400
500	2500-5000	GLS3500AAG	400-500	GLS4500AAG	400-500
630	3150-6300	GLS3630AAG	500-630	GLS4630AAG	500-630
Breaking Capacity 70 kA at 415 Vac					
250	1250-2000	GLH3250AAG	200-250	GLH4250AAG	200-250
320	1600-3200	GLH3320AAG	250-320	GLH4320AAG	250-320
400	2000-4000	GLH3400AAG	320-400	GLH4400AAG	320-400
500	2500-5000	GLH3500AAG	400-500	GLH4500AAG	400-500
630	3150-6300	GLH3630AAG	500-630	GLH4630AAG	500-630

(1) Suffix " $G$ " represents box clamp type terminals. Change " $G$ " to " $M$ " for screw/keeper nut type termination suitable for cable lug. See page 16.
2) For 2-pole applications, use two outer poles.
(3) Neutral protection is indicated by the fourth character: $4=0 \%, 7=100 \%, 8=$ adjustable $0-60 \%$ and $9=0-100 \%$.

Table 27. Complete Circuit Breaker with Electronic Trip Unit — Incl. Frame,
Electronic Trip Unit, Standard Box Clamp Terminals \& Mounting Hardware (1)(2)

Maximum Continuous Ampere Rating at $40^{\circ} \mathrm{C}$	LSI	LSIG	Neutral CT for LSG \& LSIG
3-Pole © - Breaking Capacity 50 kA at 415 Vac			
250	GLS325032G	GLS325036G	LGFCT250
400	GLS340032G	GLS340036G	LGFCT400
$630{ }^{4}$	GLS363032G	GLS363036G	LGFCT630
4-Pole ${ }^{\text {© }}$ - Breaking Capacity 50 kA at 415 Vac			
250	GLS425032G	GLS425036G	LGFCT250
400	GLS440032G	GLS440036G	LGFCT400
$630{ }^{4}$	GLS463032G	GLS463036G	LGFCT630
3-Pole (5) - Breaking Capacity 70 kA at 415 Vac			
250	GLH325032G	GLH325036G	LGFCT250
400	GLH340032G	GLH340036G	LGFCT400
$630{ }^{4}$	GLH363032G	GLH363036G	LGFCT630
4-Pole (5) - Breaking Capacity 70 kA at 415 Vac			
250	GLH425032G	GLH425036G	LGFCT250
400	GLH440032G	GLH440036G	LGFCT400
$630{ }^{4}$	GLH463032G	GLH463036G	LGFCT630

(1) Suffix " $G$ " represents box clamp type terminals. Change " $G$ " to " $M$ " for screw/keeper nut type termination suitable for cable lug. See page 16.
${ }^{2}$ 2 For ac use only.
(3) Neutral CT for LSG and LSIG applied to 4-wire applications must be ordered as a separate item.
(4) Required for 4-wire systems if neutral protection is desired.
${ }^{(5)}$ For 2-pole applications, use two outer poles.
(6) Neutral protection $4=0 \%, 6=60 \%, 7=100 \%$ electronic trip unit neutral protection is not adjustable. Neutral pole on left side.

Table 28. Moulded Case Switches

Ampere   Rating	Number   of Poles	Catalogue   Number ${ }^{1}$
250	3   4	GLK3250KSG   GLK4250KS
320	3	GLK3320KSG   GLK4320KSG
400	3	GLK3400KSG   GLK4400KSG
630	3   4	GLK3630KSG   GLK4630KSG

## Plug-in test kit



Digitrip 310+ Test Kit
Table 29. Plug-in test kit

Voltage	Catalogue Number
120 Vac	MTST120V
230 Vac	MTST230V

Note: Long time pick up—no rating plug needed.
630 Ampere Settings-630, 600, 500, 400, 350, 315, 300, 250 (315, 630 are IEC ratings only). 400 Ampere Settings$400,350,315,300,250,225,200,160$ ( 315 is IEC rating only).
250 Ampere Settings-250, 225, 200, $175,160,150,125,100$ ( 160 is IEC rating only).

Note: Adjustable long time delay - 2 - 24 seconds at $6 \times I_{r}$.
Adjustable short time delay - Inst., $120,300 \mathrm{~ms}$.

## Series G Frame Size GL, 630 Amperes

## Line and Load Terminals

Table 30. Line and Load Terminals

Maximum Breaker   Amperes	Terminal Body   Material	Wire   Type	AWG Wire Range/   Number of Conductors	Metric Wire   Range (mm $\left.{ }^{2}\right)$	Number of   Terminals Included	Catalogue   Number
400	Aluminium	$\mathrm{Cu} / \mathrm{Al}$	$2-500(1)$	$35-240(1)$	3	
400	Aluminium	$\mathrm{Cu} / \mathrm{Al}$	$2-500(1)$	$35-240(1)$	4	3TA400UK (1)
4TA400UK (1)						
630	Aluminium	$\mathrm{Cu} / \mathrm{Al}$	$2-500(2)$	$35-240(2)$	3	3TA632LK (2)3
630	Aluminium	$\mathrm{Cu} / \mathrm{Al}$	$2-500(2)$	$35-240(2)$	4	4TA632LK (2)3
630	Copper	Cu	$2-500(2)$	$35-240(2)$	3	3T632LK (3)
630	Cu	$2-500(2)$	$35-240(2)$	4	4T632LK (3)	

Standard terminal included with complete breaker up to 400A.
(2) Standard terminal included with complete breaker 630A.
${ }^{(3)}$ Includes LTS3K (3-pole) or LTS4k (4-pole) terminal covers.

Table 31. Terminal Covers

Description	Catalogue   Number
3-PoleTerminal Cover ${ }^{(4)}$   4-PoleTerminal Cover ${ }^{4}$ (4)	LTS3K   LTS4K

(4) Included in TA63IL, T63IL, TA632L kits listed above.

## Table 32. End Cap Kits

Number   of Poles	Catalogue   Number ${ }^{1}$
3	L3RTWK   L4RTWK
4	

Add suffix " M " to Breaker catalogue number to include End Cap kit or order separately using these catalogue numbers.

Table 33. Terminal Spreaders

Number   of Poles	Catalogue   Number
3	LGTEW3   LGTEW4
4	

Table 34. Terminal Extensions

Number   of Poles	Catalogue   Number
3 LGTES3   4 LGTES4 l	

Table 35. Interphase barriers

Description	Catalogue   Number
3 (pack of 2)	IPB3
4 (pack of 3)	IPB34



Figure 7. Terminal Spreaders


Figure 8. Terminals and Terminal Cover for the GL Breaker — Includes LTS3K (3-Pole) or LTS4K (4-Pole) Terminal Covers
Note: Extended terminal covers add 54.0 mm to breaker length.

## GN-Frame, 1250 Amperes - Selection Guide and Ordering Information



Table 36. Type GNS Standard Interrupting Capacity - $\mathbf{U}_{\mathbf{e}}$ Max. 690 Vac, 50 kA $\mathbf{I}_{\mathbf{c u}}$ at 415 Vac

