

Circuit diagram

- According to IEC 255, EN 60 255, VDE 0435 part 303
- Single-phase
- Can be used for under- or overvoltage detection
- Measuring ranges from 14 to 288 V
- Settable response value
- Without auxiliary supply
- Width $22,5 \mathrm{~mm}$

Approvals and marking

C

Applications

Because of the electromechanical construction the ML 9702 is insensitive to high voltage peeks with high energy and radio frequency disturbance. Special interference suppression is not necessary. It is used in emergency power supply systems, as fast reacting overvoltage protection and to monitor voltage in control circuits.

Function

The setting ration is $1: 2$.
Please note when mounting the units without distance to each other:

1. If the relays are connected to DC voltage please connect all the units with the same polarity
2. If the relays are connected to $A C$ voltage please connect on all units terminal f to neutral.
3. If the relays are connected to a 3 -phase system it is possible that the relays influence each other by magnetic fields, so that the response value is increased by approx. 25%.
If the units are mounted with a distance of $>22 \mathrm{~mm}$, the a.m. behaviour does not occur.

Technical data

Input circuit

Nominal voltage U_{N} :
Response value:
Setting:
Setting accuracy:
Hysteresis:
Nominal consumption:
Nominal frequency:
Frequency range:

AC $24,110,127,230,240 \mathrm{~V}$ DC 24, 110, 127, 220, 240 V
$0,6 \ldots 1,2 U_{N}$ infinite variable $\pm 5 \%$
AC approx. 0,85 / DC approx. 0,5
7 VA / 1,4 W
$50 / 60 \mathrm{~Hz}$
$\pm 5 \%$

Output

Contacts

ML9702.11: $\quad 1$ changeover contact
Thermal current I_{th} :
Switching capacity
NO contact:
2 A / AC 230 V
$1 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}$

EN 60 947-5-1
EN 60 947-5-1

Electrical life:	$1,2 \times 10^{6}$ switching cycles 1500 switching cycles / h at 30% of the switching capacity $0,8 \times 10^{6}$ switching cycles 1000 switching cycles / h at 50% of the switching capacity $0,3 \times 10^{6}$ switching cycles 500 switching cycles / h at 100% of the switching capacity
Permissible switching frequency:	1000 switching cycles
Short-circuit strength max. fuse rating:	2 AgL EN 60 947-5-1
Mechanical life:	1,5 $\times 10^{6}$ switching cycles
General data	
Operating mode: Temperature range:	Continuous operation see nomograph of overload and temperature range
Clearance and creepage distances	
EMC	
Electrostatic discharge:	8 kV (air) EN61 000-4-2
HF irradiation:	$10 \mathrm{~V} / \mathrm{m}$ EN $61000-4-3$
Fast transients:	2 kV EN61000-4-4
Surge voltages between	
wires for power supply:	1 kV EN61 000-4-5
between wire and ground:	4 kV - EN 61 000-4-5
HF -leitungsgeführt:	10 V EN61000-4-6
Interference suppression:	Limit value class B EN 55011
Degree of protection:	Housing: IP 40 EN 60529
	Terminals: IP 20 EN 60529
Housing:	Thermoplastic with V0 behaviour according to UL subject 94
Vibration resistance:	Amplitude $0,35 \mathrm{~mm}$ frequency 10 ... 55 Hz EN 60 068-2-6
Climate resistance:	Humid heat EN 60 068-2-30
Terminal designation:	EN 50005
Wire connection:	$2 \times 2,5 \mathrm{~mm}^{2}$ solid or
	$2 \times 1,5 \mathrm{~mm}^{2}$ stranded wire with sleeve DIN 46 228-1/-2/-3/-4
Wire fixing:	Flat terminals with self-lifting clamping piece EN 60999
Mounting:	DIN rail EN 50022
Weight:	250 g
Dimensions	
Width x height x depth:	$22,5 \times 80 \times 102 \mathrm{~mm}$
Standard type	
ML 9702.11 AC 230 V Article number: - Output: - Nominal voltage U_{N} : - Width:	60 Hz 0029210 stock item 1 changeover contact AC 230 V $22,5 \mathrm{~mm}$

Ordering example

Characteristics

Under-/Overvoltage

Undervoltage detection (closed circuit operation)

Example:
required response value \leq AC 196 V
setting value $=\frac{\text { required response value }}{\text { Hysteresis }}=\frac{196 \mathrm{~V}}{0,85}=230 \mathrm{~V}$
If the voltage exceeds 230 V the contact $11-14$ closes. If the voltage drops under 196 V the output contact switches back to 11-12.

Overvoltage detection (open circuit operation)

Example:
required response value:
\geq AC 230 V
= Setting value on ML 9702 (accurate setting with voltmeter)

If the voltage exceeds 230 V the contact $11-14$ closes. If the voltage drops under 196 V (hysteresis 0,85) the output contact switches back to 11-12.

Overload and ambient temperature:

Nomograph to evaluate the max. continuous overload depending on mounting distance and ambient temperature:
Example:

1. select ambient temperature e.g. $52^{\circ} \mathrm{C}$
2. select mounting distance e.g. 0 mm
draw a line through the 2 points and extend it to the left scale.
Factor 1,2 means, that the relay can be used with 1,2 times overvoltage having an ambient temperature of 52 degrees and the relay is mounted without distance.
