Power Transducers

Watt Transducers - Auxiliary or Self Powered

A range of Watt transducers in single or three-phase, balanced or unbalanced, 3 or 4wire systems. Class 0.5 products utilise the well established 'time division multiplication' method of measuring power while the class 0.2 products are microprocessor based and offer exceptional waveform handling on distorted waveforms. In the self powered products the system voltage provides both power supply and input to the measurements circuit but for systems with large voltage variations auxiliary powered products should be used. Input, output and auxiliaries are isolated.

Model	Accuracy	Function	Connection diagram
256-TWK	Class 0.5	1-phase, 150mm(6") case	14
256-TWL	Class 0.5	3-phase 3-wire balanced load, 150mm(6") case	19
256-TWH	Class 0.5	3-phase 4-wire balanced load, 150mm(6") case	24
256-TWM	Class 0.5	3-phase 3-wire unbalanced load, $150 \mathrm{~mm}\left(6^{\prime \prime}\right)$ case	20
256-TWN	Class 0.5	3-phase 4-wire unbalanced load, $150 \mathrm{~mm}\left(6^{\prime \prime}\right)$ case	35
256-TWS	Class 0.5	3 -phase 3 -wire balanced load (2 voltage connections), $150 \mathrm{~mm}\left(6^{\prime \prime}\right)$ case	38
256-XWK	Class 0.2	1-phase, 150mm(6") case	14
256-XWL	Class 0.2	3-phase 3-wire balanced load, 150mm(6") case	41
256-XWH	Class 0.2	3-phase 4-wire balanced load, 150mm(6") case	24
256-XWM	Class 0.2	3-phase 3-wire unbalanced load, $150 \mathrm{~mm}\left(6^{\prime \prime}\right)$ case	20
256-XWW	Class 0.2	3-phase 4-wire unbalanced load, $150 \mathrm{~mm}\left(6^{\prime \prime}\right)$ case	21

Specifications

Input:	$57.7 \mathrm{~V}, 63.5 \mathrm{~V}, 100 \mathrm{~V}, 110 \mathrm{~V}, 120 \mathrm{~V}, 139 \mathrm{~V}, 208 \mathrm{~V}, 220 \mathrm{~V}, 240 \mathrm{~V}, 250 \mathrm{~V}$,
	$277 \mathrm{~V}, 380 \mathrm{~V}, 400 \mathrm{~V}, 415 \mathrm{~V}, 440 \mathrm{~V}, \& 480 \mathrm{~V} \mathrm{AC}$
Output:	$0 / 1 \mathrm{~mA}, 0 / 5 \mathrm{~mA}, 0 / 10 \mathrm{~mA}, 0 / 20 \mathrm{~mA}$ or $4 / 20 \mathrm{~mA} \mathrm{DC}$
	$1 / 0 / 1 \mathrm{~mA}, 5 / 0 / 5 \mathrm{~mA}, 10 / 0 / 10 \mathrm{~mA}$ or $20 / 0 / 20 \mathrm{~mA} \mathrm{DC}$
	$0 / 1 \mathrm{~V}, 0 / 5 \mathrm{~V}$ or $0 / 10 \mathrm{~V} \mathrm{DC}$
	$1 / 0 / 1 \mathrm{~V}, 5 / 0 / 5 \mathrm{~V}$ or $10 / 0 / 10 \mathrm{~V}$ DC
Current:	10 or 5 AC
Frequency:	$50 \mathrm{~Hz}, 60 \mathrm{~Hz}$
Optional	$100-480 \mathrm{~V} \mathrm{AC}$
Auxiliary:	$12 \mathrm{~V}, 24 \mathrm{~V}, 48 \mathrm{~V}, 110 \mathrm{~V}$ or 125 V DC

Type 256-XDH

$3 \varnothing 4 W$ Balanced Load, Watt and VAr, 2 Outputs - Diagram 26

Type 256-XRL/XSL/XJL

$3 \varnothing 3 W$ Balanced Load, Watt, $V A r$ and $V A$:
Watt, VAr and Power Factor 3 Outputs - Diagram 27

Type 256-XRH/XSH/XJH

$3 \varnothing 4 W$ Balanced Load, Watt, VAr and VA
Watt, VAr and Power Factor 3 Outputs - Diagram 28

Type 256-XWE/XXE/XYE/XFE/ XFF/XPE/XPF

$3 \varnothing 4 W$ Unbalanced Load, Watt, VAr and VA or Phase Angle or Power Factor. 3 Outputs Diagram 29

Type 256-XRM/XSM/XJM

$3 \varnothing$ 3W Unbalanced Load, Watt, VAr and VA: Watt, VAr and Power Factor. 3 Outputs - Diagram 31

Type 256-XRW/XSW/XJW

3 Ø 4W Unbalanced Load, 3 Elements, Watt, VAr and VA: Watt, VAr and Power Factor. 3 Outputs Diagram 32

Type 256-TWE/TXG

3 Phase 3-wire Balanced Load, Watt, VAr or Phase Angle - Diagram 34

Type 256-TWN/TXP/TYN

$3 \varnothing 4$ W Unbalanced Load, Watt or VAr, or VA - Diagram 35