Maximum Continuous Ampere Rating at $40^{\circ} \mathrm{C}$	Number of Poles	Circuit Breaker Frame Including Digitrip RMS 310 Electronic Trip Unit with Adjustable Rating Plugs - Catalogue Number ${ }^{(3)}$		Interchangeable Rating Plugs (Order as Individual Component)		Includedwith Breaker asstandard
		L - Adjustable Long Delay Pickup (By Adjustable Rating Plug)   S - Adjustable Short Delay Pickup with Fixed Short Delay Time   ( $1^{2} \mathrm{t}$ Response) or Adjustable Short Delay Time (Flat Response)   I - Adjustable Instantaneous Pickup by Setting Short Delay Time to Instantaneous   G - Adjustable Earth Fault Pickup with Adjustable Earth Fault Delay (Flat Response)				
		LSI	LSIG	Fixed Rat	ng Plug	Adj. Rating Plug
Short Time Range Short Time Delay Earth Fault Pickup Earth Fault Delay		$\begin{aligned} & 2-8 \times \mathrm{I}_{\mathrm{n}} \\ & \mathrm{I}-300 \mathrm{~ms} \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 2-8 \times \mathrm{I}_{\mathrm{n}} \\ & 1-300 \mathrm{~ms} \\ & 200-1200 \mathrm{~A} \\ & 1-500 \mathrm{~ms} \end{aligned}$	Ampere Rating	Catalogue Number	Adjustable   Ampere   Settings   Catalogue   Number
800	3-Pole	GNS3800T32WP19	GNS3800T36WP19	$\begin{aligned} & 400 \\ & 450 \\ & 500 \\ & 550 \end{aligned}$	8NES400T 8NES450T 8NES500T 8NES550T	$\begin{aligned} & \text { 400/500/630/800 } \\ & \text { A8NES800T2 } \end{aligned}$
				$\begin{aligned} & \hline 600 \\ & 630 \\ & 700 \\ & 800 \\ & \hline \end{aligned}$	8NES600T 8NES630T 8NES700T 8NES800T	
	4-Pole ${ }^{6}$	GNS4800T32WP19	-	$\begin{aligned} & 400 \\ & 450 \\ & 500 \\ & 550 \end{aligned}$	8NES400T   8NES450T   8NES500T   8NES550T	$\begin{aligned} & \text { 400/500/630/800 } \\ & \text { A8NES800T2 } \end{aligned}$
				$\begin{aligned} & 600 \\ & 630 \\ & 700 \\ & 800 \end{aligned}$	8NES600T 8NES630T 8NES700T 8NES800T	
1250	3-Pole	GNS312T32WP09	GNS312T36WP09 ( ${ }^{\text {a }}$	$\begin{aligned} & \hline 600 \\ & 630 \\ & 700 \\ & 800 \\ & \hline \end{aligned}$	12NES600T 12NES630T 12NES700T 12NES800T	$\begin{array}{\|l\|} \hline \text { 630/800/ } \\ \text { 1000/1250 } \\ \text { A12NES12T2 } \end{array}$
				$\begin{array}{\|r\|} \hline 900 \\ 1000 \\ 1200 \end{array}$	12NES900T 12NES 1000T 12NES1200T	
	4-Pole ${ }^{(6)}$	GNS412T32WP09	-	$\begin{aligned} & 600 \\ & 630 \\ & 700 \\ & 800 \end{aligned}$	12NES600T 12NES630T 12NES700T 12NES800T	$\begin{aligned} & \hline \text { 630/800/ } \\ & \text { 1000/1250 } \\ & \text { A12NES12T2 } \end{aligned}$
				900   1000   1200	12NES900T 12NES 1000 T 12NES1200T	

(1) For ac use only.
(2) GN MCCBs are suitable for $40^{\circ} \mathrm{C}$ or $50^{\circ} \mathrm{C}$ applications.
(3) Order terminals separately. See page 20

Note: Rating plugs included with above MCCBs.
Table 37. Moulded Case Switches (4)(5)

Ampere Rating	Number of Poles	$\mathbf{U}_{\mathbf{e}}$ Max. 690 Vac Catalogue Number	
800	3-Pole	GNKS3800KSW   GNKS4800KSW	MCS Only without   Line and LoadTerminals
1250	3-Pole	GNKS312KSW   GNSS412KSW	MCS Only without   Line and LoadTerminals

[^0]16-2500 Amperes for IEC Applications

Table 38. Type GNH High Interrupting Capacity - $\mathbf{U}_{\mathrm{e}}$ Max. $690 \mathrm{Vac}, \mathbf{7 0} \mathbf{k A} \mathrm{I}_{\mathrm{cu}}$ at 415 Vac

Maximum Continuous Ampere Rating at $40^{\circ} \mathrm{C}$	Number of Poles	Circuit Breaker Frame Including Digitrip RMS 310 Electronic Trip Unit with   Adjustable Rating Plugs - Catalogue Number   L - Adjustable Long Delay Pickup (By Adjustable Rating Plug)   S - Adjustable Short Delay Pickup with Fixed Short DelayTime   ( $1^{2} \mathrm{t}$ Response) or Adjustable Short DelayTime (Flat Response)   I - Adjustable Instantaneous Pickup by Setting Short Delay Time to Instantaneous   G - Adjustable Earth Fault Pickup with Adjustable Earth Fault Delay (Flat Response)		Interchangeable Rating Plugs (Order as Individual Component)		Included with Breaker as standard
		LSI	LSIG	Fixed Rating		Adjustable Rating Plug
Short Time Range Short Time Delay Earth Fault Pickup Earth Fault Delay		$\begin{aligned} & 2-8 \times \mathrm{I}_{\mathrm{n}} \\ & \mathrm{I}-300 \mathrm{~ms} \\ & - \\ & - \end{aligned}$	$\begin{aligned} & \hline 2-8 \times \mathrm{I}_{\mathrm{n}} \\ & \mathrm{I}-300 \mathrm{~ms} \\ & 200-1200 \mathrm{~A} \\ & \mathrm{I}-500 \mathrm{~ms} \end{aligned}$	Ampere Rating	Catalogue Number	Adjustable Ampere Settings Catalogue Number
800	3-Pole	GNH3800T32WP19	GNH3800T36WP19	$\begin{aligned} & 400 \\ & 450 \\ & 500 \\ & 550 \\ & \hline 600 \\ & 630 \\ & 700 \\ & 800 \end{aligned}$	8NES400T 8NES450T 8NES500T 8NES550T   8NES600T 8NES630T 8NES700T 8NES800T	400/500/630/800 A8NES800T2
	4-Pole ${ }^{(4)}$	GNH4800T32WP19	-	$\begin{aligned} & \hline 400 \\ & 450 \\ & 500 \\ & 550 \end{aligned}$	8NES400T 8NES450T 8NES500T 8NES550T	$\begin{array}{\|l\|} \hline \text { 400/500/630/800 } \\ \text { A8NES800T2 } \end{array}$
				$\begin{aligned} & \hline 600 \\ & 630 \\ & 700 \\ & 800 \\ & \hline \end{aligned}$	8NES600T 8NES630T 8NES700T 8NES800T	
1250	3-Pole	GNH312T32WP09	GNH312T36WP09	$\begin{aligned} & \hline 600 \\ & 630 \\ & 700 \\ & 800 \end{aligned}$	12NES600T 12NES630T 12NES700T 12NES800T	$\begin{array}{\|l\|} \hline 630 / 800 / \\ \text { 1000/1250 } \\ \text { A12NES12T2 } \end{array}$
				$\begin{array}{\|c} \hline 900 \\ 1000 \\ 1200 \end{array}$	12NES900T 12NES $1000 T$ 12NES1200T	
	4-Pole ${ }^{4}$	GNH412T32WP09	-	$\begin{aligned} & 600 \\ & 630 \\ & 700 \\ & 800 \end{aligned}$	12NES600T 12NES630T 12NES700T 12NES800T	$\begin{array}{\|l\|} \hline 630 / 800 / \\ \text { 1000/1250 } \\ \text { A12NES12T2 } \end{array}$
				$\begin{array}{r} 900 \\ 1000 \\ 1200 \end{array}$	12NES900T 12NES1000T 12NES1200T	

(1) For ac use only.
(2) GN MCCBs are suitable for $40^{\circ} \mathrm{C}$ or $50^{\circ} \mathrm{C}$ applications.
(3) Order terminals separately. See page 20.
(4) Neutral pole on right side.

Note: Rating plugs included with above MCCBs.

## Moulded Case Circuit Breakers

Table 39. Type GNC Very High Capacity — $\mathbf{U}_{\mathbf{e}}$ Max. 690 Vac, 100 kA $I_{\text {cu }}$ at 415 Vac

(1) For ac use only.
(2) GN MCCBs are suitable for $40^{\circ} \mathrm{C}$ or $50^{\circ} \mathrm{C}$ applications.
(3) Order terminals separately. See page 20.
(4) Neutral Pole on right side.

Note: Rating plugs included with above MCCBs.

Table 40. Type GNS Standard Interrupting Capacity — $\mathbf{U}_{\mathbf{e}}$ Max. 690 Vac, 50 kA $I_{c u}$ at 415 Vac

Maximum Continuous Ampere Rating at $40^{\circ} \mathrm{C}$ (1)(2)	Number of Poles	Circuit Breaker Frame Including Digitrip RMS 310 Electronic Trip Unit and Rating Plugs		
		L - Adjustable Long Delay Pickup (By Adjustable Rating Plug)   S - Adjustable Short Delay Pickup with Fixed Short DelayTime   ( $1^{2} \mathrm{t}$ Response) or Adjustable Short DelayTime (Flat Response)   I - Adjustable Instantaneous Pickup by Setting Short Delay Time to Instantaneous   G - Adjustable Earth Fault Pickup with Adjustable Earth Fault Delay (Flat Response)		
		LSI	LSIG	Adjustable
Short Time Range Short Time Delay Earth Fault Pickup Earth Fault Delay		$\begin{aligned} & 2-8 \times \mathrm{I}_{\mathrm{n}} \\ & 1-300 \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 2-8 \times \mathrm{I}_{\mathrm{n}} \\ & \mathrm{I}-300 \mathrm{~ms} \\ & 200-1200 \mathrm{~A} \\ & \mathrm{I}-500 \mathrm{~ms} \end{aligned}$	Rating Plug
1600	$\begin{array}{\|l\|} \hline \text { 3-Pole } \\ \text { 4-Pole } \end{array}$	GNS316T32WP35 GNS416T32WP35	GNS316T36WP35	800/1000/1250/1600

(1) For ac use only.
(2) GN MCCBs are suitable for $40^{\circ} \mathrm{C}$ or $50^{\circ} \mathrm{C}$ applications.

Note: Rating plugs included with above MCCBs.

## Line and Load Terminals

N-Frame circuit breakers do not include terminals as standard. When copper or Cu / Al terminals are required, order by catalogue number.

Table 41. Line and Load Terminals

Maximum   Breaker   Amperes	Terminal   Body   Material	Wire Type	Metric Wire   Range $\mathbf{m m}^{2}$	AWG Wire   Number of   Conductors	Catalogue   Number (3)

Standard Cu/AI Pressure-Type Terminals

$1250{ }^{(4)}$	Aluminium	$\mathrm{Cu} / \mathrm{Al}$	120-300	4/0-500 (3)	TA1200NB3M
Optional Copper and Cu/AI Pressure Type Terminals					
$1250{ }^{(4)}$	Copper	Copper	95-185	3/0-400 (4)	T1200NB3M

${ }^{(3)}$ Single terminals individually packed.
(4) Not suitable with 1600 ampere frame version.

## Terminal Extensions

Table 42. Terminal Extensions

Maximum   Breaker   Amperes	Number   of Poles	Catalogue   Number
800 3 GN8TES3   800 4 GN8TES4   1600 3 GN16TES3   1600 4 GN16TES4		

## Base Mounting Hardware

Base mounting hardware is included with a circuit breaker or moulded case switch.

Table 43. Base Mounting Hardware

Number   of Poles	Description	Catalogue   Number
3- \& 4-pole Metric Hardware: M8   Pan-Head Steel Screws   and Lock Washers BMH5M		

## Keeper Nut

Not required on N-Frame. Terminals are threaded.

## Handle Extension

Included with breaker. Additional handle extensions are available.

Table 44. Handle Extension

Description	Catalogue   Number
Single Handle Extension	HEX5

## Interphase Barriers

The interphase barriers provide additional electrical clearance between circuit breaker poles for special termination applications. Barriers are high dielectric insulating plates that are installed in the moulded slots between the terminals. (Field installation only.)
Table 45. Interphase Barriers

Number of Poles	Catalogue   Number
3 (pack of 2)	IPB5
4 (pack of 3)	IPB54

GR-Frame, $\mathbf{2 5 0 0}$ Amperes - Selection Guide and Ordering Information


Table 46. Type GRH with Digitrip 310 High Interrupting Capacity - $\mathbf{U}_{\mathbf{e}}$ Max. 690 Vac, 70 kA $\mathbf{I}_{\mathbf{c u}}$ at 415 Vac

Maximum Continuous Ampere Rating at $40^{\circ} \mathrm{C}$ (1)	Number of Poles	Circuit Breaker Frame Including Digitrip RMS 310 Electronic Trip Unit with Adjustable Rating Plugs - Catalogue Number   L - Adjustable Long Delay Pickup (By Adjustable Rating Plug)   S - Adjustable Short Delay Pickup with Fixed Short DelayTime   ( $1^{2}$ t Response) or Adjustable Short Delay Time (Flat Response)   I - Adjustable Instantaneous Pickup by Setting Short Delay Time to Instantaneous   G - Adjustable Earth Fault Pickup with Adjustable Earth Fault Delay (Flat Response)		Interchangeable Rating Plugs (Order as Individual Component)		Included with Breaker as standard
		LSI	LSIG	Fixed Rating P		Adjustable Rating Plug
ShortTime Range Short Time Delay Earth Fault Pickup Earth Fault Delay		$\begin{aligned} & 2-8 \times I_{n} \\ & 1-300 \mathrm{~ms} \\ & - \end{aligned}$	$\begin{aligned} & 2-8 \times \mathrm{I}_{\mathrm{n}} \\ & \mathrm{I}-300 \mathrm{~ms} \\ & 200-1200 \mathrm{~A} \\ & \mathrm{I}-500 \mathrm{~ms} \end{aligned}$	Ampere Rating	Catalogue Number	Adjustable   Ampere   Settings   Catalogue   Number
$1600{ }^{(1)}$	3-Pole	GRH316T32WP08	GRH316T36WP08	$\begin{array}{\|r\|} \hline 800 \\ 1000 \\ 1200 \\ 1250 \\ \hline \end{array}$	16RES08T   16RES10T   16RES12T   16RES125T	$\begin{array}{\|l\|} \hline 800 / 1000 / \\ 1250 / 1600 \\ \text { A16RES16T1 } \end{array}$
				$\begin{array}{\|l\|} \hline 1400 \\ 1500 \\ 1600 \\ \hline \end{array}$	16RES14T 16RES15T 16RES16T	
2000		GRH320T32WP16	GRH320T36WP16	$\begin{array}{\|l\|} \hline 1000 \\ 1200 \\ 1250 \\ \hline \end{array}$	20RES 10TA 20RES12T 20RES125T	$\begin{aligned} & \hline \text { 1000/1250/ } \\ & \text { 1600/2000 } \\ & \text { A20RES20T1 } \end{aligned}$
				$\begin{array}{\|l\|} \hline 1400 \\ 1600 \\ 2000 \end{array}$	20RES14T 20RES16T 20RES20T	
2500		GRH325T32WP39	GRH325T36WP39	$\begin{array}{\|l\|} \hline 1200 \\ 1250 \\ 1600 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { 25RES12T } \\ & \text { 25RES125T } \\ & \text { 25RES16T } \end{aligned}$	$\begin{array}{\|l\|} \hline 1250 / 1600 / \\ 2000 / 2500 \\ \text { A25RES25T1 } \end{array}$
				$\begin{aligned} & 2000 \\ & 2500 \end{aligned}$	$\begin{array}{\|l} \hline \text { 25RES20T } \\ \text { 25RES25T } \end{array}$	
$1600{ }^{(1)}$	4-Pole ${ }^{3}$	GRH416T32WP08	-	$\begin{array}{\|r\|} \hline 800 \\ 1000 \\ 1200 \\ 1250 \\ \hline \end{array}$	16RES08T 16RES10T 16RES12T 16RES125T	$\begin{array}{\|l\|} \hline 800 / 1000 / \\ 1250 / 1600 \\ \text { A16RES16T1 } \end{array}$
				$\begin{array}{\|l\|} \hline 1400 \\ 1500 \\ 1600 \\ \hline \end{array}$	16RES14T 16RES15T 16RES16T	
2000		GRH420T32WP16	-	$\begin{array}{\|l\|} \hline 1000 \\ 1200 \\ 1250 \end{array}$	$\begin{array}{\|l\|} \hline \text { 20RES10TA } \\ \text { 20RES12T } \\ \text { 20RES125T } \end{array}$	$\begin{array}{\|l\|} \hline \text { 1000/1250/ } \\ \text { 1600/2000 } \\ \text { A20RES20T1 } \end{array}$
				$\begin{array}{\|l\|} \hline 1400 \\ 1600 \\ 2000 \end{array}$	20RES14T 20RES16T 20RES20T	
2500		GRH425T32WP39	-	$\begin{array}{\|l\|} \hline 1250 \\ 1200 \\ 1600 \\ \hline \end{array}$	$\begin{aligned} & \text { 25RES125T } \\ & \text { 25RES12T } \\ & \text { 25RES16T } \end{aligned}$	$\begin{array}{\|l\|} \hline 1250 / 1600 / \\ \text { 2000/2500 } \\ \text { A25RES25T1 } \end{array}$
				$\begin{aligned} & 2000 \\ & 2500 \end{aligned}$	$\begin{array}{\|l} \hline \text { 25RES20T } \\ \text { 25RES25T } \end{array}$	

[^1](2) Order terminals separately. Mounting hardware not included. See page 24.
(3) Neutral pole on right side.

Note: Rating plugs included with above MCCBs.

16 - 2500 Amperes for IEC Applications

Table 47. Type GRC with Digitrip 310 Very High Interrupting Capacity - $\mathbf{U}_{\mathrm{e}}$ Max. $690 \mathrm{Vac}, 100 \mathrm{kA} \mathrm{I}_{\mathrm{cu}}$ at 415 Vac

Maximum Continuous Ampere Rating at $40^{\circ} \mathrm{C}{ }^{(1)}$	Number of Poles	Circuit Breaker Frame Including Digitrip RMS 310 Electronic Trip Unit with   Adjustable Rating Plugs - Catalogue Number ${ }^{2}$   L - Adjustable Long Delay Pickup (By Adjustable Rating Plug)   S - Adjustable Short Delay Pickup with Fixed Short DelayTime   ( $1^{2} \mathrm{t}$ Response) or Adjustable Short DelayTime (Flat Response)   I - Adjustable Instantaneous Pickup by Setting Short Delay Time to Instantaneous   G - Adjustable Earth Fault Pickup with Adjustable Earth Fault Delay (Flat Response)		Interchangeable Rating Plugs (Order as Individual Component)		Included with Breaker (2)
		LSI	LSIG	Fixed Rating $P$		Adjustable Rating Plug
ShortTime Range ShortTime Delay Earth Fault Pickup Earth Fault Delay		$\begin{aligned} & 2-8 \times \mathrm{I}_{\mathrm{n}} \\ & \mathrm{I}-300 \mathrm{~ms} \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 2-8 \times \mathrm{I}_{\mathrm{n}} \\ & \mathrm{I}-300 \mathrm{~ms} \\ & 200-1200 \mathrm{~A} \\ & \mathrm{I}-500 \mathrm{~ms} \end{aligned}$	Ampere Rating	Catalogue Number	Adjustable Ampere Settings Catalogue Number
$1600{ }^{(1)}$	3-Pole	GRC316T32WP08	GRC316T36WP08	$\begin{array}{\|r\|} \hline 800 \\ 1000 \\ 1250 \\ \hline \end{array}$	16RES08T 16RES10T 16RES125T	$\begin{aligned} & \hline 800 / 1000 / \\ & \text { 1250/1600 } \\ & \text { A16RES16T1 } \end{aligned}$
				$\begin{array}{\|l\|} \hline 1400 \\ 1500 \\ 1600 \\ \hline \end{array}$	16RES14T 16RES15T 16RES16T	
2000		GRC320T32WP16	GRC320T36WP16	$\begin{aligned} & 1000 \\ & 1250 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 20RES10TA } \\ \text { 20RES125T } \end{array}$	1000/1250/ 1600/2000 A20RES20T1
				$\begin{array}{\|l\|} \hline 1400 \\ 1600 \\ 2000 \\ \hline \end{array}$	20RES14T   20RES16T   20RES20T	
$1600{ }^{1}$	4-Pole ${ }^{3}$	GRC416T32WP08	-	$\begin{array}{\|r\|} \hline 800 \\ 1000 \\ 1250 \\ \hline \end{array}$	16RES08T 16RES10T 16RES125T	$\begin{array}{\|l\|} \hline 800 / 1000 / \\ 1250 / 1600 \\ \text { A16RES16T1 } \end{array}$
				$\begin{array}{\|l\|} \hline 1400 \\ 1500 \\ 1600 \\ \hline \end{array}$	16RES14T 16RES15T 16RES16T	
2000		GRC420T32WP16	-	$\begin{array}{\|l\|} \hline 1000 \\ 1250 \\ \hline \end{array}$	20RES10TA   20RES125T	$\begin{aligned} & \hline \text { 1000/1250/ } \\ & \text { 1600/2000 } \\ & \text { A20RES20T1 } \end{aligned}$
				$\begin{array}{\|l\|} \hline 1400 \\ 1600 \\ 2000 \\ \hline \end{array}$	20RES14T   20RES16T   20RES20T	

(1) For SCR application, use 2000 ampere frame.
(2) Order terminals separately. Mounting hardware not included. See page 24.
${ }^{(3)}$ Neutral pole on right side.
Note: Rating plugs included with above MCCBs.
Table 48. Moulded Case Switches

Ampere Rating	Number of Poles	Catalogue Number
1600	3-Pole	GRK316WK
2000		GRK320WK
1600	4-Pole	GRK416WK
2000		GRK420WK

## Moulded Case Circuit Breakers

Series G Frame Size GR, 1250 Amperes — Digitrip 610 \& 910 Trip Units

Table 49. Type GR with Digitrip 610 and 910

Maximum   Continuous   Ampere   Rating   at $40^{\circ} \mathrm{C}$	Number of Poles	Circuit Breaker Frame Including Digitrip RMS 610 and 910 Electronic Trip Unit with Rating Plugs Order as Individual Component - Catalogue Number ${ }^{(1)}$		Digitrip RMS Interchangeable Rating Plug (Order as Individual Component)	
		L - Adjustable Long Delay Pickup ( $\mathrm{I}_{\mathrm{r}}$ ) with Adjustable Long Delay Time   S - Adjustable Short Delay Pickup with Adjustable Short Delay Time ( $\mathbf{I}^{\mathbf{2}} \mathbf{t}$ or Flat Response)   I - Adjustable Instantaneous Pickup   G - Adjustable Earth Fault Pickup with Adjustable Earth Fault Time Delay ( ${ }^{2} \mathrm{t}$ or Flat Response)			
		LSI	LSIG	Fixed Ra	ting Plug
Long Delay Pickup Long Delay Time Short Time Range Short Time Delay Instantaneous Earth Fault Pickup Earth Fault Delay		$\begin{aligned} & 0.5-1.0 \times \mathrm{I}_{\mathrm{n}} \\ & 2-24 \text { Seconds } \\ & 2-6 \times \mathrm{I}_{\mathrm{r}} \\ & 100-500 \mathrm{~ms} \\ & 2-6 \times \mathrm{M} 1 \& \mathrm{M} 2 \\ & - \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.5-1.0 \times \mathrm{I}_{\mathrm{n}} \\ & 2-24 \text { Seconds } \\ & 2-6 \times \mathrm{I}_{\mathrm{r}} \\ & 100-500 \mathrm{~ms} \\ & 2-6 \times \mathrm{M} 1 \& \mathrm{M} 2 \\ & 0.25-1.0 \times \mathrm{In}{ }^{(2)} \\ & 100-500 \mathrm{~ms} \end{aligned}$	Ampere Rating	Catalogue Number
Type GRH with Digitrip 610 High Interrupting Capacity - $\mathrm{U}_{\mathbf{e}}$ Max. 690 Vac, 70 kA $\mathrm{Icu}_{\text {cu }}$ at 415 Vac					
1600	3-Pole	GRH316T62WP44	GRH316T66WP44	$\begin{array}{\|r\|} \hline 800 \\ 1000 \\ 1250 \\ 1600 \end{array}$	RP6R16A080 RP6R16A100 RP6R16A125 RP6R16A160
2000		GRH320T62WP49	GRH320T66WP49	$\begin{aligned} & 1000 \\ & 1250 \\ & 1600 \\ & 2000 \end{aligned}$	RP6R20A100   RP6R20A125   RP6R20A160   RP6R20A200
2500		GRH325T62WP53	GRH325T66WP53	$\begin{aligned} & 1600 \\ & 2000 \\ & 2500 \\ & \hline \end{aligned}$	RP6R25A160   RP6R25A200   RP6R25A250
Type GRC with Digitrip 610 Very High Interrupting Capacity - $\mathrm{U}_{\mathbf{e}}$ Max. 690 Vac, $100 \mathrm{kA} \mathrm{I}_{\text {cu }}$ at 415 Vac					
1600	3-Pole	GRC316T62WP44	GRC316T66WP44	$\begin{array}{r} 800 \\ 1000 \\ 1250 \\ 1600 \end{array}$	RP6R16A080 RP6R16A100 RP6R16A125 RP6R16A160
2000		GRC320T62WP49	GRC320T66WP49	1000 1250 1600 2000	RP6R20A100   RP6R20A125   RP6R20A160   RP6R20A200
Type GRH with Digitrip 910 High Interrupting Capacity - $\mathbf{U}_{\mathbf{e}}$ Max. 690 Vac, 70 kA $\mathrm{Icu}_{\text {cu }}$ at 415 Vac					
1600	3-Pole	GRH316T92WP44	GRH316T96WP44	$\begin{array}{r} 800 \\ 1000 \\ 1250 \\ 1600 \end{array}$	RP6R16A080 RP6R16A100 RP6R16A125 RP6R16A160
2000		GRH320T92WP49	GRH320T96WP49	$\begin{aligned} & \hline 1000 \\ & 1250 \\ & 1600 \\ & 2000 \end{aligned}$	RP6R20A100   RP6R20A125   RP6R20A160   RP6R20A200
2500		GRH325T92WP53	GRH325T96WP53	$\begin{aligned} & 1600 \\ & 2000 \\ & 2500 \end{aligned}$	RP6R25A160   RP6R25A200   RP6R25A250
Type GRC with Digitrip 910 Very High Interrupting Capacity - $\mathrm{U}_{\mathbf{e}}$ Max. 690 Vac, $100 \mathrm{kA} \mathrm{I}_{\text {cu }}$ at 415 Vac					
1600	3-Pole	GRC316T92WP44	GRC316T96WP44	800 1000 1250 1600	RP6R16A080   RP6R16A100   RP6R16A125   RP6R16A160
2000		GRC320T92WP49	GRC320T96WP49	1000 1250 1600 2000	RP6R20A100   RP6R20A125   RP6R20A160   RP6R20A200

[^2]Note: Rating plugs included with above MCCBs.

## Series G Frame Size GR, 800 - $\mathbf{2 5 0 0}$ Amperes

## Line and Load Terminals

GR-Frame circuit breakers use $\mathrm{Cu} / \mathrm{Al}$ terminals as standard and copper only terminals as an option. Specify if factory installation is required.
Table 50. Line and Load Terminals

(1) Order one per pole - single terminals individually packed.
(2) Order one TA2000RD kit per 3-poles. Catalogue number includes bus connection, terminals and hardware for either line side or load side of 3-pole breaker.


## Figure 9. GR Rear Connector Exploded View

(1) Order one per pole (or two per pole if line and load terminals are required) - single terminals individually packed.


Figure 10. TA2000RD Wire Terminal
Note: Order oneTA2000ROM kit per 3-poles. Catalogue number includes bus connection, terminals and hardware for either line side or load side of 3-pole breaker.

## Base Mounting Hardware

Supplied by customer.

## Handle Extension

Included with breaker. Additional handle extensions are available.

Table 51. Handle Extension

Description	Catalogue   Number
Single Handle Extension	HEX6

Moulded Case Circuit Breakers

## 16-2500 Amperes for IEC Applications

## Series G Motor Circuit Protectors

Motor Circuit Protectors - Selection Guide and Ordering Information

Table 52. GE Frame - 600Y/347 Vac Maximum, 250 Vdc Maximum

Continuous Amperes	Cam Setting	Motor Full Load Current Amperes	MCP Trip Setting ${ }^{(2)}$	MCP Catalogue Number
3	A	. $69-.91$	9	HMCPE003A0C
	B	1.1-1.3	15	
	C	1.6-1.7	21	
	D	2.0-2.2	27	
	E	2.3-2.5	30	
	F	-2.6	33	
7	A	1.5-2.0	21	HMCPE007C0C
	B	2.6-3.1	35	
	C	3.7-3.9	49	
	D	4.8-5.2	63	
	E	$5.3-5.7$	70	
	F	$5.8-6.1$	77	
15	A	3.4-4.5	45	HMCPE015E0C
	B	5.7-6.8	75	
	C	8.0-9.1	105	
	D	10.4-11.4	135	
	E	11.5-12.6	150	
	F	12.7-13.0	165	
30	A	3.9-9.1	90	HMCPE030H1C
	B	11.5-13.7	150	
	C	16.1-18.3	210	
	D	20.7-22.9	270	
	E	23.0-25.2	300	
	F	25.3-26.1	330	
50		11.5-15.2	150	HMCPE050K2C
	B	19.2-22.9	250	
	C	26.9-30.6	350	
	D	34.6-38.3	450	
	E	38.4-42.1	500	
	F	42.2-43.5	550	
70	A	16.1-30.6	210	HMCPE070M2C
	B	26.9-32.2	350	
	C	37.6-42.9	490	
	D	48.4-53.7	630	
	E	53.8-59.1	700	
	F	59.2-60.9	770	
100	A	23.0-30.6	300	HMCPE100R3C
	B	38.4-46.0	500	
	C	53.8-61.4	700	
	D	69.2-76.8	900	
	E	76.9-84.5	1000	
	F	84.6-87.0	1100	
100	A	38.4-46.0	500	HMCPE100T3C
	B	57.6-65.2	750	
	C	76.9-84.5	1000	
	D	(3)	1250	
	E	(3)	1375	
	F	(3)	1500	

(1) Motor FLA ranges are typical. The corresponding trip setting is at 13 times the minimum FLA value shown. Where a 13 times setting is required for an intermediate FLA value, alternate cam settings and/or MCP ratings should be used.
(2) For dc applications, actual trip levels are approximately $40 \%$ higher than values shown.
(3) Settings above $10 \times I_{n}$ are for special applications. Where the ampere rating of the disconnecting means cannot be less than $115 \%$ of the motor full load ampere rating.

Table 53. GJ Frame - $\mathbf{6 0 0}$ Vac Maximum, 250 Vdc Maximum

Continuous   Amperes	MCPTrip   Range (Amperes)	MCP Catalogue   Number
	$500-1000$	HMCPJ250D5L     
	$625-1250$	HMCPJ250F5L
	$750-1500$	HMCPJ250G5L
	$875-1750$	HMCPJ250J5L
	$1000-2000$	HMCPJ250K5L
	$1125-2250$	HMCPJ250L5L
	$1250-2500$	HMCPJ250W5L

Table 54. GL Frame - 600 Vac Maximum, 250 Vdc Maximum (4)

Continuous   Amperes	MCP Trip   Range (Amperes)	MCP Catalogue   Number
600	$1125-2250$	HMCPL600L  
	$1500-3000$	HMCPL600N
	$1750-3500$	HMCPL600R
	$2000-4000$	HMCPL600X
	$2250-4500$	HMCPL600Y
	$2500-5000$	HMCPL600P
	$3000-6000$	HMCPL600M

(4) Equipped with an electronic trip device.

Table 55. GN Frame - 600 Vac Maximum (5)

Continuous   Amperes	Cam   Setting	Motor Full Load   Current Amperes	MCP Trip   Setting	MCP Catalogue   Number
800	A	$123.1-184.5$	1600	HMCP800X7W
	B	$184.6-246.1$	2400	
	C	$246.2-307.6$	3200	
	D	$307.2-369.1$	4000	
	E	$369.2-430.7$	4800	
	F	$430.8-492.2$	5600	
1200	G	$492.3-553.7$	6400	
	A	$184.6-276.8$	2400	HMCP12Y8W
	B	$276.9-369.1$	3600	
	C	$369.2-461.4$	4800	
	D	$461.5-553.7$	6000	
	E	$553.8-646.1$	7200	
	F	$646.2-738.4$	8400	
	G	$738.5-830.7$	9600	

(5) Equipped with an electronic trip device

Earth Leakage Modules


Clockwise from Left: GJ, GL, GE MCCBs Shown with Earth Fault (Earth Leakage) Modules

Eaton offers a 3- and 4-pole 30 mA earth fault (earth leakage) protection module for GE, GJ and GL breakers. The module does not restrict the use of other breaker accessories. The IECrated GE module is side mounted for circuits up to 125 amperes, while the GJ and GL modules are both bottom mounted for circuits up to 160 and 250 amperes (GJ), or 400 and 630 amperes for the GL.

The module is completely self-contained since the current sensor, relay and power supply are located inside the product. Current pickup settings are selectable from 0.03-10 amperes for all IEC-rated modules. Time delays are also selectable from Instantaneous 1.0 seconds for 0.10 ampere settings and above. A current pickup setting of 0.03 amperes defaults to an Instantaneous time setting regardless of the time dial's position. Two alarm contacts come as standard: a 50\% pretrip and a $100 \%$ after trip, both based only on earth leakage current levels.


Figure 11. IEC-Rated GL Frame Earth Leakage Module Faceplate

## Product Selection

Table 56. GE Frame Earth Leakage Modules, IEC (Side Mounted, 230 - 415 Vac, 50/60 Hz)

Amperes	Poles	Catalogue   Number
125	3	ELESE3125W
125	4	ELESE4125W

Table 57. GJ Frame Earth Leakage Modules, IEC (Bottom Mounted, 230 - 415 Vac, $50 / 60 \mathrm{~Hz}$ )

Amperes	Poles	Catalogue   Number
160 3 ELJBE3160W   160 4 ELJBE4160W   250 3 ELJBE3250W   250 $\mathbf{E} \quad$	ELJBE4250W	

Table 58. GL Frame Earth Leakage Modules, IEC (Bottom Mounted, 230 - 415 Vac, $50 / 60 \mathrm{~Hz}$ )

Amperes	Poles	Catalogue   Number
400	3	ELLBE3400W
400	4	ELLBE4400W
630	3	ELLBE3630W   630

## Optional Features and Accessories

## Internal Accessories

## Alarm Switch

The alarm switches operate when the circuit breaker is tripped by a short circuit or overcurrent, but also when it is tripped by a shunt trip or undervoltage release.

## Auxiliary Switches

Auxiliary switches are used for signalling and control purposes. The various functions of the auxiliary switches (changeover) are shown in Figure 13.

## Shunt Trips

The shunt trip is used for remote tripping.
The coil of the shunt trip is rated only for short-time operation.
It is not permissible with the circuit breaker open to apply a continuous opening command to the shunt trip in order to prevent the breaker from closing. This means that interlocking circuits with continuous commands may not be set up with shunt trips.

## Undervoltage Releases

The circuit breaker cannot be closed until the undervoltage release is energized. If the release is not energized, the circuit breaker can only perform an idle switching operation.
Frequent idle switching actions should be avoided as they shorten the endurance of the circuit breaker.

## Accessory Configurations for GE - GR Circuit Breakers



Figure 12. Internal Accessory Configurations


Figure 13. Contact Making by the Auxiliary and Alarm Switches as a Function of the Switching Position of the Circuit Breaker

## Series G Accessories

(

Table 59. Accessories

Description	Pole   Location	Frame	GE,	GJ, GL	GN
			GR		


Alarm Switch	Make/Break	Left	-	-	-	-
		Right	ALM1M1BEPK	ALM1M1BJPKL	A1L5RPK	A1L6RPK
	2 Make/2 Break	Left	-	-	-	-
		Right	ALM2M2BEPK	ALM2M2BJPK	A2L5RPK	A2L6RPK
Auxiliary Switch	1A, 1B	Left	-	-	-	-
a 工   b 7		Right	AUX1A1BPK	AUX1A1BPK	A1X5PK	-
	2A, 2B	Left	-	-	-	-
		Right	AUX2A2BPK	AUX2A2BPK	A2X5PK	A2X6RPK
	3A, 3B	Left	-	-	-	-
		Right	-	-	A3X5RPK	-
	4A, 4B	Left	-	-	-	-
		Right	-	-	-	A4X6RPK
Auxiliary Switch /Alarm Switch		Left	-	-	AA115LPK	-
		Right	AUXALRMEPK	AUXALRMJPK	AA115RPK	-
ShuntTrip - Standard	120 Vac	Left	SNT120CPK	SNT120CPK	SNT5LP11K	-
		Right	-	-	-	SNT6P11K
	240 Vac	Left	SNT120CPK	SNT120CPK	SNT5LP11K	-
		Right	-	-	-	SNT6P11K
	24 Vdc	Left	SNT060CPK	SNT060CPK	SNT5LP03K	-
		Right	-	-	-	SNT6P03K
	48 Vdc	Left	SNT060CPK	SNT060CPK	SNT5LP23K	-
		Right	-	-	-	SNT6P23K
	$380-600 \mathrm{Vac}$	Left	SNT480CPK	SNT480CPK	-	-
		Right	-	-	-	-
	220-250 Vdc or 380-440 Vac		-	-	SNT5LP14K	SNT6P14K
	$480-600 \mathrm{Vac}$		-	-	SNT5LP18K	SNT6P18K
ShuntTrip - Low Energy		Left	-	-	LST5LPK	-
		Right	-	-	-	LST6RPK
Undervoltage Release Mechanism	120 Vac	Left	UVR120APK	UVR120APK	UVH5LP08K	-
		Right	-	-	-	UVH6RP08K
	208-240 Vac	Left	UVR240APK	UVR240APK	UVH5LP11K	-
		Right	-	-	-	UVH6RP11K
	24 Vdc , Vac	Left	UVR024CPK	UVR024CPK	UVH5LP21K	-
		Right	-	-	-	UVH6RP21K
	48 Vdc	Left	UVR048DPK	UVR048DPK	UVH5LP23K	-
		Right	-	-	-	UVH6RP23K
	12 Vdc , Vac	Left	UVR012CPK	UVR012CPK	-	-
		Right	-	-	-	-
	48 Vac	Left	UVR048APK	UVR048APK	UVH5LP05K	-
		Right	-	-	-	UVH6RP05K
	120 Vdc	Left	UVR125DPK	UVR125DPK	UVH5LP26K	-
		Right	-	-	-	UVH6RP26K
	$220-250 \mathrm{Vdc}$	Left	UVR250DPK	UVR250DPK	UVH5LP28K	-
		Right	-	-	-	UVH6RP28K
	$380-500 \mathrm{Vac}$	Left	UVR480APK	UVR480APK	UVH5LP29K	-
		Right	-	-	-	UVH6RP29K
	$525-600 \mathrm{Vac}$	Left	UVR600APK	UVR600APK	-	-
		Right	-	-	-	-
	12 Vdc	Left	-	-	UVH5LP20K	-
		Right	-	-	-	UVH6RP20K
	12 Vac	Left	-	-	UVH5LP02K	-
		Right	-	-	-	UVH6RP02K

Moulded Case Circuit Breakers

## Series G Optional Features and Accessories

Table 60. External Accessories and Test Kit

Description	$\begin{array}{\|l\|} \hline \text { Fit } \\ \text { Type } \end{array}$	Frame				
		GE	GJ	GL	GN	GR
External Accessories						
Non-Padlockable Handle Block	Field	EFHB	-	-	LKD4	-
Padlockable Handle Block	Field	EFPHB	FJPHB	LBHP	-	-
Padlockable Handle Block Off-Only	Field	EFPHBOFF	FJPHBOFF	LBHPOFF	-	-
Padlockable Handle Lock Hasp	Field	EFPHL	FJPHL	LPHL	PLK5N	HLK6
Padlockable Handle Lock Hasp Off-Only	Field	EFPHLOFF	FJPHLOFF	LPHLOFF	-	-
Cylinder Lock	Factory	Order by Description				
Key Interlock Kit (Castell) (3)	Field	-	-	-	CYK4	CYK6
Key Interlock Kit (Kirk) (1)	Field	-	KYKFJ	KYKL	KYK4	KYK6
Slide Bar Interlock [2]	Field	EFSBI	FJSBI	SBKL3	SBK5	-
Walking Beam Interlock (2)	Factory	EFWBI	FJWBI	WBLL3630	WBL5	WBL6
Electrical Operator	120 Vac	EOPEF240C	EOPFJ240C	EOPLG240C	EOP5T07	EOP6T08K
	240 Vac	EOPEF240C	EOPFJ240C	EOPLG240C	EOP5T11	EOP6T11K
	380 Vac	-	-	-	-	-
	24 Vdc	EOPEF24D	EOPFJ24D	EOPLG24D	EOP5T21	EOP6T19K
	48 Vdc	EOPEF48D	EOPFJ48D	EOPLG48D	EOP5T22	EOP6T21K
	125 Vdc	EOPEF240C	EOPFJ240C	EOPLG240C	EOP5T26	-
Plug-In Adapters	3-Pole	PAD3E	PAD3J	PAD3L	PAD53	-
	4-Pole	PAD4E	PAD4J	PAD4L	PAD54	-
Rear Connecting Studs	Field	EFRCSWS (83mm) EFRCSWL (128mm)	FJRCSWS (107mm) FJRCSWL (184mm)	LRCS3WK   (3-Pole 1 end)   LRCS4WK   (4-Pole 1 end)	373B375G04 (139mm) 373B375G03 $(266 \mathrm{~mm})$	-

## Test Kit

Electronic PortableTest Kit ${ }^{4}{ }^{4}$	-	$\left.{ }^{5}\right)$	$\left.{ }^{5}\right)$	STK2	STK2

(1) Provision only.
(2) Requires two breakers - 3- pole only.
${ }^{(3)}$ Contact Eaton for catalogue numbers.
(4) Digitrip 310 only.
(5) Catalogue Numbers MTST120V (120 Vac) and MTST230V (230 Vac).

16-2500 Amperes for IEC Applications

Plug-in Blocks
Plug-in adapters simplify installation and front removal of circuit breakers. Plug-ins are available for rear connection applications on 3- and 4-pole circuit breakers. Trip on drawout interlock kits are included. Use terminal shields for IP30 protection.


## Product Selection

Table 61. Plug-in Blocks

Breaker   Frame	Poles	Catalogue   Number

GE-, GJ- and GL-Frame Plug-in Blocks

GE	3	PAD3E
GE	4	PAD4E
GJ	3	PAD3J
GJ	4	PAD4J
GL	3	PAD3L
GL	4	PAD4L

Trip-on Drawout Interlock Kit ${ }^{\text {( })}$

GE	3,4	PIILEG   GJ
GL	3,4	PIILG
4		
PIILLG		

Terminal Shields IP30

GE	3	EFTS3K
GE	4	EFTS4K
GJ	3	FJTS3K
GJ	4	FJTS4K
GL	3	LTS3K
GL	4	LTS4K

(1) Included with plug-in block. Trips the breaker when breaker is removed from plug-in block.

## Drawout Cassette



The Drawout Cassette is currently for use with the standard 3-pole 65 and $100 \mathrm{kA} / 480 \mathrm{Vac}, 1600$ ampere and 2000 ampere GR circuit breakers only. It consists of two separate components: the movable mechanism which is factory mounted to the circuit breaker frame (shown in photo above) and the stationary mechanism which is housed in the cassette and shipped separately.
The drawout mechanism has four positions.

- Connected - The breaker is fully connected to the primary stabs and secondary contacts.
- Test - The breaker is not connected to the primary stab but is connected to the secondary contacts.
- Disconnected - Both the primary stabs and the secondary contacts are disconnected.
- Withdraw -The breaker can be removed from the cassette.

Table 62. GR Drawout Cassette

Description	Catalogue Number

## 65 kA/480 Vac Version

Movable   Mechanism	RG20DOM (2)
Stationary   Mechanism	RG20DOS (without shutters)   RG20DOSS (with shutters)

## $100 \mathrm{kA} / 480$ Vac Version

Movable   Mechanism	RG20DOM (2)
Stationary   Mechanism	RG20DOS (without shutters)   RG20DOSS (with shutters)

(2) List price included in price of the stationary mechanism.

Movable mechanism must be ordered with GR circuit breaker and is shipped mounted to circuit breaker frame. Stationary mechanism is ordered separately.
All internal accessories must be factory installed for use with drawout.

## Moulded Case Circuit Breakers

16 - 2500 Amperes for IEC Applications

## Series G Handle Mechanisms

## Handle Mechanisms Overview

Handle mechanisms are used to operate moulded case circuit breakers, moulded case switches and motor circuit protectors. They are available in three basic configurations - Flange Mounted,Through-the-Door and Direct (Close-Coupled) - providing safe, dependable operation and ease of installation.

## Flange Mounted

- Flex Shaft

Through-the-Door

- Universal Rotary

Direct (Close Coupled)
■ Universal Direct

- Euro IEC

Handle mechanisms are typically used on enclosed circuit breakers, control panels and motor control centres in many different applications. Eaton has a handle mechanism for virtually any need.

## Flange Mounted Handle Mechanisms



The Flex Shaft ${ }^{\text {TM }}$
Flange Mounted handle mechanisms mount on the flange of an enclosure door. The Flex Shaft is an extra heavy-duty mechanism that includes a flexible shaft in various lengths, 0.9 m through 3 m for use with various size enclosures.
The Flex Shaft handle will accept up to three padlock shackles, each with a maximum diameter of 9.5 mm . Can be used with IP54 fabricated enclosures. An optional handle is available for Flex Shaft that is suitable for use with IP66 environments.

Flex Shaft comes preset from the factory, requiring only minor field adjustments on installation, which takes about 10 minutes - a significant time savings compared to installation of other types of flange handle mechanisms. The Flex Shaft mechanism also takes up less interior enclosure space than competitive designs and the handle fits standard flange cutouts. Flex Shaft handle can be remotely mounted from breaker, where an operator can use it by "funnelling" the cable through conduit.

## Flex Shaft Ordering Information

Table 63. Flex Shaft Ordering Information

Breaker Frame	Flexible Shaft Length in m							
	Catalogue Number							
	0.9m	1.2m	1.3m	1.8m	2.1m	2.4m	2.7m	3.1m
$\begin{array}{\|l\|} \hline \mathrm{GE} \\ \mathrm{GJ} \end{array}$	EHMFS03 JHMFS03	EHMFS04 JHMFS04	EHMFS05 JHMFS05	EHMFS06 JHMFS06	EHMFS07   JHMFS07	EHMFS08 JHMFS08	EHMFS09 JHMFS09	EHMFS10 JHMFS10
GL   GN   GR	N/A N/A	LHMFS04   F5S04CI   F6S04	F5S05CI F6S05	F5S06Cl F6S06	LHMFS07   N/A   N/A	N/A N/A	$\begin{array}{\|l} \bar{N} / \mathrm{A} \\ \mathrm{~N} / \mathrm{A} \end{array}$	LHMFS10   F5S10CI   N/A

Note: Add Suffix L to the complete Catalogue Number for 152 mm handle.
Flex Shaft Accessories (GE- through GR-Frame)

Table 64. Standard Door Hardware
(Required Adapter Kit)

Latch	Panel Height   $\mathbf{m m}$	Catalogue   Number
2 Point Up to 762.0 DH1R   2 Point Up to 1016.0   3 Point Over 1016.0	DH2R   DH3R	

Table 65. Door Hardware Adapter Kit
(Required on Standard Door Hardware)

Description	Catalogue Number
Door Hardware   Adapter Kit AMTDHA	

Adapter Kit

Note: When selecting the length of shaft, ensure minimum bending radius of 102 mm is maintained to operate properly.

The standard method of shipment includes the mechanism preset at the factory; however, minor field adjustments may be required.

Table 66. IP54 Safety Door
Hardware for Flex Shaft (1)

Handle Length   in $\mathbf{~ m m}$	Catalogue   Number ${ }^{2}$
102	C361KJ4   C361KJ6
152	C361KR
Roller Latch (3)	

(1) Customer: Consult with box manufacturer for correct door hardware and any adapters required for assembly.
(2) The $6.35 \times 12.7 \mathrm{~mm}$ standard mill rectangular locking bar is not supplied with these kits.
(3) Third roller latch for use with 102 or 152 mm handle when 3 point latching is required.

## Series G Handle Mechanisms

## Through-the-Door Handle Mechanisms



Universal Rotary
All rotary handle mechanisms include a handle "Lock Off," to prevent turning the breaker ON while in the OFF position. All Rotary handles indicate ON/ OFF/Tripped/Reset positions, however, Universal Rotary has the added feature of international markings for ON (I) and OFF (O). The Universal Rotary is made of moulded material.
The Universal Rotary mechanisms for GE, GJ and GL MCCBs can be operated by hand with the door open or "locked off" to prevent operation with the door open.

Table 67. Universal Rotary Ordering Information

Shaft Length   in mm	Handle   Colour	Complete   Catalogue Number   $(1)$

GE-Frame

152	Black	EHMVD06B
304	Black	EHMVD12B   EH9
Black	EHMVD24B	
152	Red	EHMVD06R
304	Red	EHMVD12R   EHMVD24R
609	Red	
GJ-Frame		
152 Black FJHMVD06B   304 Black FJHMVD12B   609 Black FJHMVD24B   152 Red FJHMVD06R   304   609 Red FJHMVD12R   Red FJHMVD24R		

GL-Frame

152	Black	KLHMVD06B
304	Black	KLHMVD12B
609	Black	KLHMVD24B
152	Red	KLHMVD06R
304	Red	KLHMVD12R
609	Red	KLHMVD24R
GN-Frame		
152	Black	HMVD5B
GR-Frame		
235	Black	HMVD6B

(1) Complete catalogue number includes handle, mechanism, shaft and mounting hardware.

## Series G Handle Mechanisms

## Direct (Close-Coupled) Handle Mechanisms



Universal Direct (GE - GL)
Direct (Close-Coupled) Handle Mechanisms mount directly to the circuit breaker. They are used in shallow enclosures where the standard variable depth Through-the-Door type mechanism is not practical or cannot be used. They are typically for applications where high volume, standardized enclosures are being fabricated.

The Direct handle mechanism is designed exclusively for the Eaton GE, GJ and GL circuit breakers. It is available as standard with a door interlock to
prevent opening the enclosure while the circuit breaker is in the ON position. It is also available without a door interlock.

Table 68. Universal Direct Ordering Information

Frame			Red Handle Colour
	with Interlock	without Interlock	without Interlock
	Catalogue Number		
	GE   GJ   GL	EHMCCBI   LHMCCBI	EHMCCB   JHMCCB
LHMCCBI			

## Series G

## Time-Current Curves

## Tripping Characteristics

The operating values specified for the inverse time overcurrent releases (thermal overload releases, "a" releases) are mean values of the scatter bands of all setting ranges from the cold state and with uniform current loading of the conducting paths.
The tripping characteristics of the instantaneous (electromagnetic) short circuit releases (" $n$ " releases) are based on the rated phase current $I_{n}$ which in the case of circuit breakers with adjustable thermal overload releases is also the upper value of the setting range. With a lower setting current, a correspondingly higher multiple is obtained for the operating current of the " $n$ " release.


Figure 14. Tripping Time Characteristics (Thermal Memory)

## Type GE

Tripping characteristics of GE circuit breakers for plant protection, " $n$ " release fixed setting $=400-600$ for breaker 15-45A; over 50 A = $10 x \mathrm{I}_{\mathrm{n}}$.


Figure 15. GE Time Current Curve

## Type GJ

Tripping characteristics of GJ circuit breakers for plant protection, " n " release adjustable.


Figure 16. GJ Time Current Curve for Thermal Magnetic Trip Units

Type GL


Figure 17. GL Time Current Curve for Thermal Magnetic Trip Units

Moulded Case Circuit Breakers
16-2500 Amperes for IEC Applications


Figure 18. GL Electronic Trip Unit Long Delay Response and Short Delay with $I^{2}$ T Response Curve

Long Delay Response \& Short Delay with Flat Response Curve


SERIES G GL Frame Circuit Breakers
Catalog Types: GLS and GLH Circuit Breakers, 3 and 4 Poles

Long Delay (LD) \& Short Delay (SD) with Flat Response

Available Sensors ( $\mathrm{l}_{\mathrm{n}}$ ):	Ir $>$ In	250A	400A	600A	630A
	A	250A	400A	600A	630A
250A	B	225A	350 A	500A	600A
400A	c	200A	315A	450A	500A
600A	D	175A	300A	400A	400A
630 A	E	160A	250A	350A	350A
	F	150A	225A	315A	315A
	G	125 A	200 A	300 A	300 A
	H	100A	160A	250A	250A

Notes:

1. Curve accuracy applies from $-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ ambient. Temperatures above $+88^{\circ} \mathrm{C}$ cause an overtemperature protection trip. For possible continuous ampere derating for ambient above $40^{\circ} \mathrm{C}$, refer to Eaton.
2. Application frequency is $50 / 60$ Hertz.
3. There is a memory effect that can act to shorten the Long Delay. The memory effect comes into play If a current above the circuit breaker itself. A subsequent overioad will cause the circuit breaker to trip in shorter time than normal. The amount of time delay reduction is inverse to the amount of time that
has elapsed since the previous overload. Approximately five minutes is required between overioads to completely reset memory.
4. The right portion of the curve is determined by the interrupting rating of the circuit breaker.
5. The left portion of the curve is shown as a multiple of the Long Delay Setting
(Long Delay Pick Up $=115 \%$ of 1, ). Range is $110 \%-120 \%$.
6. Total clearing times shown include the response times of the trip unit, the breaker opening, and the interruption of the current.
7. The Short Delay Pick Up has 9 settings/positions, 2-8 \& 10, 14
8. For high fault current levels an additional fixed instantaneous hardware override is provided at $12 \times\left(l_{n}\right)$.
9. For LD Response \& SD with Flat Response (this curve): TC01207004E
10. For LD Response \& SD with $1^{2} T$ Response curve, see: TC01207005E
11. For Earth Faut Delay Response curve, see: TC01207006E



Figure 19. GL Electronic Trip Unit Long Delay Response and Short Delay with Flat Response Curve

Moulded Case Circuit Breakers
16-2500 Amperes for IEC Applications

Ground Fault Delay Response Curve


Figure 20. GL Electronic Trip Unit Earth Fault Delay Response Curve

## Type GN

Tripping characteristics of GN circuit breakers with solid-state overcurrent release.

## Working Temperature Range

The tolerance bands shown are applicable to an ambient temperature range of -5 to $+60^{\circ} \mathrm{C}$ at the circuit breaker.


Figure 21. GN Time Current Curve for Digitrip 310 Trip Unit

Moulded Case Circuit Breakers

## 16-2500 Amperes for IEC Applications

## Type GR

Tripping characteristics of GR circuit breakers with solid-state overcurrent release.

## Working Temperature Range

The tolerance bands shown are applicable to an ambient temperature range of -5 to $+60^{\circ} \mathrm{C}$ at the circuit breaker.


Figure 22. GR Time Current Curve for Digitrip 310 Trip Unit

## Current Limiting Curves

## Current Limiting Characteristics and Maximum $I^{2} t$ Values

Type GE/GJ/GL


Figure 23. Current Limiting Characteristics for GE to GL, 50/60 Hz 380/415/480 Vac

Type GE/GJ/GL


Figure 24. Current Limiting Characteristics for GE to GL, 50/60 Hz 600/660/690 Vac

Type GE/GJ/GL


Figure 25. Maximum $\mathrm{I}^{2} \mathrm{t}$ Values for GE to GL, 50/60 Hz 380/415/480 Vac

Type GE/GJ/GL


Figure 26. Maximum $\mathrm{I}^{2}$ t Values for GE to GL, 50/60 Hz 600/660/690 Vac

## Type GN/GR



Figure 27. Current Limiting Characteristics Ip for GN to GR, $50 / 60 \mathrm{~Hz} 380 / 415 / 480$ Vac

Type GN/GR


Figure 28. Maximum $I^{2} \mathrm{t}$ Values for $\mathbf{G N}$ to $\mathbf{G R}$, 50/60 Hz 600/660/690 Vac

Moulded Case Circuit Breakers

## 16 - 2500 Amperes for IEC Applications

## Series G Frame Sizes GE through GL

Dimensions


Figure 29. GE Frame - Dimensions in mm


Figure 30. GJ Frame - Dimensions in mm


Figure 31. GL-Frame - Dimensions in mm
Note: TA63IL,T63IL,T632L,TA632L terminals add 30.2 mm to line or load side of GL. LTS3K or LTS4K terminal covers add 54.1 mm to line or load side of GL.


Figure 32. GN-Frame - Dimensions in mm


Figure 33. GR-Frame - Dimensions in mm


#### Abstract

Eaton's Electrical business is a global leader in electrical control, power distribution, and industrial automation products and services. Through advanced product development, world-class manufacturing methods, and global engineering services and support, Eaton's Electrical business provides customer-driven solutions under brand names such as Cutler-Hammer $®$, Durant ${ }^{\circledR}$, Heinemann $®^{\circledR}$, Holec $®$ and MEM $®$, which globally serve the changing needs of the industrial, utility, light commercial, residential, and OEM markets. For more information, visit www.EatonElectrical.com.


Eaton Corporation is a diversified industrial manufacturer with 2003 sales of $\$ 8.1$ billion. Eaton is a global leader in fluid power systems and services for industrial, mobile and aircraft equipment; electrical systems and components for power quality, distribution and control; automotive engine air management systems and powertrain controls for fuel economy; and intelligent drivetrain systems for fuel economy and safety in trucks. Eaton has 54,000 employees and sells products to customers in more than 100 countries. For more information, visit www.eaton.com.

Eaton Electric Limited	Eaton Electric NV
Reddings Lane	PO Box 23
Birmingham B11 3EZ	7550 AA Hengelo
United Kingdom	The Netherlands
Customer Support Centre	Customer Support Centre
Tel: +44 (0)8700545 333	Tel: $+31(0) 742467066$
Fax: +44 (0)8700540 333	Fax: +31 (0)74 246 7070
email: ukcommorders@eaton.com	email: c-heuropesupport@eaton.com


[^0]:    4) For ac use only.
    5) For 2-pole applications, use outer poles of 3-pole moulded case switch.
    (6) Neutral pole on right side.
[^1]:    (1) For SCR application, use 2000 ampere frame.

[^2]:    (1) Order terminals separately. Mounting hardware not included. See page 24.

